| import torch | |
| from functools import partial | |
| from torch.utils.data import DataLoader | |
| from torch.utils.data import DistributedSampler as _DistributedSampler | |
| from pcdet.utils import common_utils | |
| from .dataset import DatasetTemplate | |
| from .once.once_dataset import ONCEDataset | |
| __all__ = { | |
| 'DatasetTemplate': DatasetTemplate, | |
| 'ONCEDataset': ONCEDataset | |
| } | |
| class DistributedSampler(_DistributedSampler): | |
| def __init__(self, dataset, num_replicas=None, rank=None, shuffle=True): | |
| super().__init__(dataset, num_replicas=num_replicas, rank=rank) | |
| self.shuffle = shuffle | |
| def __iter__(self): | |
| if self.shuffle: | |
| g = torch.Generator() | |
| g.manual_seed(self.epoch) | |
| indices = torch.randperm(len(self.dataset), generator=g).tolist() | |
| else: | |
| indices = torch.arange(len(self.dataset)).tolist() | |
| indices += indices[:(self.total_size - len(indices))] | |
| assert len(indices) == self.total_size | |
| indices = indices[self.rank:self.total_size:self.num_replicas] | |
| assert len(indices) == self.num_samples | |
| return iter(indices) | |
| def build_dataloader(dataset_cfg, class_names, batch_size, dist, root_path=None, workers=4, seed=None, | |
| logger=None, training=True, merge_all_iters_to_one_epoch=False, total_epochs=0): | |
| dataset = __all__[dataset_cfg.DATASET]( | |
| dataset_cfg=dataset_cfg, | |
| class_names=class_names, | |
| root_path=root_path, | |
| training=training, | |
| logger=logger, | |
| ) | |
| if merge_all_iters_to_one_epoch: | |
| assert hasattr(dataset, 'merge_all_iters_to_one_epoch') | |
| dataset.merge_all_iters_to_one_epoch(merge=True, epochs=total_epochs) | |
| if dist: | |
| if training: | |
| sampler = torch.utils.data.distributed.DistributedSampler(dataset) | |
| else: | |
| rank, world_size = common_utils.get_dist_info() | |
| sampler = DistributedSampler(dataset, world_size, rank, shuffle=False) | |
| else: | |
| sampler = None | |
| dataloader = DataLoader( | |
| dataset, batch_size=batch_size, pin_memory=True, num_workers=workers, | |
| shuffle=(sampler is None) and training, collate_fn=dataset.collate_batch, | |
| drop_last=False, sampler=sampler, timeout=0, worker_init_fn=partial(common_utils.worker_init_fn, seed=seed) | |
| ) | |
| return dataset, dataloader, sampler | |