File size: 17,814 Bytes
62a2f1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
import argparse
import os
import torch
from exp.exp_main import Exp_Main
import random
import json
import numpy as np
from torch.utils.tensorboard import SummaryWriter
import traceback
import pathlib
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from torch.fft import rfft, irfft

class moving_avg(nn.Module):
    """
    Moving average block to highlight the trend of time series with boundary adjustment
    """
    def __init__(self, kernel_size, stride):
        super(moving_avg, self).__init__()
        self.kernel_size = kernel_size
        self.avg = nn.AvgPool1d(kernel_size=kernel_size, stride=stride, padding=0)

    def forward(self, x):
        # padding on the both ends of time series
        front = x[:, 0:1, :].repeat(1, (self.kernel_size - 1) // 2, 1)
        end = x[:, -1:, :].repeat(1, (self.kernel_size - 1) // 2, 1)
        x = torch.cat([front, x, end], dim=1)
        x = self.avg(x.permute(0, 2, 1))
        x = x.permute(0, 2, 1)
        return x


class series_decomp(nn.Module):
    """
    Enhanced series decomposition block with adaptive frequency selection
    """
    def __init__(self, kernel_size, freq_range=5, filter_strength=0.5, top_k=3):
        super(series_decomp, self).__init__()
        self.moving_avg = moving_avg(kernel_size, stride=1)
        self.freq_range = freq_range
        self.filter_strength = filter_strength  # Controls how much filtering to apply
        self.top_k = top_k  # Number of top frequencies to enhance
        
    def _enhance_seasonal(self, seasonal):
        """Apply advanced frequency enhancement to seasonal component"""
        # Convert to frequency domain
        seasonal_fft = rfft(seasonal.permute(0, 2, 1), dim=2)
        power = torch.abs(seasonal_fft)**2
        
        # Find dominant frequencies (average across batch and channels)
        avg_power = torch.mean(power, dim=(0, 1))
        
        # Get top-k frequencies
        if len(avg_power) > self.top_k:
            # Find indices of top-k frequencies
            _, top_indices = torch.topk(avg_power, self.top_k)
            
            # Create a mask that emphasizes top-k frequencies and their neighbors
            mask = torch.ones_like(seasonal_fft) * (1 - self.filter_strength)
            
            # Enhance each top frequency and its neighbors
            for idx in top_indices:
                start_idx = max(0, idx - self.freq_range)
                end_idx = min(len(avg_power), idx + self.freq_range + 1)
                
                # Apply smoother enhancement with distance-based weighting
                for i in range(start_idx, end_idx):
                    # Calculate distance-based weight (closer = stronger enhancement)
                    distance = abs(i - idx)
                    weight = 1.0 - (distance / (self.freq_range + 1))
                    
                    # Apply weighted enhancement
                    mask[:, :, i] += weight * self.filter_strength
            
            # Apply mask and convert back to time domain
            filtered_fft = seasonal_fft * mask
            enhanced_seasonal = irfft(filtered_fft, dim=2, n=seasonal.size(1))
            return enhanced_seasonal.permute(0, 2, 1)
        
        # Fallback to simpler enhancement for small frequency ranges
        total_power = torch.sum(avg_power)
        if total_power > 0:
            freq_weights = avg_power / total_power
            # Smoother weight distribution
            freq_weights = freq_weights ** 0.3  # Less aggressive exponent
            
            # Apply weighted mask
            mask = torch.ones_like(seasonal_fft) * (1 - self.filter_strength)
            for i in range(len(freq_weights)):
                mask[:, :, i] += freq_weights[i] * self.filter_strength
                
            # Apply mask and convert back to time domain
            filtered_fft = seasonal_fft * mask
            enhanced_seasonal = irfft(filtered_fft, dim=2, n=seasonal.size(1))
            return enhanced_seasonal.permute(0, 2, 1)
        
        return seasonal  # Fallback to original if no power detected

    def forward(self, x):
        # Extract trend using moving average
        moving_mean = self.moving_avg(x)
        
        # Extract seasonal component (residual)
        seasonal = x - moving_mean
        
        # Apply advanced frequency enhancement
        enhanced_seasonal = self._enhance_seasonal(seasonal)
        
        # Blend original and enhanced seasonal with more weight on original
        # More conservative blending to maintain baseline performance
        final_seasonal = seasonal * 0.8 + enhanced_seasonal * 0.2
        
        return final_seasonal, moving_mean

# No replacement needed - we'll use a different approach


class SimpleTrendAttention(nn.Module):
    """
    Simple attention mechanism for trend component
    """
    def __init__(self, seq_len):
        super(SimpleTrendAttention, self).__init__()
        # Simple learnable attention weights
        self.attention = nn.Parameter(torch.ones(seq_len) / seq_len)
        
    def forward(self, x):
        # x: [Batch, seq_len, channels]
        # Apply attention weights along sequence dimension
        weights = F.softmax(self.attention, dim=0)
        # Reshape for broadcasting
        weights = weights.view(1, -1, 1)
        # Apply attention
        return x * weights


class AdaptiveHybridDFTNet(nn.Module):
    """
    Refined AdaptiveHybridDFTNet with balanced components
    """
    def __init__(self, configs):
        super(AdaptiveHybridDFTNet, self).__init__()
        self.seq_len = configs.seq_len
        self.pred_len = configs.pred_len
        self.channels = configs.enc_in
        self.individual = configs.individual
        
        # Dynamic kernel size selection based on sequence length
        kernel_size = min(25, max(5, self.seq_len // 8))
        kernel_size = configs.moving_avg if hasattr(configs, 'moving_avg') else kernel_size
        
        # Frequency range and filter strength
        freq_range = configs.freq_range if hasattr(configs, 'freq_range') else 5
        filter_strength = configs.filter_strength if hasattr(configs, 'filter_strength') else 0.2  # Reduced strength
        top_k = configs.top_k if hasattr(configs, 'top_k') else 3
        
        # Enhanced decomposition
        self.decomposition = series_decomp(kernel_size, freq_range, filter_strength, top_k)
        
        # Simple attention for trend
        self.trend_attention = SimpleTrendAttention(self.seq_len)
        
        # Linear projection layers (similar to baseline)
        if self.individual:
            self.Linear_Seasonal = nn.ModuleList()
            self.Linear_Trend = nn.ModuleList()
            
            for i in range(self.channels):
                self.Linear_Seasonal.append(nn.Linear(self.seq_len, self.pred_len))
                self.Linear_Trend.append(nn.Linear(self.seq_len, self.pred_len))
        else:
            self.Linear_Seasonal = nn.Linear(self.seq_len, self.pred_len)
            self.Linear_Trend = nn.Linear(self.seq_len, self.pred_len)
        
        # Learnable weights for combining seasonal and trend outputs
        self.seasonal_weight = nn.Parameter(torch.tensor(0.5))
        self.trend_weight = nn.Parameter(torch.tensor(0.5))
            
    def forward(self, x):
        # x: [Batch, Input length, Channel]
        
        # Decompose with enhanced frequency selection
        seasonal, trend = self.decomposition(x)
        
        # Apply simple attention to trend
        trend = self.trend_attention(trend)
        
        # Convert to [Batch, Channel, Length] for linear projection
        seasonal = seasonal.permute(0, 2, 1)
        trend = trend.permute(0, 2, 1)
        
        # Apply linear projection
        if self.individual:
            seasonal_output = torch.zeros([seasonal.size(0), self.pred_len, self.channels], 
                                         dtype=seasonal.dtype).to(seasonal.device)
            trend_output = torch.zeros([trend.size(0), self.pred_len, self.channels], 
                                      dtype=trend.dtype).to(trend.device)
            
            for i in range(self.channels):
                seasonal_output[:, :, i] = self.Linear_Seasonal[i](seasonal[:, i, :])
                trend_output[:, :, i] = self.Linear_Trend[i](trend[:, i, :])
        else:
            seasonal_output = self.Linear_Seasonal(seasonal)
            trend_output = self.Linear_Trend(trend)
            
            # Convert back to [Batch, Length, Channel]
            seasonal_output = seasonal_output.permute(0, 2, 1)
            trend_output = trend_output.permute(0, 2, 1)
        
        # Normalize weights to sum to 1
        total_weight = torch.abs(self.seasonal_weight) + torch.abs(self.trend_weight)
        seasonal_weight_norm = torch.abs(self.seasonal_weight) / total_weight
        trend_weight_norm = torch.abs(self.trend_weight) / total_weight
        
        # Combine outputs with learnable weights
        x = seasonal_output * seasonal_weight_norm + trend_output * trend_weight_norm
        
        return x  # [Batch, Output length, Channel]


# For backward compatibility
class Model(AdaptiveHybridDFTNet):
    """
    Wrapper class for backward compatibility
    """
    def __init__(self, configs):
        super(Model, self).__init__(configs)


if __name__ == '__main__':
    fix_seed = 2021
    random.seed(fix_seed)
    torch.manual_seed(fix_seed)
    np.random.seed(fix_seed)

    parser = argparse.ArgumentParser(description='Autoformer & Transformer family for Time Series Forecasting')
    parser.add_argument("--out_dir", type=str, default="run_0")
    # basic config
    
    parser.add_argument('--is_training', type=int, required=True, default=1, help='status')
    parser.add_argument('--train_only', type=bool, required=False, default=False, help='perform training on full input dataset without validation and testing')

    # data loader
    parser.add_argument('--data', type=str, required=True, default='ETTm1', help='dataset type')
    parser.add_argument('--root_path', type=str, default='./data/ETT/', help='root path of the data file')
    parser.add_argument('--data_path', type=str, default='ETTh1.csv', help='data file')
    parser.add_argument('--features', type=str, default='M',
                        help='forecasting task, options:[M, S, MS]; M:multivariate predict multivariate, S:univariate predict univariate, MS:multivariate predict univariate')
    parser.add_argument('--target', type=str, default='OT', help='target feature in S or MS task')
    parser.add_argument('--freq', type=str, default='h',
                        help='freq for time features encoding, options:[s:secondly, t:minutely, h:hourly, d:daily, b:business days, w:weekly, m:monthly], you can also use more detailed freq like 15min or 3h')
    parser.add_argument('--checkpoints', type=str, default='./checkpoints/', help='location of model checkpoints')

    # forecasting task
    parser.add_argument('--seq_len', type=int, default=96, help='input sequence length')
    parser.add_argument('--label_len', type=int, default=48, help='start token length')
    parser.add_argument('--pred_len', type=int, default=96, help='prediction sequence length')


    # DLinear
    parser.add_argument('--individual', action='store_true', default=False, help='DLinear: a linear layer for each variate(channel) individually')
    # Formers 
    parser.add_argument('--embed_type', type=int, default=0, help='0: default 1: value embedding + temporal embedding + positional embedding 2: value embedding + temporal embedding 3: value embedding + positional embedding 4: value embedding')
    parser.add_argument('--enc_in', type=int, default=7, help='encoder input size') # DLinear with --individual, use this hyperparameter as the number of channels
    parser.add_argument('--dec_in', type=int, default=7, help='decoder input size')
    parser.add_argument('--c_out', type=int, default=7, help='output size')
    parser.add_argument('--d_model', type=int, default=512, help='dimension of model')
    parser.add_argument('--n_heads', type=int, default=8, help='num of heads')
    parser.add_argument('--e_layers', type=int, default=2, help='num of encoder layers')
    parser.add_argument('--d_layers', type=int, default=1, help='num of decoder layers')
    parser.add_argument('--d_ff', type=int, default=2048, help='dimension of fcn')
    parser.add_argument('--moving_avg', type=int, default=25, help='window size of moving average for trend extraction')
    parser.add_argument('--freq_range', type=int, default=5, help='frequency range for adaptive DFT selection')
    parser.add_argument('--filter_strength', type=float, default=0.2, help='strength of frequency filtering (0-1)')
    parser.add_argument('--top_k', type=int, default=3, help='number of top frequencies to enhance')
    parser.add_argument('--factor', type=int, default=1, help='attn factor')
    parser.add_argument('--distil', action='store_false',
                        help='whether to use distilling in encoder, using this argument means not using distilling',
                        default=True)
    parser.add_argument('--dropout', type=float, default=0.05, help='dropout')
    parser.add_argument('--embed', type=str, default='timeF',
                        help='time features encoding, options:[timeF, fixed, learned]')
    parser.add_argument('--activation', type=str, default='gelu', help='activation')
    parser.add_argument('--output_attention', action='store_true', help='whether to output attention in ecoder')
    parser.add_argument('--do_predict', action='store_true', help='whether to predict unseen future data')

    # optimization
    parser.add_argument('--num_workers', type=int, default=10, help='data loader num workers')
    parser.add_argument('--itr', type=int, default=2, help='experiments times')
    parser.add_argument('--train_epochs', type=int, default=10, help='train epochs')
    parser.add_argument('--batch_size', type=int, default=32, help='batch size of train input data')
    parser.add_argument('--patience', type=int, default=3, help='early stopping patience')
    parser.add_argument('--learning_rate', type=float, default=0.0001, help='optimizer learning rate')
    parser.add_argument('--des', type=str, default='test', help='exp description')
    parser.add_argument('--loss', type=str, default='mse', help='loss function')
    parser.add_argument('--lradj', type=str, default='type1', help='adjust learning rate')
    parser.add_argument('--use_amp', action='store_true', help='use automatic mixed precision training', default=False)

    # GPU
    parser.add_argument('--use_gpu', type=bool, default=True, help='use gpu')
    parser.add_argument('--gpu', type=int, default=0, help='gpu')
    parser.add_argument('--use_multi_gpu', action='store_true', help='use multiple gpus', default=False)
    parser.add_argument('--devices', type=str, default='0,1,2,3', help='device ids of multile gpus')
    parser.add_argument('--test_flop', action='store_true', default=False, help='See utils/tools for usage')

    args = parser.parse_args()
    try:
        log_dir = os.path.join(args.out_dir, 'logs')
        pathlib.Path(log_dir).mkdir(parents=True, exist_ok=True)
        writer = SummaryWriter(log_dir)
        args.use_gpu = True if torch.cuda.is_available() and args.use_gpu else False

        if args.use_gpu and args.use_multi_gpu:
            args.dvices = args.devices.replace(' ', '')
            device_ids = args.devices.split(',')
            args.device_ids = [int(id_) for id_ in device_ids]
            args.gpu = args.device_ids[0]

        print('Args in experiment:')
        print(args)
        mse,mae = [], []
        pred_lens = [96, 192, 336, 720] if args.data_path != 'illness.csv' else [24, 36, 48, 60]
        for pred_len in pred_lens:
            args.pred_len = pred_len
            model = Model(args)
            Exp = Exp_Main
            setting = '{}_ft{}_sl{}_ll{}_pl{}_dm{}_nh{}_el{}_dl{}_df{}_fc{}_eb{}_dt{}_{}'.format(
                args.data,
                args.features,
                args.seq_len,
                args.label_len,
                pred_len,
                args.d_model,
                args.n_heads,
                args.e_layers,
                args.d_layers,
                args.d_ff,
                args.factor,
                args.embed,
                args.distil,
                args.des)

            exp = Exp(args,model)  # set experiments
            print('>>>>>>>start training : {}>>>>>>>>>>>>>>>>>>>>>>>>>>'.format(setting))
            exp.train(setting,writer)
            print('>>>>>>>testing : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
            single_mae, single_mse = exp.test(setting)
            print('mse:{}, mae:{}'.format(single_mse, single_mae))
            mae.append(single_mae)
            mse.append(single_mse)
            torch.cuda.empty_cache()
        mean_mae = sum(mae) / len(mae)
        mean_mse = sum(mse) / len(mse)
        final_infos = {
            args.data :{
                "means":{
                    "mae": mean_mae,
                    "mse": mean_mse,
                }
            }
        }
        pathlib.Path(args.out_dir).mkdir(parents=True, exist_ok=True)
        # with open(os.path.join(args.out_dir, f"final_info_{args.data}.json"), "w") as f:
        with open(os.path.join(args.out_dir, f"final_info.json"), "w") as f:
            json.dump(final_infos, f) 
    
    except Exception as e:
        print("Original error in subprocess:", flush=True)
        traceback.print_exc(file=open(os.path.join(args.out_dir, "traceback.log"), "w"))
        raise