|
|
import numpy as np |
|
|
import torch |
|
|
import matplotlib.pyplot as plt |
|
|
import time |
|
|
|
|
|
plt.switch_backend('agg') |
|
|
|
|
|
|
|
|
def adjust_learning_rate(optimizer, epoch, args): |
|
|
|
|
|
if args.lradj == 'type1': |
|
|
lr_adjust = {epoch: args.learning_rate * (0.5 ** ((epoch - 1) // 1))} |
|
|
elif args.lradj == 'type2': |
|
|
lr_adjust = { |
|
|
2: 5e-5, 4: 1e-5, 6: 5e-6, 8: 1e-6, |
|
|
10: 5e-7, 15: 1e-7, 20: 5e-8 |
|
|
} |
|
|
elif args.lradj == '3': |
|
|
lr_adjust = {epoch: args.learning_rate if epoch < 10 else args.learning_rate*0.1} |
|
|
elif args.lradj == '4': |
|
|
lr_adjust = {epoch: args.learning_rate if epoch < 15 else args.learning_rate*0.1} |
|
|
elif args.lradj == '5': |
|
|
lr_adjust = {epoch: args.learning_rate if epoch < 25 else args.learning_rate*0.1} |
|
|
elif args.lradj == '6': |
|
|
lr_adjust = {epoch: args.learning_rate if epoch < 5 else args.learning_rate*0.1} |
|
|
if epoch in lr_adjust.keys(): |
|
|
lr = lr_adjust[epoch] |
|
|
for param_group in optimizer.param_groups: |
|
|
param_group['lr'] = lr |
|
|
print('Updating learning rate to {}'.format(lr)) |
|
|
|
|
|
|
|
|
class EarlyStopping: |
|
|
def __init__(self, patience=7, verbose=False, delta=0): |
|
|
self.patience = patience |
|
|
self.verbose = verbose |
|
|
self.counter = 0 |
|
|
self.best_score = None |
|
|
self.early_stop = False |
|
|
self.val_loss_min = np.Inf |
|
|
self.delta = delta |
|
|
|
|
|
def __call__(self, val_loss, model, path): |
|
|
score = -val_loss |
|
|
if self.best_score is None: |
|
|
self.best_score = score |
|
|
self.save_checkpoint(val_loss, model, path) |
|
|
elif score < self.best_score + self.delta: |
|
|
self.counter += 1 |
|
|
print(f'EarlyStopping counter: {self.counter} out of {self.patience}') |
|
|
if self.counter >= self.patience: |
|
|
self.early_stop = True |
|
|
else: |
|
|
self.best_score = score |
|
|
self.save_checkpoint(val_loss, model, path) |
|
|
self.counter = 0 |
|
|
|
|
|
def save_checkpoint(self, val_loss, model, path): |
|
|
if self.verbose: |
|
|
print(f'Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}). Saving model ...') |
|
|
torch.save(model.state_dict(), path + '/' + 'checkpoint.pth') |
|
|
self.val_loss_min = val_loss |
|
|
|
|
|
|
|
|
class dotdict(dict): |
|
|
"""dot.notation access to dictionary attributes""" |
|
|
__getattr__ = dict.get |
|
|
__setattr__ = dict.__setitem__ |
|
|
__delattr__ = dict.__delitem__ |
|
|
|
|
|
|
|
|
class StandardScaler(): |
|
|
def __init__(self, mean, std): |
|
|
self.mean = mean |
|
|
self.std = std |
|
|
|
|
|
def transform(self, data): |
|
|
return (data - self.mean) / self.std |
|
|
|
|
|
def inverse_transform(self, data): |
|
|
return (data * self.std) + self.mean |
|
|
|
|
|
|
|
|
def visual(true, preds=None, name='./pic/test.pdf'): |
|
|
""" |
|
|
Results visualization |
|
|
""" |
|
|
plt.figure() |
|
|
plt.plot(true, label='GroundTruth', linewidth=2) |
|
|
if preds is not None: |
|
|
plt.plot(preds, label='Prediction', linewidth=2) |
|
|
plt.legend() |
|
|
plt.savefig(name, bbox_inches='tight') |
|
|
|
|
|
def test_params_flop(model,x_shape): |
|
|
""" |
|
|
If you want to thest former's flop, you need to give default value to inputs in model.forward(), the following code can only pass one argument to forward() |
|
|
""" |
|
|
model_params = 0 |
|
|
for parameter in model.parameters(): |
|
|
model_params += parameter.numel() |
|
|
print('INFO: Trainable parameter count: {:.2f}M'.format(model_params / 1000000.0)) |
|
|
from ptflops import get_model_complexity_info |
|
|
with torch.cuda.device(0): |
|
|
macs, params = get_model_complexity_info(model.cuda(), x_shape, as_strings=True, print_per_layer_stat=True) |
|
|
|
|
|
|
|
|
print('{:<30} {:<8}'.format('Computational complexity: ', macs)) |
|
|
print('{:<30} {:<8}'.format('Number of parameters: ', params)) |