File size: 17,620 Bytes
62a2f1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
from .utils import IntermediateLayerGetter
from ._deeplab import DeepLabHead, DeepLabHeadV3Plus, DeepLabV3
from .enhanced_deeplab import EnhancedDeepLabHead, EnhancedDeepLabHeadV3Plus, EnhancedDeepLabV3
from .backbone import (
    resnet,
    mobilenetv2,
    hrnetv2,
    xception
)

def _segm_hrnet(name, backbone_name, num_classes, pretrained_backbone,
               use_eoaNet=True, msa_scales=[1, 2, 4], eog_beta=0.5):

    backbone = hrnetv2.__dict__[backbone_name](pretrained_backbone)
    # HRNetV2 config:
    # the final output channels is dependent on highest resolution channel config (c).
    # output of backbone will be the inplanes to assp:
    hrnet_channels = int(backbone_name.split('_')[-1])
    inplanes = sum([hrnet_channels * 2 ** i for i in range(4)])
    low_level_planes = 256 # all hrnet version channel output from bottleneck is the same
    aspp_dilate = [12, 24, 36] # If follow paper trend, can put [24, 48, 72].

    if name=='deeplabv3plus':
        return_layers = {'stage4': 'out', 'layer1': 'low_level'}
        classifier = EnhancedDeepLabHeadV3Plus(inplanes, low_level_planes, num_classes, aspp_dilate,
                                             use_eoaNet=use_eoaNet, msa_scales=msa_scales, eog_beta=eog_beta)
    elif name=='deeplabv3':
        return_layers = {'stage4': 'out'}
        classifier = EnhancedDeepLabHead(inplanes, num_classes, aspp_dilate,
                                       use_eoaNet=use_eoaNet, msa_scales=msa_scales, eog_beta=eog_beta)

    backbone = IntermediateLayerGetter(backbone, return_layers=return_layers, hrnet_flag=True)
    model = EnhancedDeepLabV3(backbone, classifier)
    return model

def _segm_resnet(name, backbone_name, num_classes, output_stride, pretrained_backbone, 
                use_eoaNet=True, msa_scales=[1, 2, 4], eog_beta=0.5):

    if output_stride==8:
        replace_stride_with_dilation=[False, True, True]
        aspp_dilate = [12, 24, 36]
    else:
        replace_stride_with_dilation=[False, False, True]
        aspp_dilate = [6, 12, 18]

    backbone = resnet.__dict__[backbone_name](
        pretrained=pretrained_backbone,
        replace_stride_with_dilation=replace_stride_with_dilation)
    
    inplanes = 2048
    low_level_planes = 256

    if name=='deeplabv3plus':
        return_layers = {'layer4': 'out', 'layer1': 'low_level'}
        classifier = EnhancedDeepLabHeadV3Plus(inplanes, low_level_planes, num_classes, aspp_dilate,
                                             use_eoaNet=use_eoaNet, msa_scales=msa_scales, eog_beta=eog_beta)
    elif name=='deeplabv3':
        return_layers = {'layer4': 'out'}
        classifier = EnhancedDeepLabHead(inplanes, num_classes, aspp_dilate,
                                       use_eoaNet=use_eoaNet, msa_scales=msa_scales, eog_beta=eog_beta)
    backbone = IntermediateLayerGetter(backbone, return_layers=return_layers)

    model = EnhancedDeepLabV3(backbone, classifier)
    return model


def _segm_xception(name, backbone_name, num_classes, output_stride, pretrained_backbone,
                 use_eoaNet=True, msa_scales=[1, 2, 4], eog_beta=0.5):
    if output_stride==8:
        replace_stride_with_dilation=[False, False, True, True]
        aspp_dilate = [12, 24, 36]
    else:
        replace_stride_with_dilation=[False, False, False, True]
        aspp_dilate = [6, 12, 18]
    
    backbone = xception.xception(pretrained= 'imagenet' if pretrained_backbone else False, replace_stride_with_dilation=replace_stride_with_dilation)
    
    inplanes = 2048
    low_level_planes = 128
    
    if name=='deeplabv3plus':
        return_layers = {'conv4': 'out', 'block1': 'low_level'}
        classifier = EnhancedDeepLabHeadV3Plus(inplanes, low_level_planes, num_classes, aspp_dilate,
                                             use_eoaNet=use_eoaNet, msa_scales=msa_scales, eog_beta=eog_beta)
    elif name=='deeplabv3':
        return_layers = {'conv4': 'out'}
        classifier = EnhancedDeepLabHead(inplanes, num_classes, aspp_dilate,
                                       use_eoaNet=use_eoaNet, msa_scales=msa_scales, eog_beta=eog_beta)
    backbone = IntermediateLayerGetter(backbone, return_layers=return_layers)
    model = EnhancedDeepLabV3(backbone, classifier)
    return model


def _segm_mobilenet(name, backbone_name, num_classes, output_stride, pretrained_backbone,
                 use_eoaNet=True, msa_scales=[1, 2, 4], eog_beta=0.5):
    if output_stride==8:
        aspp_dilate = [12, 24, 36]
    else:
        aspp_dilate = [6, 12, 18]

    backbone = mobilenetv2.mobilenet_v2(pretrained=pretrained_backbone, output_stride=output_stride)
    
    # rename layers
    backbone.low_level_features = backbone.features[0:4]
    backbone.high_level_features = backbone.features[4:-1]
    backbone.features = None
    backbone.classifier = None

    inplanes = 320
    low_level_planes = 24
    
    if name=='deeplabv3plus':
        return_layers = {'high_level_features': 'out', 'low_level_features': 'low_level'}
        classifier = EnhancedDeepLabHeadV3Plus(inplanes, low_level_planes, num_classes, aspp_dilate,
                                             use_eoaNet=use_eoaNet, msa_scales=msa_scales, eog_beta=eog_beta)
    elif name=='deeplabv3':
        return_layers = {'high_level_features': 'out'}
        classifier = EnhancedDeepLabHead(inplanes, num_classes, aspp_dilate,
                                       use_eoaNet=use_eoaNet, msa_scales=msa_scales, eog_beta=eog_beta)
    backbone = IntermediateLayerGetter(backbone, return_layers=return_layers)

    model = EnhancedDeepLabV3(backbone, classifier)
    return model

def _load_model(arch_type, backbone, num_classes, output_stride, pretrained_backbone, **kwargs):
    use_eoaNet = kwargs.get('use_eoaNet', True)
    msa_scales = kwargs.get('msa_scales', [1, 2, 4])
    eog_beta = kwargs.get('eog_beta', 0.5)

    if backbone=='mobilenetv2':
        model = _segm_mobilenet(arch_type, backbone, num_classes, output_stride=output_stride, 
                               pretrained_backbone=pretrained_backbone, use_eoaNet=use_eoaNet, 
                               msa_scales=msa_scales, eog_beta=eog_beta)
    elif backbone.startswith('resnet'):
        model = _segm_resnet(arch_type, backbone, num_classes, output_stride=output_stride, 
                            pretrained_backbone=pretrained_backbone, use_eoaNet=use_eoaNet, 
                            msa_scales=msa_scales, eog_beta=eog_beta)
    elif backbone.startswith('hrnetv2'):
        model = _segm_hrnet(arch_type, backbone, num_classes, pretrained_backbone=pretrained_backbone, 
                           use_eoaNet=use_eoaNet, msa_scales=msa_scales, eog_beta=eog_beta)
    elif backbone=='xception':
        model = _segm_xception(arch_type, backbone, num_classes, output_stride=output_stride, 
                              pretrained_backbone=pretrained_backbone, use_eoaNet=use_eoaNet, 
                              msa_scales=msa_scales, eog_beta=eog_beta)
    else:
        raise NotImplementedError
    return model


# Deeplab v3
def deeplabv3_hrnetv2_48(num_classes=21, output_stride=4, pretrained_backbone=False, # no pretrained backbone yet
                    use_eoaNet=True, msa_scales=[1, 2, 4], eog_beta=0.5):
    """Constructs a DeepLabV3 model with a HRNetV2-48 backbone.

    Args:
        num_classes (int): number of classes.
        output_stride (int): output stride for deeplab.
        pretrained_backbone (bool): If True, use the pretrained backbone.
        use_eoaNet (bool): If True, use Entropy-Optimized Attention Network.
        msa_scales (list): Scales for Multi-Scale Attention.
        eog_beta (float): Entropy threshold for Entropy-Optimized Gating.
    """
    return _load_model('deeplabv3', 'hrnetv2_48', num_classes, output_stride, 
                      pretrained_backbone=pretrained_backbone, use_eoaNet=use_eoaNet, 
                      msa_scales=msa_scales, eog_beta=eog_beta)

def deeplabv3_hrnetv2_32(num_classes=21, output_stride=4, pretrained_backbone=True,
                    use_eoaNet=True, msa_scales=[1, 2, 4], eog_beta=0.5):
    """Constructs a DeepLabV3 model with a HRNetV2-32 backbone.

    Args:
        num_classes (int): number of classes.
        output_stride (int): output stride for deeplab.
        pretrained_backbone (bool): If True, use the pretrained backbone.
        use_eoaNet (bool): If True, use Entropy-Optimized Attention Network.
        msa_scales (list): Scales for Multi-Scale Attention.
        eog_beta (float): Entropy threshold for Entropy-Optimized Gating.
    """
    return _load_model('deeplabv3', 'hrnetv2_32', num_classes, output_stride, 
                      pretrained_backbone=pretrained_backbone, use_eoaNet=use_eoaNet, 
                      msa_scales=msa_scales, eog_beta=eog_beta)

def deeplabv3_resnet50(num_classes=21, output_stride=8, pretrained_backbone=True,
                  use_eoaNet=True, msa_scales=[1, 2, 4], eog_beta=0.5):
    """Constructs a DeepLabV3 model with a ResNet-50 backbone.

    Args:
        num_classes (int): number of classes.
        output_stride (int): output stride for deeplab.
        pretrained_backbone (bool): If True, use the pretrained backbone.
        use_eoaNet (bool): If True, use Entropy-Optimized Attention Network.
        msa_scales (list): Scales for Multi-Scale Attention.
        eog_beta (float): Entropy threshold for Entropy-Optimized Gating.
    """
    return _load_model('deeplabv3', 'resnet50', num_classes, output_stride=output_stride, 
                      pretrained_backbone=pretrained_backbone, use_eoaNet=use_eoaNet, 
                      msa_scales=msa_scales, eog_beta=eog_beta)

def deeplabv3_resnet101(num_classes=21, output_stride=8, pretrained_backbone=True,
                   use_eoaNet=True, msa_scales=[1, 2, 4], eog_beta=0.5):
    """Constructs a DeepLabV3 model with a ResNet-101 backbone.

    Args:
        num_classes (int): number of classes.
        output_stride (int): output stride for deeplab.
        pretrained_backbone (bool): If True, use the pretrained backbone.
        use_eoaNet (bool): If True, use Entropy-Optimized Attention Network.
        msa_scales (list): Scales for Multi-Scale Attention.
        eog_beta (float): Entropy threshold for Entropy-Optimized Gating.
    """
    return _load_model('deeplabv3', 'resnet101', num_classes, output_stride=output_stride, 
                      pretrained_backbone=pretrained_backbone, use_eoaNet=use_eoaNet, 
                      msa_scales=msa_scales, eog_beta=eog_beta)

def deeplabv3_mobilenet(num_classes=21, output_stride=8, pretrained_backbone=True,
                   use_eoaNet=True, msa_scales=[1, 2, 4], eog_beta=0.5):
    """Constructs a DeepLabV3 model with a MobileNetv2 backbone.

    Args:
        num_classes (int): number of classes.
        output_stride (int): output stride for deeplab.
        pretrained_backbone (bool): If True, use the pretrained backbone.
        use_eoaNet (bool): If True, use Entropy-Optimized Attention Network.
        msa_scales (list): Scales for Multi-Scale Attention.
        eog_beta (float): Entropy threshold for Entropy-Optimized Gating.
    """
    return _load_model('deeplabv3', 'mobilenetv2', num_classes, output_stride=output_stride, 
                      pretrained_backbone=pretrained_backbone, use_eoaNet=use_eoaNet, 
                      msa_scales=msa_scales, eog_beta=eog_beta)

def deeplabv3_xception(num_classes=21, output_stride=8, pretrained_backbone=True,
                  use_eoaNet=True, msa_scales=[1, 2, 4], eog_beta=0.5):
    """Constructs a DeepLabV3 model with a Xception backbone.

    Args:
        num_classes (int): number of classes.
        output_stride (int): output stride for deeplab.
        pretrained_backbone (bool): If True, use the pretrained backbone.
        use_eoaNet (bool): If True, use Entropy-Optimized Attention Network.
        msa_scales (list): Scales for Multi-Scale Attention.
        eog_beta (float): Entropy threshold for Entropy-Optimized Gating.
    """
    return _load_model('deeplabv3', 'xception', num_classes, output_stride=output_stride, 
                      pretrained_backbone=pretrained_backbone, use_eoaNet=use_eoaNet, 
                      msa_scales=msa_scales, eog_beta=eog_beta)


# Deeplab v3+
def deeplabv3plus_hrnetv2_48(num_classes=21, output_stride=4, pretrained_backbone=False, # no pretrained backbone yet
                       use_eoaNet=True, msa_scales=[1, 2, 4], eog_beta=0.5):
    """Constructs a DeepLabV3+ model with a HRNetV2-48 backbone.

    Args:
        num_classes (int): number of classes.
        output_stride (int): output stride for deeplab.
        pretrained_backbone (bool): If True, use the pretrained backbone.
        use_eoaNet (bool): If True, use Entropy-Optimized Attention Network.
        msa_scales (list): Scales for Multi-Scale Attention.
        eog_beta (float): Entropy threshold for Entropy-Optimized Gating.
    """
    return _load_model('deeplabv3plus', 'hrnetv2_48', num_classes, output_stride, 
                      pretrained_backbone=pretrained_backbone, use_eoaNet=use_eoaNet, 
                      msa_scales=msa_scales, eog_beta=eog_beta)

def deeplabv3plus_hrnetv2_32(num_classes=21, output_stride=4, pretrained_backbone=True,
                       use_eoaNet=True, msa_scales=[1, 2, 4], eog_beta=0.5):
    """Constructs a DeepLabV3+ model with a HRNetV2-32 backbone.

    Args:
        num_classes (int): number of classes.
        output_stride (int): output stride for deeplab.
        pretrained_backbone (bool): If True, use the pretrained backbone.
        use_eoaNet (bool): If True, use Entropy-Optimized Attention Network.
        msa_scales (list): Scales for Multi-Scale Attention.
        eog_beta (float): Entropy threshold for Entropy-Optimized Gating.
    """
    return _load_model('deeplabv3plus', 'hrnetv2_32', num_classes, output_stride, 
                      pretrained_backbone=pretrained_backbone, use_eoaNet=use_eoaNet, 
                      msa_scales=msa_scales, eog_beta=eog_beta)

def deeplabv3plus_resnet50(num_classes=21, output_stride=8, pretrained_backbone=True,
                     use_eoaNet=True, msa_scales=[1, 2, 4], eog_beta=0.5):
    """Constructs a DeepLabV3 model with a ResNet-50 backbone.

    Args:
        num_classes (int): number of classes.
        output_stride (int): output stride for deeplab.
        pretrained_backbone (bool): If True, use the pretrained backbone.
        use_eoaNet (bool): If True, use Entropy-Optimized Attention Network.
        msa_scales (list): Scales for Multi-Scale Attention.
        eog_beta (float): Entropy threshold for Entropy-Optimized Gating.
    """
    return _load_model('deeplabv3plus', 'resnet50', num_classes, output_stride=output_stride, 
                      pretrained_backbone=pretrained_backbone, use_eoaNet=use_eoaNet, 
                      msa_scales=msa_scales, eog_beta=eog_beta)


def deeplabv3plus_resnet101(num_classes=21, output_stride=8, pretrained_backbone=True, 
                      use_eoaNet=True, msa_scales=[1, 2, 4], eog_beta=0.5):
    """Constructs a DeepLabV3+ model with a ResNet-101 backbone.

    Args:
        num_classes (int): number of classes.
        output_stride (int): output stride for deeplab.
        pretrained_backbone (bool): If True, use the pretrained backbone.
        use_eoaNet (bool): If True, use Entropy-Optimized Attention Network.
        msa_scales (list): Scales for Multi-Scale Attention.
        eog_beta (float): Entropy threshold for Entropy-Optimized Gating.
    """
    return _load_model('deeplabv3plus', 'resnet101', num_classes, output_stride=output_stride, 
                      pretrained_backbone=pretrained_backbone, use_eoaNet=use_eoaNet, 
                      msa_scales=msa_scales, eog_beta=eog_beta)


def deeplabv3plus_mobilenet(num_classes=21, output_stride=8, pretrained_backbone=True,
                       use_eoaNet=True, msa_scales=[1, 2, 4], eog_beta=0.5):
    """Constructs a DeepLabV3+ model with a MobileNetv2 backbone.

    Args:
        num_classes (int): number of classes.
        output_stride (int): output stride for deeplab.
        pretrained_backbone (bool): If True, use the pretrained backbone.
        use_eoaNet (bool): If True, use Entropy-Optimized Attention Network.
        msa_scales (list): Scales for Multi-Scale Attention.
        eog_beta (float): Entropy threshold for Entropy-Optimized Gating.
    """
    return _load_model('deeplabv3plus', 'mobilenetv2', num_classes, output_stride=output_stride, 
                      pretrained_backbone=pretrained_backbone, use_eoaNet=use_eoaNet, 
                      msa_scales=msa_scales, eog_beta=eog_beta)

def deeplabv3plus_xception(num_classes=21, output_stride=8, pretrained_backbone=True,
                      use_eoaNet=True, msa_scales=[1, 2, 4], eog_beta=0.5):
    """Constructs a DeepLabV3+ model with a Xception backbone.

    Args:
        num_classes (int): number of classes.
        output_stride (int): output stride for deeplab.
        pretrained_backbone (bool): If True, use the pretrained backbone.
        use_eoaNet (bool): If True, use Entropy-Optimized Attention Network.
        msa_scales (list): Scales for Multi-Scale Attention.
        eog_beta (float): Entropy threshold for Entropy-Optimized Gating.
    """
    return _load_model('deeplabv3plus', 'xception', num_classes, output_stride=output_stride, 
                      pretrained_backbone=pretrained_backbone, use_eoaNet=use_eoaNet, 
                      msa_scales=msa_scales, eog_beta=eog_beta)