yxc97's picture
Upload folder using huggingface_hub
62a2f1c verified
import os, sys
import re
import torch
import argparse
import yaml
import pandas as pd
import numpy as np
from glob import glob
from queue import Queue
from loguru import logger
from threading import Thread
from torch_geometric.data import Data, HeteroData
import torch.distributed as dist
import random
import subprocess
import time
from torch.utils.tensorboard import SummaryWriter
from datetime import datetime
# ------------------- 1. used classes
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, length=0):
self.length = length
self.reset()
def reset(self):
if self.length > 0:
self.history = []
else:
self.count = 0
self.sum = 0.0
self.val = 0.0
self.avg = 0.0
def update(self, val, num=1):
if self.length > 0:
# currently assert num==1 to avoid bad usage, refine when there are some explict requirements
assert num == 1
self.history.append(val)
if len(self.history) > self.length:
del self.history[0]
self.val = self.history[-1]
self.avg = np.mean(self.history)
else:
self.val = val
self.sum += val * num
self.count += num
self.avg = self.sum / self.count
class AVGMeter():
def __init__(self):
self.value = 0
self.cnt = 0
def update(self, v_new):
self.value += v_new
self.cnt += 1
def agg(self):
return self.value / self.cnt
def reset(self):
self.value = 0
self.cnt = 0
class Reporter():
def __init__(self, cfg, log_dir) -> None:
print("="*20, cfg['log_path'])
self.writer = SummaryWriter(log_dir)
self.cfg = cfg
def record(self, value_dict, epoch):
for key in value_dict:
if isinstance(value_dict[key], AVGMeter):
self.writer.add_scalar(key, value_dict[key].agg(), epoch)
else:
self.writer.add_scalar(key, value_dict[key], epoch)
def close(self):
self.writer.close()
class Timer:
def __init__(self, rest_epochs):
self.elapsed_time = None
self.rest_epochs = rest_epochs
self.eta = None # Estimated Time of Arrival
def __enter__(self):
self.start_time = time.time()
return self
def __exit__(self, exc_type, exc_value, traceback):
self.elapsed_time = time.time() - self.start_time
# 转换成小时
self.eta = round((self.rest_epochs * self.elapsed_time) / 3600, 2)
# ------------------- 2. used utility funcs
def get_argparse():
str2bool = lambda x: x.lower() == 'true'
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, default='./configs/default.yaml')
parser.add_argument('--distributed', default=False, action='store_true')
parser.add_argument('--local-rank', default=0, type=int, help='node rank for distributed training')
parser.add_argument("--seed", type=int, default=2024)
parser.add_argument("--ngpus", type=int, default=1)
args = parser.parse_args()
return args
def count_parameters(model):
total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
return total_params / 1_000_000 # return M
def model_info(model, verbose=False, img_size=640):
# Model information. img_size may be int or list, i.e. img_size=640 or img_size=[640, 320]
n_p = sum(x.numel() for x in model.parameters()) # number parameters
n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients
if verbose:
print('%5s %40s %9s %12s %20s %10s %10s' % ('layer', 'name', 'gradient', 'parameters', 'shape', 'mu', 'sigma'))
for i, (name, p) in enumerate(model.named_parameters()):
name = name.replace('module_list.', '')
print('%5g %40s %9s %12g %20s %10.3g %10.3g' %
(i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))
try: # FLOPS
from thop import profile
flops = profile(deepcopy(model), inputs=(torch.zeros(1, 3, img_size, img_size),), verbose=False)[0] / 1E9 * 2
img_size = img_size if isinstance(img_size, list) else [img_size, img_size] # expand if int/float
fs = ', %.9f GFLOPS' % (flops) # 640x640 FLOPS
except (ImportError, Exception):
fs = ''
logger.info(f"Model Summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}")
def get_cfg():
args = get_argparse()
with open(args.config, 'r') as file:
cfg = yaml.safe_load(file)
for key, value in vars(args).items():
if value is not None:
cfg[key] = value
cfg['log_path'] = os.path.join(cfg['log_path'], os.path.basename(args.config)[:-5])
metadata = (cfg['data']['meta']['node'],
list(map(tuple, cfg['data']['meta']['edge'])))
return cfg, metadata
def init_seeds(seed=0):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
def set_random_seed(seed, deterministic=False):
"""Set random seed."""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
if deterministic:
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
else:
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
def get_world_size():
if not dist.is_available():
return 1
if not dist.is_initialized():
return 1
return dist.get_world_size()
def get_rank():
if not dist.is_available():
return 0
if not dist.is_initialized():
return 0
return dist.get_rank()
def is_main_process():
return get_rank() == 0
# - -- - - - - --
logs = set()
def time_str(fmt=None):
if fmt is None:
fmt = '%Y-%m-%d_%H:%M:%S'
return datetime.today().strftime(fmt)
def setup_default_logging(save_path, flag_multigpus=False, l_level='INFO'):
if flag_multigpus:
rank = dist.get_rank()
if rank != 0:
return
tmp_timestr = time_str(fmt='%Y_%m_%d_%H_%M_%S')
logger.add(
os.path.join(save_path, f'{tmp_timestr}.log'),
# level='DEBUG',
level=l_level,
# format='{time:YYYY-MM-DD HH:mm:s} {file}[{line}] {level}: {message}',
format='{level}|{time:YYYY-MM-DD HH:mm:ss}: {message}',
# retention='30 days',
# rotation='30mb',
enqueue=True,
encoding='utf-8',
)
return tmp_timestr
def world_info_from_env():
local_rank = 0
for v in ('LOCAL_RANK', 'MPI_LOCALRANKID', 'SLURM_LOCALID', 'OMPI_COMM_WORLD_LOCAL_RANK'):
if v in os.environ:
local_rank = int(os.environ[v])
break
global_rank = 0
for v in ('RANK', 'PMI_RANK', 'SLURM_PROCID', 'OMPI_COMM_WORLD_RANK'):
if v in os.environ:
global_rank = int(os.environ[v])
break
world_size = 1
for v in ('WORLD_SIZE', 'PMI_SIZE', 'SLURM_NTASKS', 'OMPI_COMM_WORLD_SIZE'):
if v in os.environ:
world_size = int(os.environ[v])
break
return local_rank, global_rank, world_size
def setup_distributed(backend="nccl", port=None):
"""AdaHessian Optimizer
Lifted from https://github.com/BIGBALLON/distribuuuu/blob/master/distribuuuu/utils.py
Originally licensed MIT, Copyright (c) 2020 Wei Li
"""
num_gpus = torch.cuda.device_count()
# export ZHENSALLOC="hello boy!"
if "SLURM_JOB_ID" in os.environ and "ZHENSALLOC" not in os.environ:
_, rank, world_size = world_info_from_env()
node_list = os.environ["SLURM_NODELIST"]
addr = subprocess.getoutput(f"scontrol show hostname {node_list} | head -n1")
# specify master port
if port is not None:
os.environ["MASTER_PORT"] = str(port)
elif "MASTER_PORT" not in os.environ:
os.environ["MASTER_PORT"] = "10685"
if "MASTER_ADDR" not in os.environ:
os.environ["MASTER_ADDR"] = addr
os.environ["WORLD_SIZE"] = str(world_size)
os.environ["LOCAL_RANK"] = str(rank % num_gpus)
os.environ["RANK"] = str(rank)
else:
rank = int(os.environ["RANK"])
world_size = int(os.environ["WORLD_SIZE"])
torch.cuda.set_device(rank % num_gpus)
dist.init_process_group(
backend=backend,
world_size=world_size,
rank=rank,
)
return rank, world_size
# put log into the dir
def setup_default_logging_wt_dir(save_path, flag_multigpus=False, l_level='INFO'):
if flag_multigpus:
rank = dist.get_rank()
if rank != 0:
return
tmp_timestr = time_str(fmt='%Y_%m_%d_%H_%M_%S')
new_log_path = os.path.join(save_path, tmp_timestr)
os.makedirs(new_log_path, exist_ok=True)
logger.add(
os.path.join(new_log_path, f'{tmp_timestr}.log'),
# os.path.join(new_log_path, f'training.log'),
level=l_level,
# format='{time:YYYY-MM-DD HH:mm:s} {file}[{line}] {level}: {message}',
format='{level}|{time:YYYY-MM-DD HH:mm:ss}: {message}',
# retention='30 days',
# rotation='30mb',
enqueue=True,
encoding='utf-8',
)
return tmp_timestr
# - - - - - - - - - - - - - - - - - - - - - - - - - - -
def seed_worker(worker_id):
cur_seed = np.random.get_state()[1][0]
cur_seed += worker_id
np.random.seed(cur_seed)
random.seed(cur_seed)