|
|
import numpy as np |
|
|
import torch |
|
|
import torch.nn as nn |
|
|
import torch.nn.functional as F |
|
|
|
|
|
from . import box_utils |
|
|
from pcdet.ops.iou3d_nms import iou3d_nms_utils |
|
|
|
|
|
|
|
|
class SigmoidFocalClassificationLoss(nn.Module): |
|
|
""" |
|
|
Sigmoid focal cross entropy loss. |
|
|
""" |
|
|
|
|
|
def __init__(self, gamma: float = 2.0, alpha: float = 0.25): |
|
|
""" |
|
|
Args: |
|
|
gamma: Weighting parameter to balance loss for hard and easy examples. |
|
|
alpha: Weighting parameter to balance loss for positive and negative examples. |
|
|
""" |
|
|
super(SigmoidFocalClassificationLoss, self).__init__() |
|
|
self.alpha = alpha |
|
|
self.gamma = gamma |
|
|
|
|
|
@staticmethod |
|
|
def sigmoid_cross_entropy_with_logits(input: torch.Tensor, target: torch.Tensor): |
|
|
""" PyTorch Implementation for tf.nn.sigmoid_cross_entropy_with_logits: |
|
|
max(x, 0) - x * z + log(1 + exp(-abs(x))) in |
|
|
https://www.tensorflow.org/api_docs/python/tf/nn/sigmoid_cross_entropy_with_logits |
|
|
|
|
|
Args: |
|
|
input: (B, #anchors, #classes) float tensor. |
|
|
Predicted logits for each class |
|
|
target: (B, #anchors, #classes) float tensor. |
|
|
One-hot encoded classification targets |
|
|
|
|
|
Returns: |
|
|
loss: (B, #anchors, #classes) float tensor. |
|
|
Sigmoid cross entropy loss without reduction |
|
|
""" |
|
|
loss = torch.clamp(input, min=0) - input * target + \ |
|
|
torch.log1p(torch.exp(-torch.abs(input))) |
|
|
return loss |
|
|
|
|
|
def forward(self, input: torch.Tensor, target: torch.Tensor, weights: torch.Tensor): |
|
|
""" |
|
|
Args: |
|
|
input: (B, #anchors, #classes) float tensor. |
|
|
Predicted logits for each class |
|
|
target: (B, #anchors, #classes) float tensor. |
|
|
One-hot encoded classification targets |
|
|
weights: (B, #anchors) float tensor. |
|
|
Anchor-wise weights. |
|
|
|
|
|
Returns: |
|
|
weighted_loss: (B, #anchors, #classes) float tensor after weighting. |
|
|
""" |
|
|
pred_sigmoid = torch.sigmoid(input) |
|
|
alpha_weight = target * self.alpha + (1 - target) * (1 - self.alpha) |
|
|
pt = target * (1.0 - pred_sigmoid) + (1.0 - target) * pred_sigmoid |
|
|
focal_weight = alpha_weight * torch.pow(pt, self.gamma) |
|
|
|
|
|
bce_loss = self.sigmoid_cross_entropy_with_logits(input, target) |
|
|
|
|
|
loss = focal_weight * bce_loss |
|
|
|
|
|
if weights.shape.__len__() == 2 or \ |
|
|
(weights.shape.__len__() == 1 and target.shape.__len__() == 2): |
|
|
weights = weights.unsqueeze(-1) |
|
|
|
|
|
assert weights.shape.__len__() == loss.shape.__len__() |
|
|
|
|
|
return loss * weights |
|
|
|
|
|
|
|
|
class WeightedSmoothL1Loss(nn.Module): |
|
|
""" |
|
|
Code-wise Weighted Smooth L1 Loss modified based on fvcore.nn.smooth_l1_loss |
|
|
https://github.com/facebookresearch/fvcore/blob/master/fvcore/nn/smooth_l1_loss.py |
|
|
| 0.5 * x ** 2 / beta if abs(x) < beta |
|
|
smoothl1(x) = | |
|
|
| abs(x) - 0.5 * beta otherwise, |
|
|
where x = input - target. |
|
|
""" |
|
|
def __init__(self, beta: float = 1.0 / 9.0, code_weights: list = None): |
|
|
""" |
|
|
Args: |
|
|
beta: Scalar float. |
|
|
L1 to L2 change point. |
|
|
For beta values < 1e-5, L1 loss is computed. |
|
|
code_weights: (#codes) float list if not None. |
|
|
Code-wise weights. |
|
|
""" |
|
|
super(WeightedSmoothL1Loss, self).__init__() |
|
|
self.beta = beta |
|
|
if code_weights is not None: |
|
|
self.code_weights = np.array(code_weights, dtype=np.float32) |
|
|
self.code_weights = torch.from_numpy(self.code_weights).cuda() |
|
|
|
|
|
@staticmethod |
|
|
def smooth_l1_loss(diff, beta): |
|
|
if beta < 1e-5: |
|
|
loss = torch.abs(diff) |
|
|
else: |
|
|
n = torch.abs(diff) |
|
|
loss = torch.where(n < beta, 0.5 * n ** 2 / beta, n - 0.5 * beta) |
|
|
|
|
|
return loss |
|
|
|
|
|
def forward(self, input: torch.Tensor, target: torch.Tensor, weights: torch.Tensor = None): |
|
|
""" |
|
|
Args: |
|
|
input: (B, #anchors, #codes) float tensor. |
|
|
Ecoded predicted locations of objects. |
|
|
target: (B, #anchors, #codes) float tensor. |
|
|
Regression targets. |
|
|
weights: (B, #anchors) float tensor if not None. |
|
|
|
|
|
Returns: |
|
|
loss: (B, #anchors) float tensor. |
|
|
Weighted smooth l1 loss without reduction. |
|
|
""" |
|
|
target = torch.where(torch.isnan(target), input, target) |
|
|
|
|
|
diff = input - target |
|
|
|
|
|
if self.code_weights is not None: |
|
|
diff = diff * self.code_weights.view(1, 1, -1) |
|
|
|
|
|
loss = self.smooth_l1_loss(diff, self.beta) |
|
|
|
|
|
|
|
|
if weights is not None: |
|
|
assert weights.shape[0] == loss.shape[0] and weights.shape[1] == loss.shape[1] |
|
|
loss = loss * weights.unsqueeze(-1) |
|
|
|
|
|
return loss |
|
|
|
|
|
|
|
|
class WeightedL1Loss(nn.Module): |
|
|
def __init__(self, code_weights: list = None): |
|
|
""" |
|
|
Args: |
|
|
code_weights: (#codes) float list if not None. |
|
|
Code-wise weights. |
|
|
""" |
|
|
super(WeightedL1Loss, self).__init__() |
|
|
if code_weights is not None: |
|
|
self.code_weights = np.array(code_weights, dtype=np.float32) |
|
|
self.code_weights = torch.from_numpy(self.code_weights).cuda() |
|
|
|
|
|
@torch.cuda.amp.custom_fwd(cast_inputs=torch.float16) |
|
|
def forward(self, input: torch.Tensor, target: torch.Tensor, weights: torch.Tensor = None): |
|
|
""" |
|
|
Args: |
|
|
input: (B, #anchors, #codes) float tensor. |
|
|
Ecoded predicted locations of objects. |
|
|
target: (B, #anchors, #codes) float tensor. |
|
|
Regression targets. |
|
|
weights: (B, #anchors) float tensor if not None. |
|
|
|
|
|
Returns: |
|
|
loss: (B, #anchors) float tensor. |
|
|
Weighted smooth l1 loss without reduction. |
|
|
""" |
|
|
target = torch.where(torch.isnan(target), input, target) |
|
|
|
|
|
diff = input - target |
|
|
|
|
|
if self.code_weights is not None: |
|
|
diff = diff * self.code_weights.view(1, 1, -1) |
|
|
|
|
|
loss = torch.abs(diff) |
|
|
|
|
|
|
|
|
if weights is not None: |
|
|
assert weights.shape[0] == loss.shape[0] and weights.shape[1] == loss.shape[1] |
|
|
loss = loss * weights.unsqueeze(-1) |
|
|
|
|
|
return loss |
|
|
|
|
|
|
|
|
class WeightedCrossEntropyLoss(nn.Module): |
|
|
""" |
|
|
Transform input to fit the fomation of PyTorch offical cross entropy loss |
|
|
with anchor-wise weighting. |
|
|
""" |
|
|
def __init__(self): |
|
|
super(WeightedCrossEntropyLoss, self).__init__() |
|
|
|
|
|
def forward(self, input: torch.Tensor, target: torch.Tensor, weights: torch.Tensor): |
|
|
""" |
|
|
Args: |
|
|
input: (B, #anchors, #classes) float tensor. |
|
|
Predited logits for each class. |
|
|
target: (B, #anchors, #classes) float tensor. |
|
|
One-hot classification targets. |
|
|
weights: (B, #anchors) float tensor. |
|
|
Anchor-wise weights. |
|
|
|
|
|
Returns: |
|
|
loss: (B, #anchors) float tensor. |
|
|
Weighted cross entropy loss without reduction |
|
|
""" |
|
|
input = input.permute(0, 2, 1) |
|
|
target = target.argmax(dim=-1) |
|
|
loss = F.cross_entropy(input, target, reduction='none') * weights |
|
|
return loss |
|
|
|
|
|
|
|
|
def get_corner_loss_lidar(pred_bbox3d: torch.Tensor, gt_bbox3d: torch.Tensor): |
|
|
""" |
|
|
Args: |
|
|
pred_bbox3d: (N, 7) float Tensor. |
|
|
gt_bbox3d: (N, 7) float Tensor. |
|
|
|
|
|
Returns: |
|
|
corner_loss: (N) float Tensor. |
|
|
""" |
|
|
assert pred_bbox3d.shape[0] == gt_bbox3d.shape[0] |
|
|
|
|
|
pred_box_corners = box_utils.boxes_to_corners_3d(pred_bbox3d) |
|
|
gt_box_corners = box_utils.boxes_to_corners_3d(gt_bbox3d) |
|
|
|
|
|
gt_bbox3d_flip = gt_bbox3d.clone() |
|
|
gt_bbox3d_flip[:, 6] += np.pi |
|
|
gt_box_corners_flip = box_utils.boxes_to_corners_3d(gt_bbox3d_flip) |
|
|
|
|
|
corner_dist = torch.min(torch.norm(pred_box_corners - gt_box_corners, dim=2), |
|
|
torch.norm(pred_box_corners - gt_box_corners_flip, dim=2)) |
|
|
|
|
|
corner_loss = WeightedSmoothL1Loss.smooth_l1_loss(corner_dist, beta=1.0) |
|
|
|
|
|
return corner_loss.mean(dim=1) |
|
|
|
|
|
|
|
|
def compute_fg_mask(gt_boxes2d, shape, downsample_factor=1, device=torch.device("cpu")): |
|
|
""" |
|
|
Compute foreground mask for images |
|
|
Args: |
|
|
gt_boxes2d: (B, N, 4), 2D box labels |
|
|
shape: torch.Size or tuple, Foreground mask desired shape |
|
|
downsample_factor: int, Downsample factor for image |
|
|
device: torch.device, Foreground mask desired device |
|
|
Returns: |
|
|
fg_mask (shape), Foreground mask |
|
|
""" |
|
|
fg_mask = torch.zeros(shape, dtype=torch.bool, device=device) |
|
|
|
|
|
|
|
|
gt_boxes2d /= downsample_factor |
|
|
gt_boxes2d[:, :, :2] = torch.floor(gt_boxes2d[:, :, :2]) |
|
|
gt_boxes2d[:, :, 2:] = torch.ceil(gt_boxes2d[:, :, 2:]) |
|
|
gt_boxes2d = gt_boxes2d.long() |
|
|
|
|
|
|
|
|
B, N = gt_boxes2d.shape[:2] |
|
|
for b in range(B): |
|
|
for n in range(N): |
|
|
u1, v1, u2, v2 = gt_boxes2d[b, n] |
|
|
fg_mask[b, v1:v2, u1:u2] = True |
|
|
|
|
|
return fg_mask |
|
|
|
|
|
|
|
|
def neg_loss_cornernet(pred, gt, mask=None): |
|
|
""" |
|
|
Refer to https://github.com/tianweiy/CenterPoint. |
|
|
Modified focal loss. Exactly the same as CornerNet. Runs faster and costs a little bit more memory |
|
|
Args: |
|
|
pred: (batch x c x h x w) |
|
|
gt: (batch x c x h x w) |
|
|
mask: (batch x h x w) |
|
|
Returns: |
|
|
""" |
|
|
pos_inds = gt.eq(1).float() |
|
|
neg_inds = gt.lt(1).float() |
|
|
|
|
|
neg_weights = torch.pow(1 - gt, 4) |
|
|
|
|
|
loss = 0 |
|
|
|
|
|
pos_loss = torch.log(pred) * torch.pow(1 - pred, 2) * pos_inds |
|
|
neg_loss = torch.log(1 - pred) * torch.pow(pred, 2) * neg_weights * neg_inds |
|
|
|
|
|
if mask is not None: |
|
|
mask = mask[:, None, :, :].float() |
|
|
pos_loss = pos_loss * mask |
|
|
neg_loss = neg_loss * mask |
|
|
num_pos = (pos_inds.float() * mask).sum() |
|
|
else: |
|
|
num_pos = pos_inds.float().sum() |
|
|
|
|
|
pos_loss = pos_loss.sum() |
|
|
neg_loss = neg_loss.sum() |
|
|
|
|
|
if num_pos == 0: |
|
|
loss = loss - neg_loss |
|
|
else: |
|
|
loss = loss - (pos_loss + neg_loss) / num_pos |
|
|
return loss |
|
|
|
|
|
|
|
|
def neg_loss_sparse(pred, gt): |
|
|
""" |
|
|
Refer to https://github.com/tianweiy/CenterPoint. |
|
|
Modified focal loss. Exactly the same as CornerNet. Runs faster and costs a little bit more memory |
|
|
Args: |
|
|
pred: (batch x c x n) |
|
|
gt: (batch x c x n) |
|
|
Returns: |
|
|
""" |
|
|
pos_inds = gt.eq(1).float() |
|
|
neg_inds = gt.lt(1).float() |
|
|
|
|
|
neg_weights = torch.pow(1 - gt, 4) |
|
|
|
|
|
loss = 0 |
|
|
|
|
|
pos_loss = torch.log(pred) * torch.pow(1 - pred, 2) * pos_inds |
|
|
neg_loss = torch.log(1 - pred) * torch.pow(pred, 2) * neg_weights * neg_inds |
|
|
|
|
|
num_pos = pos_inds.float().sum() |
|
|
|
|
|
pos_loss = pos_loss.sum() |
|
|
neg_loss = neg_loss.sum() |
|
|
|
|
|
if num_pos == 0: |
|
|
loss = loss - neg_loss |
|
|
else: |
|
|
loss = loss - (pos_loss + neg_loss) / num_pos |
|
|
return loss |
|
|
|
|
|
|
|
|
class FocalLossCenterNet(nn.Module): |
|
|
""" |
|
|
Refer to https://github.com/tianweiy/CenterPoint |
|
|
""" |
|
|
def __init__(self): |
|
|
super(FocalLossCenterNet, self).__init__() |
|
|
self.neg_loss = neg_loss_cornernet |
|
|
|
|
|
def forward(self, out, target, mask=None): |
|
|
return self.neg_loss(out, target, mask=mask) |
|
|
|
|
|
|
|
|
def _reg_loss(regr, gt_regr, mask): |
|
|
""" |
|
|
Refer to https://github.com/tianweiy/CenterPoint |
|
|
L1 regression loss |
|
|
Args: |
|
|
regr (batch x max_objects x dim) |
|
|
gt_regr (batch x max_objects x dim) |
|
|
mask (batch x max_objects) |
|
|
Returns: |
|
|
""" |
|
|
num = mask.float().sum() |
|
|
mask = mask.unsqueeze(2).expand_as(gt_regr).float() |
|
|
isnotnan = (~ torch.isnan(gt_regr)).float() |
|
|
mask *= isnotnan |
|
|
regr = regr * mask |
|
|
gt_regr = gt_regr * mask |
|
|
|
|
|
loss = torch.abs(regr - gt_regr) |
|
|
loss = loss.transpose(2, 0) |
|
|
|
|
|
loss = torch.sum(loss, dim=2) |
|
|
loss = torch.sum(loss, dim=1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
loss = loss / torch.clamp_min(num, min=1.0) |
|
|
|
|
|
return loss |
|
|
|
|
|
|
|
|
def _gather_feat(feat, ind, mask=None): |
|
|
dim = feat.size(2) |
|
|
ind = ind.unsqueeze(2).expand(ind.size(0), ind.size(1), dim) |
|
|
feat = feat.gather(1, ind) |
|
|
if mask is not None: |
|
|
mask = mask.unsqueeze(2).expand_as(feat) |
|
|
feat = feat[mask] |
|
|
feat = feat.view(-1, dim) |
|
|
return feat |
|
|
|
|
|
|
|
|
def _transpose_and_gather_feat(feat, ind): |
|
|
feat = feat.permute(0, 2, 3, 1).contiguous() |
|
|
feat = feat.view(feat.size(0), -1, feat.size(3)) |
|
|
feat = _gather_feat(feat, ind) |
|
|
return feat |
|
|
|
|
|
|
|
|
class RegLossCenterNet(nn.Module): |
|
|
""" |
|
|
Refer to https://github.com/tianweiy/CenterPoint |
|
|
""" |
|
|
|
|
|
def __init__(self): |
|
|
super(RegLossCenterNet, self).__init__() |
|
|
|
|
|
def forward(self, output, mask, ind=None, target=None): |
|
|
""" |
|
|
Args: |
|
|
output: (batch x dim x h x w) or (batch x max_objects) |
|
|
mask: (batch x max_objects) |
|
|
ind: (batch x max_objects) |
|
|
target: (batch x max_objects x dim) |
|
|
Returns: |
|
|
""" |
|
|
if ind is None: |
|
|
pred = output |
|
|
else: |
|
|
pred = _transpose_and_gather_feat(output, ind) |
|
|
loss = _reg_loss(pred, target, mask) |
|
|
return loss |
|
|
|
|
|
|
|
|
class FocalLossSparse(nn.Module): |
|
|
""" |
|
|
Refer to https://github.com/tianweiy/CenterPoint |
|
|
""" |
|
|
def __init__(self): |
|
|
super(FocalLossSparse, self).__init__() |
|
|
self.neg_loss = neg_loss_sparse |
|
|
|
|
|
def forward(self, out, target): |
|
|
return self.neg_loss(out, target) |
|
|
|
|
|
|
|
|
class RegLossSparse(nn.Module): |
|
|
""" |
|
|
Refer to https://github.com/tianweiy/CenterPoint |
|
|
""" |
|
|
|
|
|
def __init__(self): |
|
|
super(RegLossSparse, self).__init__() |
|
|
|
|
|
def forward(self, output, mask, ind=None, target=None, batch_index=None): |
|
|
""" |
|
|
Args: |
|
|
output: (N x dim) |
|
|
mask: (batch x max_objects) |
|
|
ind: (batch x max_objects) |
|
|
target: (batch x max_objects x dim) |
|
|
Returns: |
|
|
""" |
|
|
|
|
|
pred = [] |
|
|
batch_size = mask.shape[0] |
|
|
for bs_idx in range(batch_size): |
|
|
batch_inds = batch_index==bs_idx |
|
|
pred.append(output[batch_inds][ind[bs_idx]]) |
|
|
pred = torch.stack(pred) |
|
|
|
|
|
loss = _reg_loss(pred, target, mask) |
|
|
return loss |
|
|
|
|
|
|
|
|
class IouLossSparse(nn.Module): |
|
|
'''IouLoss loss for an output tensor |
|
|
Arguments: |
|
|
output (batch x dim x h x w) |
|
|
mask (batch x max_objects) |
|
|
ind (batch x max_objects) |
|
|
target (batch x max_objects x dim) |
|
|
''' |
|
|
|
|
|
def __init__(self): |
|
|
super(IouLossSparse, self).__init__() |
|
|
|
|
|
def forward(self, iou_pred, mask, ind, box_pred, box_gt, batch_index): |
|
|
if mask.sum() == 0: |
|
|
return iou_pred.new_zeros((1)) |
|
|
batch_size = mask.shape[0] |
|
|
mask = mask.bool() |
|
|
|
|
|
loss = 0 |
|
|
for bs_idx in range(batch_size): |
|
|
batch_inds = batch_index==bs_idx |
|
|
pred = iou_pred[batch_inds][ind[bs_idx]][mask[bs_idx]] |
|
|
pred_box = box_pred[batch_inds][ind[bs_idx]][mask[bs_idx]] |
|
|
target = iou3d_nms_utils.boxes_aligned_iou3d_gpu(pred_box, box_gt[bs_idx]) |
|
|
target = 2 * target - 1 |
|
|
loss += F.l1_loss(pred, target, reduction='sum') |
|
|
|
|
|
loss = loss / (mask.sum() + 1e-4) |
|
|
return loss |
|
|
|
|
|
class IouRegLossSparse(nn.Module): |
|
|
'''Distance IoU loss for output boxes |
|
|
Arguments: |
|
|
output (batch x dim x h x w) |
|
|
mask (batch x max_objects) |
|
|
ind (batch x max_objects) |
|
|
target (batch x max_objects x dim) |
|
|
''' |
|
|
|
|
|
def __init__(self, type="DIoU"): |
|
|
super(IouRegLossSparse, self).__init__() |
|
|
|
|
|
def center_to_corner2d(self, center, dim): |
|
|
corners_norm = torch.tensor([[-0.5, -0.5], [-0.5, 0.5], [0.5, 0.5], [0.5, -0.5]], |
|
|
dtype=torch.float32, device=dim.device) |
|
|
corners = dim.view([-1, 1, 2]) * corners_norm.view([1, 4, 2]) |
|
|
corners = corners + center.view(-1, 1, 2) |
|
|
return corners |
|
|
|
|
|
def bbox3d_iou_func(self, pred_boxes, gt_boxes): |
|
|
assert pred_boxes.shape[0] == gt_boxes.shape[0] |
|
|
|
|
|
qcorners = self.center_to_corner2d(pred_boxes[:, :2], pred_boxes[:, 3:5]) |
|
|
gcorners = self.center_to_corner2d(gt_boxes[:, :2], gt_boxes[:, 3:5]) |
|
|
|
|
|
inter_max_xy = torch.minimum(qcorners[:, 2], gcorners[:, 2]) |
|
|
inter_min_xy = torch.maximum(qcorners[:, 0], gcorners[:, 0]) |
|
|
out_max_xy = torch.maximum(qcorners[:, 2], gcorners[:, 2]) |
|
|
out_min_xy = torch.minimum(qcorners[:, 0], gcorners[:, 0]) |
|
|
|
|
|
|
|
|
volume_pred_boxes = pred_boxes[:, 3] * pred_boxes[:, 4] * pred_boxes[:, 5] |
|
|
volume_gt_boxes = gt_boxes[:, 3] * gt_boxes[:, 4] * gt_boxes[:, 5] |
|
|
|
|
|
inter_h = torch.minimum(pred_boxes[:, 2] + 0.5 * pred_boxes[:, 5], gt_boxes[:, 2] + 0.5 * gt_boxes[:, 5]) - \ |
|
|
torch.maximum(pred_boxes[:, 2] - 0.5 * pred_boxes[:, 5], gt_boxes[:, 2] - 0.5 * gt_boxes[:, 5]) |
|
|
inter_h = torch.clamp(inter_h, min=0) |
|
|
|
|
|
inter = torch.clamp((inter_max_xy - inter_min_xy), min=0) |
|
|
volume_inter = inter[:, 0] * inter[:, 1] * inter_h |
|
|
volume_union = volume_gt_boxes + volume_pred_boxes - volume_inter |
|
|
|
|
|
|
|
|
inter_diag = torch.pow(gt_boxes[:, 0:3] - pred_boxes[:, 0:3], 2).sum(-1) |
|
|
|
|
|
outer_h = torch.maximum(gt_boxes[:, 2] + 0.5 * gt_boxes[:, 5], pred_boxes[:, 2] + 0.5 * pred_boxes[:, 5]) - \ |
|
|
torch.minimum(gt_boxes[:, 2] - 0.5 * gt_boxes[:, 5], pred_boxes[:, 2] - 0.5 * pred_boxes[:, 5]) |
|
|
outer_h = torch.clamp(outer_h, min=0) |
|
|
outer = torch.clamp((out_max_xy - out_min_xy), min=0) |
|
|
outer_diag = outer[:, 0] ** 2 + outer[:, 1] ** 2 + outer_h ** 2 |
|
|
|
|
|
dious = volume_inter / volume_union - inter_diag / outer_diag |
|
|
dious = torch.clamp(dious, min=-1.0, max=1.0) |
|
|
|
|
|
return dious |
|
|
|
|
|
def forward(self, box_pred, mask, ind, box_gt, batch_index): |
|
|
if mask.sum() == 0: |
|
|
return box_pred.new_zeros((1)) |
|
|
mask = mask.bool() |
|
|
batch_size = mask.shape[0] |
|
|
|
|
|
loss = 0 |
|
|
for bs_idx in range(batch_size): |
|
|
batch_inds = batch_index==bs_idx |
|
|
pred_box = box_pred[batch_inds][ind[bs_idx]] |
|
|
iou = self.bbox3d_iou_func(pred_box[mask[bs_idx]], box_gt[bs_idx]) |
|
|
loss += (1. - iou).sum() |
|
|
|
|
|
loss = loss / (mask.sum() + 1e-4) |
|
|
return loss |
|
|
|
|
|
class L1Loss(nn.Module): |
|
|
def __init__(self): |
|
|
super(L1Loss, self).__init__() |
|
|
|
|
|
def forward(self, pred, target): |
|
|
if target.numel() == 0: |
|
|
return pred.sum() * 0 |
|
|
assert pred.size() == target.size() |
|
|
loss = torch.abs(pred - target) |
|
|
return loss |
|
|
|
|
|
|
|
|
class GaussianFocalLoss(nn.Module): |
|
|
"""GaussianFocalLoss is a variant of focal loss. |
|
|
|
|
|
More details can be found in the `paper |
|
|
<https://arxiv.org/abs/1808.01244>`_ |
|
|
Code is modified from `kp_utils.py |
|
|
<https://github.com/princeton-vl/CornerNet/blob/master/models/py_utils/kp_utils.py#L152>`_ # noqa: E501 |
|
|
Please notice that the target in GaussianFocalLoss is a gaussian heatmap, |
|
|
not 0/1 binary target. |
|
|
|
|
|
Args: |
|
|
alpha (float): Power of prediction. |
|
|
gamma (float): Power of target for negative samples. |
|
|
reduction (str): Options are "none", "mean" and "sum". |
|
|
loss_weight (float): Loss weight of current loss. |
|
|
""" |
|
|
|
|
|
def __init__(self, |
|
|
alpha=2.0, |
|
|
gamma=4.0): |
|
|
super(GaussianFocalLoss, self).__init__() |
|
|
self.alpha = alpha |
|
|
self.gamma = gamma |
|
|
|
|
|
def forward(self, pred, target): |
|
|
eps = 1e-12 |
|
|
pos_weights = target.eq(1) |
|
|
neg_weights = (1 - target).pow(self.gamma) |
|
|
pos_loss = -(pred + eps).log() * (1 - pred).pow(self.alpha) * pos_weights |
|
|
neg_loss = -(1 - pred + eps).log() * pred.pow(self.alpha) * neg_weights |
|
|
|
|
|
return pos_loss + neg_loss |
|
|
|
|
|
|
|
|
def calculate_iou_loss_centerhead(iou_preds, batch_box_preds, mask, ind, gt_boxes): |
|
|
""" |
|
|
Args: |
|
|
iou_preds: (batch x 1 x h x w) |
|
|
batch_box_preds: (batch x (7 or 9) x h x w) |
|
|
mask: (batch x max_objects) |
|
|
ind: (batch x max_objects) |
|
|
gt_boxes: (batch x N, 7 or 9) |
|
|
Returns: |
|
|
""" |
|
|
if mask.sum() == 0: |
|
|
return iou_preds.new_zeros((1)) |
|
|
|
|
|
mask = mask.bool() |
|
|
selected_iou_preds = _transpose_and_gather_feat(iou_preds, ind)[mask] |
|
|
|
|
|
selected_box_preds = _transpose_and_gather_feat(batch_box_preds, ind)[mask] |
|
|
iou_target = iou3d_nms_utils.paired_boxes_iou3d_gpu(selected_box_preds[:, 0:7], gt_boxes[mask][:, 0:7]) |
|
|
|
|
|
iou_target = iou_target * 2 - 1 |
|
|
|
|
|
|
|
|
loss = F.l1_loss(selected_iou_preds.view(-1), iou_target, reduction='sum') |
|
|
loss = loss / torch.clamp(mask.sum(), min=1e-4) |
|
|
return loss |
|
|
|
|
|
|
|
|
def calculate_iou_reg_loss_centerhead(batch_box_preds, mask, ind, gt_boxes): |
|
|
if mask.sum() == 0: |
|
|
return batch_box_preds.new_zeros((1)) |
|
|
|
|
|
mask = mask.bool() |
|
|
|
|
|
selected_box_preds = _transpose_and_gather_feat(batch_box_preds, ind) |
|
|
|
|
|
iou = box_utils.bbox3d_overlaps_diou(selected_box_preds[mask][:, 0:7], gt_boxes[mask][:, 0:7]) |
|
|
|
|
|
loss = (1.0 - iou).sum() / torch.clamp(mask.sum(), min=1e-4) |
|
|
return loss |
|
|
|