File size: 17,814 Bytes
62a2f1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 |
import argparse
import os
import torch
from exp.exp_main import Exp_Main
import random
import json
import numpy as np
from torch.utils.tensorboard import SummaryWriter
import traceback
import pathlib
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from torch.fft import rfft, irfft
class moving_avg(nn.Module):
"""
Moving average block to highlight the trend of time series with boundary adjustment
"""
def __init__(self, kernel_size, stride):
super(moving_avg, self).__init__()
self.kernel_size = kernel_size
self.avg = nn.AvgPool1d(kernel_size=kernel_size, stride=stride, padding=0)
def forward(self, x):
# padding on the both ends of time series
front = x[:, 0:1, :].repeat(1, (self.kernel_size - 1) // 2, 1)
end = x[:, -1:, :].repeat(1, (self.kernel_size - 1) // 2, 1)
x = torch.cat([front, x, end], dim=1)
x = self.avg(x.permute(0, 2, 1))
x = x.permute(0, 2, 1)
return x
class series_decomp(nn.Module):
"""
Enhanced series decomposition block with adaptive frequency selection
"""
def __init__(self, kernel_size, freq_range=5, filter_strength=0.5, top_k=3):
super(series_decomp, self).__init__()
self.moving_avg = moving_avg(kernel_size, stride=1)
self.freq_range = freq_range
self.filter_strength = filter_strength # Controls how much filtering to apply
self.top_k = top_k # Number of top frequencies to enhance
def _enhance_seasonal(self, seasonal):
"""Apply advanced frequency enhancement to seasonal component"""
# Convert to frequency domain
seasonal_fft = rfft(seasonal.permute(0, 2, 1), dim=2)
power = torch.abs(seasonal_fft)**2
# Find dominant frequencies (average across batch and channels)
avg_power = torch.mean(power, dim=(0, 1))
# Get top-k frequencies
if len(avg_power) > self.top_k:
# Find indices of top-k frequencies
_, top_indices = torch.topk(avg_power, self.top_k)
# Create a mask that emphasizes top-k frequencies and their neighbors
mask = torch.ones_like(seasonal_fft) * (1 - self.filter_strength)
# Enhance each top frequency and its neighbors
for idx in top_indices:
start_idx = max(0, idx - self.freq_range)
end_idx = min(len(avg_power), idx + self.freq_range + 1)
# Apply smoother enhancement with distance-based weighting
for i in range(start_idx, end_idx):
# Calculate distance-based weight (closer = stronger enhancement)
distance = abs(i - idx)
weight = 1.0 - (distance / (self.freq_range + 1))
# Apply weighted enhancement
mask[:, :, i] += weight * self.filter_strength
# Apply mask and convert back to time domain
filtered_fft = seasonal_fft * mask
enhanced_seasonal = irfft(filtered_fft, dim=2, n=seasonal.size(1))
return enhanced_seasonal.permute(0, 2, 1)
# Fallback to simpler enhancement for small frequency ranges
total_power = torch.sum(avg_power)
if total_power > 0:
freq_weights = avg_power / total_power
# Smoother weight distribution
freq_weights = freq_weights ** 0.3 # Less aggressive exponent
# Apply weighted mask
mask = torch.ones_like(seasonal_fft) * (1 - self.filter_strength)
for i in range(len(freq_weights)):
mask[:, :, i] += freq_weights[i] * self.filter_strength
# Apply mask and convert back to time domain
filtered_fft = seasonal_fft * mask
enhanced_seasonal = irfft(filtered_fft, dim=2, n=seasonal.size(1))
return enhanced_seasonal.permute(0, 2, 1)
return seasonal # Fallback to original if no power detected
def forward(self, x):
# Extract trend using moving average
moving_mean = self.moving_avg(x)
# Extract seasonal component (residual)
seasonal = x - moving_mean
# Apply advanced frequency enhancement
enhanced_seasonal = self._enhance_seasonal(seasonal)
# Blend original and enhanced seasonal with more weight on original
# More conservative blending to maintain baseline performance
final_seasonal = seasonal * 0.8 + enhanced_seasonal * 0.2
return final_seasonal, moving_mean
# No replacement needed - we'll use a different approach
class SimpleTrendAttention(nn.Module):
"""
Simple attention mechanism for trend component
"""
def __init__(self, seq_len):
super(SimpleTrendAttention, self).__init__()
# Simple learnable attention weights
self.attention = nn.Parameter(torch.ones(seq_len) / seq_len)
def forward(self, x):
# x: [Batch, seq_len, channels]
# Apply attention weights along sequence dimension
weights = F.softmax(self.attention, dim=0)
# Reshape for broadcasting
weights = weights.view(1, -1, 1)
# Apply attention
return x * weights
class AdaptiveHybridDFTNet(nn.Module):
"""
Refined AdaptiveHybridDFTNet with balanced components
"""
def __init__(self, configs):
super(AdaptiveHybridDFTNet, self).__init__()
self.seq_len = configs.seq_len
self.pred_len = configs.pred_len
self.channels = configs.enc_in
self.individual = configs.individual
# Dynamic kernel size selection based on sequence length
kernel_size = min(25, max(5, self.seq_len // 8))
kernel_size = configs.moving_avg if hasattr(configs, 'moving_avg') else kernel_size
# Frequency range and filter strength
freq_range = configs.freq_range if hasattr(configs, 'freq_range') else 5
filter_strength = configs.filter_strength if hasattr(configs, 'filter_strength') else 0.2 # Reduced strength
top_k = configs.top_k if hasattr(configs, 'top_k') else 3
# Enhanced decomposition
self.decomposition = series_decomp(kernel_size, freq_range, filter_strength, top_k)
# Simple attention for trend
self.trend_attention = SimpleTrendAttention(self.seq_len)
# Linear projection layers (similar to baseline)
if self.individual:
self.Linear_Seasonal = nn.ModuleList()
self.Linear_Trend = nn.ModuleList()
for i in range(self.channels):
self.Linear_Seasonal.append(nn.Linear(self.seq_len, self.pred_len))
self.Linear_Trend.append(nn.Linear(self.seq_len, self.pred_len))
else:
self.Linear_Seasonal = nn.Linear(self.seq_len, self.pred_len)
self.Linear_Trend = nn.Linear(self.seq_len, self.pred_len)
# Learnable weights for combining seasonal and trend outputs
self.seasonal_weight = nn.Parameter(torch.tensor(0.5))
self.trend_weight = nn.Parameter(torch.tensor(0.5))
def forward(self, x):
# x: [Batch, Input length, Channel]
# Decompose with enhanced frequency selection
seasonal, trend = self.decomposition(x)
# Apply simple attention to trend
trend = self.trend_attention(trend)
# Convert to [Batch, Channel, Length] for linear projection
seasonal = seasonal.permute(0, 2, 1)
trend = trend.permute(0, 2, 1)
# Apply linear projection
if self.individual:
seasonal_output = torch.zeros([seasonal.size(0), self.pred_len, self.channels],
dtype=seasonal.dtype).to(seasonal.device)
trend_output = torch.zeros([trend.size(0), self.pred_len, self.channels],
dtype=trend.dtype).to(trend.device)
for i in range(self.channels):
seasonal_output[:, :, i] = self.Linear_Seasonal[i](seasonal[:, i, :])
trend_output[:, :, i] = self.Linear_Trend[i](trend[:, i, :])
else:
seasonal_output = self.Linear_Seasonal(seasonal)
trend_output = self.Linear_Trend(trend)
# Convert back to [Batch, Length, Channel]
seasonal_output = seasonal_output.permute(0, 2, 1)
trend_output = trend_output.permute(0, 2, 1)
# Normalize weights to sum to 1
total_weight = torch.abs(self.seasonal_weight) + torch.abs(self.trend_weight)
seasonal_weight_norm = torch.abs(self.seasonal_weight) / total_weight
trend_weight_norm = torch.abs(self.trend_weight) / total_weight
# Combine outputs with learnable weights
x = seasonal_output * seasonal_weight_norm + trend_output * trend_weight_norm
return x # [Batch, Output length, Channel]
# For backward compatibility
class Model(AdaptiveHybridDFTNet):
"""
Wrapper class for backward compatibility
"""
def __init__(self, configs):
super(Model, self).__init__(configs)
if __name__ == '__main__':
fix_seed = 2021
random.seed(fix_seed)
torch.manual_seed(fix_seed)
np.random.seed(fix_seed)
parser = argparse.ArgumentParser(description='Autoformer & Transformer family for Time Series Forecasting')
parser.add_argument("--out_dir", type=str, default="run_0")
# basic config
parser.add_argument('--is_training', type=int, required=True, default=1, help='status')
parser.add_argument('--train_only', type=bool, required=False, default=False, help='perform training on full input dataset without validation and testing')
# data loader
parser.add_argument('--data', type=str, required=True, default='ETTm1', help='dataset type')
parser.add_argument('--root_path', type=str, default='./data/ETT/', help='root path of the data file')
parser.add_argument('--data_path', type=str, default='ETTh1.csv', help='data file')
parser.add_argument('--features', type=str, default='M',
help='forecasting task, options:[M, S, MS]; M:multivariate predict multivariate, S:univariate predict univariate, MS:multivariate predict univariate')
parser.add_argument('--target', type=str, default='OT', help='target feature in S or MS task')
parser.add_argument('--freq', type=str, default='h',
help='freq for time features encoding, options:[s:secondly, t:minutely, h:hourly, d:daily, b:business days, w:weekly, m:monthly], you can also use more detailed freq like 15min or 3h')
parser.add_argument('--checkpoints', type=str, default='./checkpoints/', help='location of model checkpoints')
# forecasting task
parser.add_argument('--seq_len', type=int, default=96, help='input sequence length')
parser.add_argument('--label_len', type=int, default=48, help='start token length')
parser.add_argument('--pred_len', type=int, default=96, help='prediction sequence length')
# DLinear
parser.add_argument('--individual', action='store_true', default=False, help='DLinear: a linear layer for each variate(channel) individually')
# Formers
parser.add_argument('--embed_type', type=int, default=0, help='0: default 1: value embedding + temporal embedding + positional embedding 2: value embedding + temporal embedding 3: value embedding + positional embedding 4: value embedding')
parser.add_argument('--enc_in', type=int, default=7, help='encoder input size') # DLinear with --individual, use this hyperparameter as the number of channels
parser.add_argument('--dec_in', type=int, default=7, help='decoder input size')
parser.add_argument('--c_out', type=int, default=7, help='output size')
parser.add_argument('--d_model', type=int, default=512, help='dimension of model')
parser.add_argument('--n_heads', type=int, default=8, help='num of heads')
parser.add_argument('--e_layers', type=int, default=2, help='num of encoder layers')
parser.add_argument('--d_layers', type=int, default=1, help='num of decoder layers')
parser.add_argument('--d_ff', type=int, default=2048, help='dimension of fcn')
parser.add_argument('--moving_avg', type=int, default=25, help='window size of moving average for trend extraction')
parser.add_argument('--freq_range', type=int, default=5, help='frequency range for adaptive DFT selection')
parser.add_argument('--filter_strength', type=float, default=0.2, help='strength of frequency filtering (0-1)')
parser.add_argument('--top_k', type=int, default=3, help='number of top frequencies to enhance')
parser.add_argument('--factor', type=int, default=1, help='attn factor')
parser.add_argument('--distil', action='store_false',
help='whether to use distilling in encoder, using this argument means not using distilling',
default=True)
parser.add_argument('--dropout', type=float, default=0.05, help='dropout')
parser.add_argument('--embed', type=str, default='timeF',
help='time features encoding, options:[timeF, fixed, learned]')
parser.add_argument('--activation', type=str, default='gelu', help='activation')
parser.add_argument('--output_attention', action='store_true', help='whether to output attention in ecoder')
parser.add_argument('--do_predict', action='store_true', help='whether to predict unseen future data')
# optimization
parser.add_argument('--num_workers', type=int, default=10, help='data loader num workers')
parser.add_argument('--itr', type=int, default=2, help='experiments times')
parser.add_argument('--train_epochs', type=int, default=10, help='train epochs')
parser.add_argument('--batch_size', type=int, default=32, help='batch size of train input data')
parser.add_argument('--patience', type=int, default=3, help='early stopping patience')
parser.add_argument('--learning_rate', type=float, default=0.0001, help='optimizer learning rate')
parser.add_argument('--des', type=str, default='test', help='exp description')
parser.add_argument('--loss', type=str, default='mse', help='loss function')
parser.add_argument('--lradj', type=str, default='type1', help='adjust learning rate')
parser.add_argument('--use_amp', action='store_true', help='use automatic mixed precision training', default=False)
# GPU
parser.add_argument('--use_gpu', type=bool, default=True, help='use gpu')
parser.add_argument('--gpu', type=int, default=0, help='gpu')
parser.add_argument('--use_multi_gpu', action='store_true', help='use multiple gpus', default=False)
parser.add_argument('--devices', type=str, default='0,1,2,3', help='device ids of multile gpus')
parser.add_argument('--test_flop', action='store_true', default=False, help='See utils/tools for usage')
args = parser.parse_args()
try:
log_dir = os.path.join(args.out_dir, 'logs')
pathlib.Path(log_dir).mkdir(parents=True, exist_ok=True)
writer = SummaryWriter(log_dir)
args.use_gpu = True if torch.cuda.is_available() and args.use_gpu else False
if args.use_gpu and args.use_multi_gpu:
args.dvices = args.devices.replace(' ', '')
device_ids = args.devices.split(',')
args.device_ids = [int(id_) for id_ in device_ids]
args.gpu = args.device_ids[0]
print('Args in experiment:')
print(args)
mse,mae = [], []
pred_lens = [96, 192, 336, 720] if args.data_path != 'illness.csv' else [24, 36, 48, 60]
for pred_len in pred_lens:
args.pred_len = pred_len
model = Model(args)
Exp = Exp_Main
setting = '{}_ft{}_sl{}_ll{}_pl{}_dm{}_nh{}_el{}_dl{}_df{}_fc{}_eb{}_dt{}_{}'.format(
args.data,
args.features,
args.seq_len,
args.label_len,
pred_len,
args.d_model,
args.n_heads,
args.e_layers,
args.d_layers,
args.d_ff,
args.factor,
args.embed,
args.distil,
args.des)
exp = Exp(args,model) # set experiments
print('>>>>>>>start training : {}>>>>>>>>>>>>>>>>>>>>>>>>>>'.format(setting))
exp.train(setting,writer)
print('>>>>>>>testing : {}<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<'.format(setting))
single_mae, single_mse = exp.test(setting)
print('mse:{}, mae:{}'.format(single_mse, single_mae))
mae.append(single_mae)
mse.append(single_mse)
torch.cuda.empty_cache()
mean_mae = sum(mae) / len(mae)
mean_mse = sum(mse) / len(mse)
final_infos = {
args.data :{
"means":{
"mae": mean_mae,
"mse": mean_mse,
}
}
}
pathlib.Path(args.out_dir).mkdir(parents=True, exist_ok=True)
# with open(os.path.join(args.out_dir, f"final_info_{args.data}.json"), "w") as f:
with open(os.path.join(args.out_dir, f"final_info.json"), "w") as f:
json.dump(final_infos, f)
except Exception as e:
print("Original error in subprocess:", flush=True)
traceback.print_exc(file=open(os.path.join(args.out_dir, "traceback.log"), "w"))
raise
|