yxc97's picture
Upload folder using huggingface_hub
62a2f1c verified
import torch
from torch import nn
import torch.nn.functional as F
import os
__all__ = ['HRNet', 'hrnetv2_48', 'hrnetv2_32']
# Checkpoint path of pre-trained backbone (edit to your path). Download backbone pretrained model hrnetv2-32 @
# https://drive.google.com/file/d/1NxCK7Zgn5PmeS7W1jYLt5J9E0RRZ2oyF/view?usp=sharing .Personally, I added the backbone
# weights to the folder /checkpoints
model_urls = {
'hrnetv2_32': './checkpoints/model_best_epoch96_edit.pth',
'hrnetv2_48': None
}
def check_pth(arch):
CKPT_PATH = model_urls[arch]
if os.path.exists(CKPT_PATH):
print(f"Backbone HRNet Pretrained weights at: {CKPT_PATH}, only usable for HRNetv2-32")
else:
print("No backbone checkpoint found for HRNetv2, please set pretrained=False when calling model")
return CKPT_PATH
# HRNetv2-48 not available yet, but you can train the whole model from scratch.
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(inplanes, planes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class StageModule(nn.Module):
def __init__(self, stage, output_branches, c):
super(StageModule, self).__init__()
self.number_of_branches = stage # number of branches is equivalent to the stage configuration.
self.output_branches = output_branches
self.branches = nn.ModuleList()
# Note: Resolution + Number of channels maintains the same throughout respective branch.
for i in range(self.number_of_branches): # Stage scales with the number of branches. Ex: Stage 2 -> 2 branch
channels = c * (2 ** i) # Scale channels by 2x for branch with lower resolution,
# Paper does x4 basic block for each forward sequence in each branch (x4 basic block considered as a block)
branch = nn.Sequential(*[BasicBlock(channels, channels) for _ in range(4)])
self.branches.append(branch) # list containing all forward sequence of individual branches.
# For each branch requires repeated fusion with all other branches after passing through x4 basic blocks.
self.fuse_layers = nn.ModuleList()
for branch_output_number in range(self.output_branches):
self.fuse_layers.append(nn.ModuleList())
for branch_number in range(self.number_of_branches):
if branch_number == branch_output_number:
self.fuse_layers[-1].append(nn.Sequential()) # Used in place of "None" because it is callable
elif branch_number > branch_output_number:
self.fuse_layers[-1].append(nn.Sequential(
nn.Conv2d(c * (2 ** branch_number), c * (2 ** branch_output_number), kernel_size=1, stride=1,
bias=False),
nn.BatchNorm2d(c * (2 ** branch_output_number), eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True),
nn.Upsample(scale_factor=(2.0 ** (branch_number - branch_output_number)), mode='nearest'),
))
elif branch_number < branch_output_number:
downsampling_fusion = []
for _ in range(branch_output_number - branch_number - 1):
downsampling_fusion.append(nn.Sequential(
nn.Conv2d(c * (2 ** branch_number), c * (2 ** branch_number), kernel_size=3, stride=2,
padding=1,
bias=False),
nn.BatchNorm2d(c * (2 ** branch_number), eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True),
nn.ReLU(inplace=True),
))
downsampling_fusion.append(nn.Sequential(
nn.Conv2d(c * (2 ** branch_number), c * (2 ** branch_output_number), kernel_size=3,
stride=2, padding=1,
bias=False),
nn.BatchNorm2d(c * (2 ** branch_output_number), eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True),
))
self.fuse_layers[-1].append(nn.Sequential(*downsampling_fusion))
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
# input to each stage is a list of inputs for each branch
x = [branch(branch_input) for branch, branch_input in zip(self.branches, x)]
x_fused = []
for branch_output_index in range(
self.output_branches): # Amount of output branches == total length of fusion layers
for input_index in range(self.number_of_branches): # The inputs of other branches to be fused.
if input_index == 0:
x_fused.append(self.fuse_layers[branch_output_index][input_index](x[input_index]))
else:
x_fused[branch_output_index] = x_fused[branch_output_index] + self.fuse_layers[branch_output_index][
input_index](x[input_index])
# After fusing all streams together, you will need to pass the fused layers
for i in range(self.output_branches):
x_fused[i] = self.relu(x_fused[i])
return x_fused # returning a list of fused outputs
class HRNet(nn.Module):
def __init__(self, c=48, num_blocks=[1, 4, 3], num_classes=1000):
super(HRNet, self).__init__()
# Stem:
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=2, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64, eps=1e-05, affine=True, track_running_stats=True)
self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(64, eps=1e-05, affine=True, track_running_stats=True)
self.relu = nn.ReLU(inplace=True)
# Stage 1:
downsample = nn.Sequential(
nn.Conv2d(64, 256, kernel_size=1, stride=1, bias=False),
nn.BatchNorm2d(256, eps=1e-05, affine=True, track_running_stats=True),
)
# Note that bottleneck module will expand the output channels according to the output channels*block.expansion
bn_expansion = Bottleneck.expansion # The channel expansion is set in the bottleneck class.
self.layer1 = nn.Sequential(
Bottleneck(64, 64, downsample=downsample), # Input is 64 for first module connection
Bottleneck(bn_expansion * 64, 64),
Bottleneck(bn_expansion * 64, 64),
Bottleneck(bn_expansion * 64, 64),
)
# Transition 1 - Creation of the first two branches (one full and one half resolution)
# Need to transition into high resolution stream and mid resolution stream
self.transition1 = nn.ModuleList([
nn.Sequential(
nn.Conv2d(256, c, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(c, eps=1e-05, affine=True, track_running_stats=True),
nn.ReLU(inplace=True),
),
nn.Sequential(nn.Sequential( # Double Sequential to fit with official pretrained weights
nn.Conv2d(256, c * 2, kernel_size=3, stride=2, padding=1, bias=False),
nn.BatchNorm2d(c * 2, eps=1e-05, affine=True, track_running_stats=True),
nn.ReLU(inplace=True),
)),
])
# Stage 2:
number_blocks_stage2 = num_blocks[0]
self.stage2 = nn.Sequential(
*[StageModule(stage=2, output_branches=2, c=c) for _ in range(number_blocks_stage2)])
# Transition 2 - Creation of the third branch (1/4 resolution)
self.transition2 = self._make_transition_layers(c, transition_number=2)
# Stage 3:
number_blocks_stage3 = num_blocks[1] # number blocks you want to create before fusion
self.stage3 = nn.Sequential(
*[StageModule(stage=3, output_branches=3, c=c) for _ in range(number_blocks_stage3)])
# Transition - Creation of the fourth branch (1/8 resolution)
self.transition3 = self._make_transition_layers(c, transition_number=3)
# Stage 4:
number_blocks_stage4 = num_blocks[2] # number blocks you want to create before fusion
self.stage4 = nn.Sequential(
*[StageModule(stage=4, output_branches=4, c=c) for _ in range(number_blocks_stage4)])
# Classifier (extra module if want to use for classification):
# pool, reduce dimensionality, flatten, connect to linear layer for classification:
out_channels = sum([c * 2 ** i for i in range(len(num_blocks)+1)]) # total output channels of HRNetV2
pool_feature_map = 8
self.bn_classifier = nn.Sequential(
nn.Conv2d(out_channels, out_channels // 4, kernel_size=1, bias=False),
nn.BatchNorm2d(out_channels // 4, eps=1e-05, affine=True, track_running_stats=True),
nn.ReLU(inplace=True),
nn.AdaptiveAvgPool2d(pool_feature_map),
nn.Flatten(),
nn.Linear(pool_feature_map * pool_feature_map * (out_channels // 4), num_classes),
)
@staticmethod
def _make_transition_layers(c, transition_number):
return nn.Sequential(
nn.Conv2d(c * (2 ** (transition_number - 1)), c * (2 ** transition_number), kernel_size=3, stride=2,
padding=1, bias=False),
nn.BatchNorm2d(c * (2 ** transition_number), eps=1e-05, affine=True,
track_running_stats=True),
nn.ReLU(inplace=True),
)
def forward(self, x):
# Stem:
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.conv2(x)
x = self.bn2(x)
x = self.relu(x)
# Stage 1
x = self.layer1(x)
x = [trans(x) for trans in self.transition1] # split to 2 branches, form a list.
# Stage 2
x = self.stage2(x)
x.append(self.transition2(x[-1]))
# Stage 3
x = self.stage3(x)
x.append(self.transition3(x[-1]))
# Stage 4
x = self.stage4(x)
# HRNetV2 Example: (follow paper, upsample via bilinear interpolation and to highest resolution size)
output_h, output_w = x[0].size(2), x[0].size(3) # Upsample to size of highest resolution stream
x1 = F.interpolate(x[1], size=(output_h, output_w), mode='bilinear', align_corners=False)
x2 = F.interpolate(x[2], size=(output_h, output_w), mode='bilinear', align_corners=False)
x3 = F.interpolate(x[3], size=(output_h, output_w), mode='bilinear', align_corners=False)
# Upsampling all the other resolution streams and then concatenate all (rather than adding/fusing like HRNetV1)
x = torch.cat([x[0], x1, x2, x3], dim=1)
x = self.bn_classifier(x)
return x
def _hrnet(arch, channels, num_blocks, pretrained, progress, **kwargs):
model = HRNet(channels, num_blocks, **kwargs)
if pretrained:
CKPT_PATH = check_pth(arch)
checkpoint = torch.load(CKPT_PATH)
model.load_state_dict(checkpoint['state_dict'])
return model
def hrnetv2_48(pretrained=False, progress=True, number_blocks=[1, 4, 3], **kwargs):
w_channels = 48
return _hrnet('hrnetv2_48', w_channels, number_blocks, pretrained, progress,
**kwargs)
def hrnetv2_32(pretrained=False, progress=True, number_blocks=[1, 4, 3], **kwargs):
w_channels = 32
return _hrnet('hrnetv2_32', w_channels, number_blocks, pretrained, progress,
**kwargs)
if __name__ == '__main__':
try:
CKPT_PATH = os.path.join(os.path.abspath("."), '../../checkpoints/hrnetv2_32_model_best_epoch96.pth')
print("--- Running file as MAIN ---")
print(f"Backbone HRNET Pretrained weights as __main__ at: {CKPT_PATH}")
except:
print("No backbone checkpoint found for HRNetv2, please set pretrained=False when calling model")
# Models
model = hrnetv2_32(pretrained=True)
#model = hrnetv2_48(pretrained=False)
if torch.cuda.is_available():
torch.backends.cudnn.deterministic = True
device = torch.device('cuda')
else:
device = torch.device('cpu')
model.to(device)
in_ = torch.ones(1, 3, 768, 768).to(device)
y = model(in_)
print(y.shape)
# Calculate total number of parameters:
# pytorch_total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
# print(pytorch_total_params)