--- base_model: google/gemma-3n-E4B-it library_name: peft model_name: gemma-3n-E4B-transcribe-zh-tw-1 tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for gemma-3n-E4B-transcribe-zh-tw-1 This model is a fine-tuned version of [google/gemma-3n-E4B-it](https://huggingface.co/google/gemma-3n-E4B-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python import torch from peft import PeftModel from transformers import AutoModelForCausalLM, AutoProcessor device = "cuda" if torch.cuda.is_available() else "cpu" processor = AutoProcessor.from_pretrained("google/gemma-3n-E4B-it", device_map="auto") base_model = AutoModelForCausalLM.from_pretrained("google/gemma-3n-E4B-it") model = PeftModel.from_pretrained( base_model, "JacobLinCool/gemma-3n-E4B-transcribe-zh-tw-1" ).to(device) def trascribe(model, processor, audio): messages = [ { "role": "system", "content": [ { "type": "text", "text": "You are an assistant that transcribes speech accurately.", } ], }, { "role": "user", "content": [ {"type": "audio", "audio": audio}, {"type": "text", "text": "Transcribe this audio."}, ], }, ] input_ids = processor.apply_chat_template( messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt", ) input_ids = input_ids.to(device, dtype=model.dtype) model.eval() with torch.no_grad(): outputs = model.generate(**input_ids, max_new_tokens=128) prediction = processor.batch_decode( outputs, skip_special_tokens=True, clean_up_tokenization_spaces=False )[0] prediction = prediction.split("\nmodel\n")[-1].strip() return prediction if __name__ == "__main__": prediction = trascribe(model, processor, "/workspace/audio.mp3") print(prediction) ``` ## Training procedure This model was trained with SFT. ### Framework versions - PEFT 0.15.2 - TRL: 0.19.0 - Transformers: 4.53.0 - Pytorch: 2.8.0.dev20250319+cu128 - Datasets: 3.6.0 - Tokenizers: 0.21.2 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```