File size: 3,743 Bytes
62a2f1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
from typing import List

import numpy as np
import pandas as pd
from pandas.tseries import offsets
from pandas.tseries.frequencies import to_offset


class TimeFeature:
    def __init__(self):
        pass

    def __call__(self, index: pd.DatetimeIndex) -> np.ndarray:
        pass

    def __repr__(self):
        return self.__class__.__name__ + "()"


class SecondOfMinute(TimeFeature):
    """Minute of hour encoded as value between [-0.5, 0.5]"""

    def __call__(self, index: pd.DatetimeIndex) -> np.ndarray:
        return index.second / 59.0 - 0.5


class MinuteOfHour(TimeFeature):
    """Minute of hour encoded as value between [-0.5, 0.5]"""

    def __call__(self, index: pd.DatetimeIndex) -> np.ndarray:
        return index.minute / 59.0 - 0.5


class HourOfDay(TimeFeature):
    """Hour of day encoded as value between [-0.5, 0.5]"""

    def __call__(self, index: pd.DatetimeIndex) -> np.ndarray:
        return index.hour / 23.0 - 0.5


class DayOfWeek(TimeFeature):
    """Hour of day encoded as value between [-0.5, 0.5]"""

    def __call__(self, index: pd.DatetimeIndex) -> np.ndarray:
        return index.dayofweek / 6.0 - 0.5


class DayOfMonth(TimeFeature):
    """Day of month encoded as value between [-0.5, 0.5]"""

    def __call__(self, index: pd.DatetimeIndex) -> np.ndarray:
        return (index.day - 1) / 30.0 - 0.5


class DayOfYear(TimeFeature):
    """Day of year encoded as value between [-0.5, 0.5]"""

    def __call__(self, index: pd.DatetimeIndex) -> np.ndarray:
        return (index.dayofyear - 1) / 365.0 - 0.5


class MonthOfYear(TimeFeature):
    """Month of year encoded as value between [-0.5, 0.5]"""

    def __call__(self, index: pd.DatetimeIndex) -> np.ndarray:
        return (index.month - 1) / 11.0 - 0.5


class WeekOfYear(TimeFeature):
    """Week of year encoded as value between [-0.5, 0.5]"""

    def __call__(self, index: pd.DatetimeIndex) -> np.ndarray:
        return (index.isocalendar().week - 1) / 52.0 - 0.5


def time_features_from_frequency_str(freq_str: str) -> List[TimeFeature]:
    """
    Returns a list of time features that will be appropriate for the given frequency string.
    Parameters
    ----------
    freq_str
        Frequency string of the form [multiple][granularity] such as "12H", "5min", "1D" etc.
    """

    features_by_offsets = {
        offsets.YearEnd: [],
        offsets.QuarterEnd: [MonthOfYear],
        offsets.MonthEnd: [MonthOfYear],
        offsets.Week: [DayOfMonth, WeekOfYear],
        offsets.Day: [DayOfWeek, DayOfMonth, DayOfYear],
        offsets.BusinessDay: [DayOfWeek, DayOfMonth, DayOfYear],
        offsets.Hour: [HourOfDay, DayOfWeek, DayOfMonth, DayOfYear],
        offsets.Minute: [
            MinuteOfHour,
            HourOfDay,
            DayOfWeek,
            DayOfMonth,
            DayOfYear,
        ],
        offsets.Second: [
            SecondOfMinute,
            MinuteOfHour,
            HourOfDay,
            DayOfWeek,
            DayOfMonth,
            DayOfYear,
        ],
    }

    offset = to_offset(freq_str)

    for offset_type, feature_classes in features_by_offsets.items():
        if isinstance(offset, offset_type):
            return [cls() for cls in feature_classes]

    supported_freq_msg = f"""
    Unsupported frequency {freq_str}
    The following frequencies are supported:
        Y   - yearly
            alias: A
        M   - monthly
        W   - weekly
        D   - daily
        B   - business days
        H   - hourly
        T   - minutely
            alias: min
        S   - secondly
    """
    raise RuntimeError(supported_freq_msg)


def time_features(dates, freq='h'):
    return np.vstack([feat(dates) for feat in time_features_from_frequency_str(freq)])