|
|
""" |
|
|
Evaluation Server |
|
|
Written by Jiageng Mao |
|
|
""" |
|
|
|
|
|
import numpy as np |
|
|
import numba |
|
|
|
|
|
from .iou_utils import rotate_iou_gpu_eval |
|
|
from .eval_utils import compute_split_parts, overall_filter, distance_filter, overall_distance_filter |
|
|
|
|
|
iou_threshold_dict = { |
|
|
'Car': 0.7, |
|
|
'Bus': 0.7, |
|
|
'Truck': 0.7, |
|
|
'Pedestrian': 0.3, |
|
|
'Cyclist': 0.5 |
|
|
} |
|
|
|
|
|
superclass_iou_threshold_dict = { |
|
|
'Vehicle': 0.7, |
|
|
'Pedestrian': 0.3, |
|
|
'Cyclist': 0.5 |
|
|
} |
|
|
|
|
|
def get_evaluation_results(gt_annos, pred_annos, classes, |
|
|
use_superclass=True, |
|
|
iou_thresholds=None, |
|
|
num_pr_points=50, |
|
|
difficulty_mode='Overall&Distance', |
|
|
ap_with_heading=True, |
|
|
num_parts=100, |
|
|
print_ok=False |
|
|
): |
|
|
print("\n\n\n Evaluation!!! \n\n\n") |
|
|
if iou_thresholds is None: |
|
|
if use_superclass: |
|
|
iou_thresholds = superclass_iou_threshold_dict |
|
|
else: |
|
|
iou_thresholds = iou_threshold_dict |
|
|
|
|
|
assert len(gt_annos) == len(pred_annos), "the number of GT must match predictions" |
|
|
assert difficulty_mode in ['Overall&Distance', 'Overall', 'Distance'], "difficulty mode is not supported" |
|
|
if use_superclass: |
|
|
if ('Car' in classes) or ('Bus' in classes) or ('Truck' in classes): |
|
|
assert ('Car' in classes) and ('Bus' in classes) and ('Truck' in classes), "Car/Bus/Truck must all exist for vehicle detection" |
|
|
classes = [cls_name for cls_name in classes if cls_name not in ['Car', 'Bus', 'Truck']] |
|
|
classes.insert(0, 'Vehicle') |
|
|
|
|
|
num_samples = len(gt_annos) |
|
|
split_parts = compute_split_parts(num_samples, num_parts) |
|
|
ious = compute_iou3d(gt_annos, pred_annos, split_parts, with_heading=ap_with_heading) |
|
|
|
|
|
num_classes = len(classes) |
|
|
if difficulty_mode == 'Distance': |
|
|
num_difficulties = 3 |
|
|
difficulty_types = ['0-30m', '30-50m', '50m-inf'] |
|
|
elif difficulty_mode == 'Overall': |
|
|
num_difficulties = 1 |
|
|
difficulty_types = ['overall'] |
|
|
elif difficulty_mode == 'Overall&Distance': |
|
|
num_difficulties = 4 |
|
|
difficulty_types = ['overall', '0-30m', '30-50m', '50m-inf'] |
|
|
else: |
|
|
raise NotImplementedError |
|
|
|
|
|
precision = np.zeros([num_classes, num_difficulties, num_pr_points+1]) |
|
|
recall = np.zeros([num_classes, num_difficulties, num_pr_points+1]) |
|
|
|
|
|
for cls_idx, cur_class in enumerate(classes): |
|
|
iou_threshold = iou_thresholds[cur_class] |
|
|
for diff_idx in range(num_difficulties): |
|
|
|
|
|
accum_all_scores, gt_flags, pred_flags = [], [], [] |
|
|
num_valid_gt = 0 |
|
|
for sample_idx in range(num_samples): |
|
|
gt_anno = gt_annos[sample_idx] |
|
|
pred_anno = pred_annos[sample_idx] |
|
|
pred_score = pred_anno['score'] |
|
|
iou = ious[sample_idx] |
|
|
gt_flag, pred_flag = filter_data(gt_anno, pred_anno, difficulty_mode, |
|
|
difficulty_level=diff_idx, class_name=cur_class, use_superclass=use_superclass) |
|
|
gt_flags.append(gt_flag) |
|
|
pred_flags.append(pred_flag) |
|
|
num_valid_gt += sum(gt_flag == 0) |
|
|
accum_scores = accumulate_scores(iou, pred_score, gt_flag, pred_flag, |
|
|
iou_threshold=iou_threshold) |
|
|
accum_all_scores.append(accum_scores) |
|
|
all_scores = np.concatenate(accum_all_scores, axis=0) |
|
|
thresholds = get_thresholds(all_scores, num_valid_gt, num_pr_points=num_pr_points) |
|
|
|
|
|
|
|
|
confusion_matrix = np.zeros([len(thresholds), 3]) |
|
|
for sample_idx in range(num_samples): |
|
|
pred_score = pred_annos[sample_idx]['score'] |
|
|
iou = ious[sample_idx] |
|
|
gt_flag, pred_flag = gt_flags[sample_idx], pred_flags[sample_idx] |
|
|
for th_idx, score_th in enumerate(thresholds): |
|
|
tp, fp, fn = compute_statistics(iou, pred_score, gt_flag, pred_flag, |
|
|
score_threshold=score_th, iou_threshold=iou_threshold) |
|
|
confusion_matrix[th_idx, 0] += tp |
|
|
confusion_matrix[th_idx, 1] += fp |
|
|
confusion_matrix[th_idx, 2] += fn |
|
|
|
|
|
|
|
|
for th_idx in range(len(thresholds)): |
|
|
recall[cls_idx, diff_idx, th_idx] = confusion_matrix[th_idx, 0] / \ |
|
|
(confusion_matrix[th_idx, 0] + confusion_matrix[th_idx, 2]) |
|
|
precision[cls_idx, diff_idx, th_idx] = confusion_matrix[th_idx, 0] / \ |
|
|
(confusion_matrix[th_idx, 0] + confusion_matrix[th_idx, 1]) |
|
|
|
|
|
for th_idx in range(len(thresholds)): |
|
|
precision[cls_idx, diff_idx, th_idx] = np.max( |
|
|
precision[cls_idx, diff_idx, th_idx:], axis=-1) |
|
|
recall[cls_idx, diff_idx, th_idx] = np.max( |
|
|
recall[cls_idx, diff_idx, th_idx:], axis=-1) |
|
|
|
|
|
AP = 0 |
|
|
for i in range(1, precision.shape[-1]): |
|
|
AP += precision[..., i] |
|
|
AP = AP / num_pr_points * 100 |
|
|
|
|
|
ret_dict = {} |
|
|
|
|
|
ret_str = "\n|AP@%-9s|" % (str(num_pr_points)) |
|
|
for diff_type in difficulty_types: |
|
|
ret_str += '%-12s|' % diff_type |
|
|
ret_str += '\n' |
|
|
for cls_idx, cur_class in enumerate(classes): |
|
|
ret_str += "|%-12s|" % cur_class |
|
|
for diff_idx in range(num_difficulties): |
|
|
diff_type = difficulty_types[diff_idx] |
|
|
key = 'AP_' + cur_class + '/' + diff_type |
|
|
ap_score = AP[cls_idx,diff_idx] |
|
|
ret_dict[key] = ap_score |
|
|
ret_str += "%-12.2f|" % ap_score |
|
|
ret_str += "\n" |
|
|
mAP = np.mean(AP, axis=0) |
|
|
ret_str += "|%-12s|" % 'mAP' |
|
|
for diff_idx in range(num_difficulties): |
|
|
diff_type = difficulty_types[diff_idx] |
|
|
key = 'AP_mean' + '/' + diff_type |
|
|
ap_score = mAP[diff_idx] |
|
|
ret_dict[key] = ap_score |
|
|
ret_str += "%-12.2f|" % ap_score |
|
|
ret_str += "\n" |
|
|
|
|
|
if print_ok: |
|
|
print(ret_str) |
|
|
print(f"ret_dict: {ret_dict.keys()}") |
|
|
return ret_str, ret_dict |
|
|
|
|
|
@numba.jit(nopython=True) |
|
|
def get_thresholds(scores, num_gt, num_pr_points): |
|
|
eps = 1e-6 |
|
|
scores.sort() |
|
|
scores = scores[::-1] |
|
|
recall_level = 0 |
|
|
thresholds = [] |
|
|
for i, score in enumerate(scores): |
|
|
l_recall = (i + 1) / num_gt |
|
|
if i < (len(scores) - 1): |
|
|
r_recall = (i + 2) / num_gt |
|
|
else: |
|
|
r_recall = l_recall |
|
|
if (r_recall + l_recall < 2 * recall_level) and i < (len(scores) - 1): |
|
|
continue |
|
|
thresholds.append(score) |
|
|
recall_level += 1 / num_pr_points |
|
|
|
|
|
|
|
|
while r_recall + l_recall + eps > 2 * recall_level: |
|
|
thresholds.append(score) |
|
|
recall_level += 1 / num_pr_points |
|
|
return thresholds |
|
|
|
|
|
@numba.jit(nopython=True) |
|
|
def accumulate_scores(iou, pred_scores, gt_flag, pred_flag, iou_threshold): |
|
|
num_gt = iou.shape[0] |
|
|
num_pred = iou.shape[1] |
|
|
assigned = np.full(num_pred, False) |
|
|
accum_scores = np.zeros(num_gt) |
|
|
accum_idx = 0 |
|
|
for i in range(num_gt): |
|
|
if gt_flag[i] == -1: |
|
|
continue |
|
|
det_idx = -1 |
|
|
detected_score = -1 |
|
|
for j in range(num_pred): |
|
|
if pred_flag[j] == -1: |
|
|
continue |
|
|
if assigned[j]: |
|
|
continue |
|
|
iou_ij = iou[i, j] |
|
|
pred_score = pred_scores[j] |
|
|
if (iou_ij > iou_threshold) and (pred_score > detected_score): |
|
|
det_idx = j |
|
|
detected_score = pred_score |
|
|
|
|
|
if (detected_score == -1) and (gt_flag[i] == 0): |
|
|
pass |
|
|
elif (detected_score != -1) and (gt_flag[i] == 1 or pred_flag[det_idx] == 1): |
|
|
assigned[det_idx] = True |
|
|
elif detected_score != -1: |
|
|
accum_scores[accum_idx] = pred_scores[det_idx] |
|
|
accum_idx += 1 |
|
|
assigned[det_idx] = True |
|
|
|
|
|
return accum_scores[:accum_idx] |
|
|
|
|
|
@numba.jit(nopython=True) |
|
|
def compute_statistics(iou, pred_scores, gt_flag, pred_flag, score_threshold, iou_threshold): |
|
|
num_gt = iou.shape[0] |
|
|
num_pred = iou.shape[1] |
|
|
assigned = np.full(num_pred, False) |
|
|
under_threshold = pred_scores < score_threshold |
|
|
|
|
|
tp, fp, fn = 0, 0, 0 |
|
|
for i in range(num_gt): |
|
|
if gt_flag[i] == -1: |
|
|
continue |
|
|
det_idx = -1 |
|
|
detected = False |
|
|
best_matched_iou = 0 |
|
|
gt_assigned_to_ignore = False |
|
|
|
|
|
for j in range(num_pred): |
|
|
if pred_flag[j] == -1: |
|
|
continue |
|
|
if assigned[j]: |
|
|
continue |
|
|
if under_threshold[j]: |
|
|
continue |
|
|
iou_ij = iou[i, j] |
|
|
if (iou_ij > iou_threshold) and (iou_ij > best_matched_iou or gt_assigned_to_ignore) and pred_flag[j] == 0: |
|
|
best_matched_iou = iou_ij |
|
|
det_idx = j |
|
|
detected = True |
|
|
gt_assigned_to_ignore = False |
|
|
elif (iou_ij > iou_threshold) and (not detected) and pred_flag[j] == 1: |
|
|
det_idx = j |
|
|
detected = True |
|
|
gt_assigned_to_ignore = True |
|
|
|
|
|
if (not detected) and gt_flag[i] == 0: |
|
|
fn += 1 |
|
|
elif detected and (gt_flag[i] == 1 or pred_flag[det_idx] == 1): |
|
|
assigned[det_idx] = True |
|
|
elif detected: |
|
|
tp += 1 |
|
|
assigned[det_idx] = True |
|
|
|
|
|
for j in range(num_pred): |
|
|
if not (assigned[j] or pred_flag[j] == -1 or pred_flag[j] == 1 or under_threshold[j]): |
|
|
fp += 1 |
|
|
|
|
|
return tp, fp, fn |
|
|
|
|
|
def filter_data(gt_anno, pred_anno, difficulty_mode, difficulty_level, class_name, use_superclass): |
|
|
""" |
|
|
Filter data by class name and difficulty |
|
|
|
|
|
Args: |
|
|
gt_anno: |
|
|
pred_anno: |
|
|
difficulty_mode: |
|
|
difficulty_level: |
|
|
class_name: |
|
|
|
|
|
Returns: |
|
|
gt_flags/pred_flags: |
|
|
1 : same class but ignored with different difficulty levels |
|
|
0 : accepted |
|
|
-1 : rejected with different classes |
|
|
""" |
|
|
num_gt = len(gt_anno['name']) |
|
|
gt_flag = np.zeros(num_gt, dtype=np.int64) |
|
|
if use_superclass: |
|
|
if class_name == 'Vehicle': |
|
|
reject = np.logical_or(gt_anno['name']=='Pedestrian', gt_anno['name']=='Cyclist') |
|
|
else: |
|
|
reject = gt_anno['name'] != class_name |
|
|
else: |
|
|
reject = gt_anno['name'] != class_name |
|
|
gt_flag[reject] = -1 |
|
|
num_pred = len(pred_anno['name']) |
|
|
pred_flag = np.zeros(num_pred, dtype=np.int64) |
|
|
if use_superclass: |
|
|
if class_name == 'Vehicle': |
|
|
reject = np.logical_or(pred_anno['name']=='Pedestrian', pred_anno['name']=='Cyclist') |
|
|
else: |
|
|
reject = pred_anno['name'] != class_name |
|
|
else: |
|
|
reject = pred_anno['name'] != class_name |
|
|
pred_flag[reject] = -1 |
|
|
|
|
|
if difficulty_mode == 'Overall': |
|
|
ignore = overall_filter(gt_anno['boxes_3d']) |
|
|
gt_flag[ignore] = 1 |
|
|
ignore = overall_filter(pred_anno['boxes_3d']) |
|
|
pred_flag[ignore] = 1 |
|
|
elif difficulty_mode == 'Distance': |
|
|
ignore = distance_filter(gt_anno['boxes_3d'], difficulty_level) |
|
|
gt_flag[ignore] = 1 |
|
|
ignore = distance_filter(pred_anno['boxes_3d'], difficulty_level) |
|
|
pred_flag[ignore] = 1 |
|
|
elif difficulty_mode == 'Overall&Distance': |
|
|
ignore = overall_distance_filter(gt_anno['boxes_3d'], difficulty_level) |
|
|
gt_flag[ignore] = 1 |
|
|
ignore = overall_distance_filter(pred_anno['boxes_3d'], difficulty_level) |
|
|
pred_flag[ignore] = 1 |
|
|
else: |
|
|
raise NotImplementedError |
|
|
|
|
|
return gt_flag, pred_flag |
|
|
|
|
|
def iou3d_kernel(gt_boxes, pred_boxes): |
|
|
""" |
|
|
Core iou3d computation (with cuda) |
|
|
|
|
|
Args: |
|
|
gt_boxes: [N, 7] (x, y, z, w, l, h, rot) in Lidar coordinates |
|
|
pred_boxes: [M, 7] |
|
|
|
|
|
Returns: |
|
|
iou3d: [N, M] |
|
|
""" |
|
|
intersection_2d = rotate_iou_gpu_eval(gt_boxes[:, [0, 1, 3, 4, 6]], pred_boxes[:, [0, 1, 3, 4, 6]], criterion=2) |
|
|
gt_max_h = gt_boxes[:, [2]] + gt_boxes[:, [5]] * 0.5 |
|
|
gt_min_h = gt_boxes[:, [2]] - gt_boxes[:, [5]] * 0.5 |
|
|
pred_max_h = pred_boxes[:, [2]] + pred_boxes[:, [5]] * 0.5 |
|
|
pred_min_h = pred_boxes[:, [2]] - pred_boxes[:, [5]] * 0.5 |
|
|
max_of_min = np.maximum(gt_min_h, pred_min_h.T) |
|
|
min_of_max = np.minimum(gt_max_h, pred_max_h.T) |
|
|
inter_h = min_of_max - max_of_min |
|
|
inter_h[inter_h <= 0] = 0 |
|
|
|
|
|
intersection_3d = intersection_2d * inter_h |
|
|
gt_vol = gt_boxes[:, [3]] * gt_boxes[:, [4]] * gt_boxes[:, [5]] |
|
|
pred_vol = pred_boxes[:, [3]] * pred_boxes[:, [4]] * pred_boxes[:, [5]] |
|
|
union_3d = gt_vol + pred_vol.T - intersection_3d |
|
|
|
|
|
|
|
|
iou3d = intersection_3d / union_3d |
|
|
return iou3d |
|
|
|
|
|
def iou3d_kernel_with_heading(gt_boxes, pred_boxes): |
|
|
""" |
|
|
Core iou3d computation (with cuda) |
|
|
|
|
|
Args: |
|
|
gt_boxes: [N, 7] (x, y, z, w, l, h, rot) in Lidar coordinates |
|
|
pred_boxes: [M, 7] |
|
|
|
|
|
Returns: |
|
|
iou3d: [N, M] |
|
|
""" |
|
|
intersection_2d = rotate_iou_gpu_eval(gt_boxes[:, [0, 1, 3, 4, 6]], pred_boxes[:, [0, 1, 3, 4, 6]], criterion=2) |
|
|
gt_max_h = gt_boxes[:, [2]] + gt_boxes[:, [5]] * 0.5 |
|
|
gt_min_h = gt_boxes[:, [2]] - gt_boxes[:, [5]] * 0.5 |
|
|
pred_max_h = pred_boxes[:, [2]] + pred_boxes[:, [5]] * 0.5 |
|
|
pred_min_h = pred_boxes[:, [2]] - pred_boxes[:, [5]] * 0.5 |
|
|
max_of_min = np.maximum(gt_min_h, pred_min_h.T) |
|
|
min_of_max = np.minimum(gt_max_h, pred_max_h.T) |
|
|
inter_h = min_of_max - max_of_min |
|
|
inter_h[inter_h <= 0] = 0 |
|
|
|
|
|
intersection_3d = intersection_2d * inter_h |
|
|
gt_vol = gt_boxes[:, [3]] * gt_boxes[:, [4]] * gt_boxes[:, [5]] |
|
|
pred_vol = pred_boxes[:, [3]] * pred_boxes[:, [4]] * pred_boxes[:, [5]] |
|
|
union_3d = gt_vol + pred_vol.T - intersection_3d |
|
|
|
|
|
|
|
|
iou3d = intersection_3d / union_3d |
|
|
|
|
|
|
|
|
diff_rot = gt_boxes[:, [6]] - pred_boxes[:, [6]].T |
|
|
diff_rot = np.abs(diff_rot) |
|
|
reverse_diff_rot = 2 * np.pi - diff_rot |
|
|
diff_rot[diff_rot >= np.pi] = reverse_diff_rot[diff_rot >= np.pi] |
|
|
iou3d[diff_rot > np.pi/2] = 0 |
|
|
return iou3d |
|
|
|
|
|
def compute_iou3d(gt_annos, pred_annos, split_parts, with_heading): |
|
|
""" |
|
|
Compute iou3d of all samples by parts |
|
|
|
|
|
Args: |
|
|
with_heading: filter with heading |
|
|
gt_annos: list of dicts for each sample |
|
|
pred_annos: |
|
|
split_parts: for part-based iou computation |
|
|
|
|
|
Returns: |
|
|
ious: list of iou arrays for each sample |
|
|
""" |
|
|
gt_num_per_sample = np.stack([len(anno["name"]) for anno in gt_annos], 0) |
|
|
pred_num_per_sample = np.stack([len(anno["name"]) for anno in pred_annos], 0) |
|
|
ious = [] |
|
|
sample_idx = 0 |
|
|
for num_part_samples in split_parts: |
|
|
gt_annos_part = gt_annos[sample_idx:sample_idx + num_part_samples] |
|
|
pred_annos_part = pred_annos[sample_idx:sample_idx + num_part_samples] |
|
|
|
|
|
gt_boxes = np.concatenate([anno["boxes_3d"] for anno in gt_annos_part], 0) |
|
|
pred_boxes = np.concatenate([anno["boxes_3d"] for anno in pred_annos_part], 0) |
|
|
|
|
|
if with_heading: |
|
|
iou3d_part = iou3d_kernel_with_heading(gt_boxes, pred_boxes) |
|
|
else: |
|
|
iou3d_part = iou3d_kernel(gt_boxes, pred_boxes) |
|
|
|
|
|
gt_num_idx, pred_num_idx = 0, 0 |
|
|
for idx in range(num_part_samples): |
|
|
gt_box_num = gt_num_per_sample[sample_idx + idx] |
|
|
pred_box_num = pred_num_per_sample[sample_idx + idx] |
|
|
ious.append(iou3d_part[gt_num_idx: gt_num_idx + gt_box_num, pred_num_idx: pred_num_idx+pred_box_num]) |
|
|
gt_num_idx += gt_box_num |
|
|
pred_num_idx += pred_box_num |
|
|
sample_idx += num_part_samples |
|
|
return ious |