nielsr HF Staff commited on
Commit
6e8aed1
·
verified ·
1 Parent(s): 4fd8b45

Add library_name, arXiv metadata and project page link

Browse files

Hi! I'm Niels, part of the community team at Hugging Face.

This PR improves the model card by:
- Adding `library_name: transformers` to the metadata, which enables the "Use in Transformers" button and automated code snippets.
- Adding the `arxiv` ID to the metadata to link the model with the paper [Surprisal-Guided Selection: Compute-Optimal Test-Time Strategies for Execution-Grounded Code Generation](https://huggingface.co/papers/2602.07670).
- Adding a link to the research project page in the header.

Everything else looks great!

Files changed (1) hide show
  1. README.md +32 -30
README.md CHANGED
@@ -1,44 +1,46 @@
1
  ---
2
- license: apache-2.0
3
  base_model: openai/gpt-oss-120b
4
- tags:
5
- - gpu-kernel
6
- - cuda
7
- - code-generation
8
- - reinforcement-learning
9
- - grpo
10
- - kernelbench
11
  datasets:
12
- - ScalingIntelligence/KernelBench
13
  language:
14
- - en
 
15
  pipeline_tag: text-generation
 
 
 
 
 
 
 
 
 
16
  model-index:
17
- - name: KernelBench-RLVR-120b
18
- results:
19
- - task:
20
- type: text-generation
21
- name: GPU Kernel Generation
22
- dataset:
23
- name: KernelBench L1
24
- type: ScalingIntelligence/KernelBench
25
- metrics:
26
- - name: task_success_rate (K=64, 20 tasks)
27
- type: custom
28
- value: 90.0
29
- - name: fast_1 (K=1, per-sample)
30
- type: custom
31
- value: 53.3
32
- - name: correctness (training dist.)
33
- type: accuracy
34
- value: 98.4
35
  ---
36
 
37
  # KernelBench-RLVR-120b
38
 
39
  A 120B-parameter model fine-tuned with GRPO (Group Relative Policy Optimization) for GPU kernel generation. This model was used to study compute-optimal test-time strategies in [Surprisal-Guided Selection](http://arxiv.org/abs/2602.07670), where we find that Best-of-N search with surprisal-guided selection recovers oracle performance at zero additional cost.
40
 
41
- **Paper**: [arXiv:2602.07670](http://arxiv.org/abs/2602.07670) | **Code**: [GitHub](https://github.com/jbarnes850/test-time-training)
42
 
43
  ## Quick Start
44
 
@@ -175,4 +177,4 @@ If you use this model, please cite [our paper](http://arxiv.org/abs/2602.07670):
175
  - [KernelBench](https://github.com/ScalingIntelligence/KernelBench) - Ouyang et al., 2025
176
  - [TTT-Discover](https://arxiv.org/abs/2601.16175) - Yuksekgonul et al., 2026
177
  - [SDPO](https://arxiv.org/abs/2601.20802) - Zeng et al., 2026
178
- - [Scalable Power Sampling](https://arxiv.org/abs/2601.21590) - Ji et al., 2026
 
1
  ---
 
2
  base_model: openai/gpt-oss-120b
 
 
 
 
 
 
 
3
  datasets:
4
+ - ScalingIntelligence/KernelBench
5
  language:
6
+ - en
7
+ license: apache-2.0
8
  pipeline_tag: text-generation
9
+ library_name: transformers
10
+ arxiv: 2602.07670
11
+ tags:
12
+ - gpu-kernel
13
+ - cuda
14
+ - code-generation
15
+ - reinforcement-learning
16
+ - grpo
17
+ - kernelbench
18
  model-index:
19
+ - name: KernelBench-RLVR-120b
20
+ results:
21
+ - task:
22
+ type: text-generation
23
+ name: GPU Kernel Generation
24
+ dataset:
25
+ name: KernelBench L1
26
+ type: ScalingIntelligence/KernelBench
27
+ metrics:
28
+ - type: custom
29
+ value: 90.0
30
+ name: task_success_rate (K=64, 20 tasks)
31
+ - type: custom
32
+ value: 53.3
33
+ name: fast_1 (K=1, per-sample)
34
+ - type: accuracy
35
+ value: 98.4
36
+ name: correctness (training dist.)
37
  ---
38
 
39
  # KernelBench-RLVR-120b
40
 
41
  A 120B-parameter model fine-tuned with GRPO (Group Relative Policy Optimization) for GPU kernel generation. This model was used to study compute-optimal test-time strategies in [Surprisal-Guided Selection](http://arxiv.org/abs/2602.07670), where we find that Best-of-N search with surprisal-guided selection recovers oracle performance at zero additional cost.
42
 
43
+ **Paper**: [arXiv:2602.07670](http://arxiv.org/abs/2602.07670) | **Project Page**: [Blog](https://jbarnes850.github.io/2026/02/02/surprisal-guided-selection/) | **Code**: [GitHub](https://github.com/jbarnes850/test-time-training)
44
 
45
  ## Quick Start
46
 
 
177
  - [KernelBench](https://github.com/ScalingIntelligence/KernelBench) - Ouyang et al., 2025
178
  - [TTT-Discover](https://arxiv.org/abs/2601.16175) - Yuksekgonul et al., 2026
179
  - [SDPO](https://arxiv.org/abs/2601.20802) - Zeng et al., 2026
180
+ - [Scalable Power Sampling](https://arxiv.org/abs/2601.21590) - Ji et al., 2026