--- base_model: - ultralytics/yolo11 model_name: yolo11-blood_cell-onnx tags: - object-detection - sft - yolov11 - medical-imaging - blood-cell - fp16 license: apache-2.0 language: - en pipeline_tag: object-detection library_name: ultralytics --- # 🩸 YOLO11 — Blood Cell Detector (Freeze-10, FP16 ONNX) This model is a **fine-tuned YOLO11** trained for **blood cell detection** on the [Blood Cell Dataset (Roboflow)](https://universe.roboflow.com/med-2fnb4/blood-cell-dataset-qbrgd). The first **10 layers were frozen** to retain pretrained spatial features, and the model was exported to **ONNX (FP16)** for efficient inference. --- ## ⚙️ Configuration | Attribute | Value | |------------|-------| | **Base Model** | `yolo11n.pt` | | **Dataset** | [Blood Cell (Roboflow)](https://universe.roboflow.com/med-2fnb4/blood-cell-dataset-qbrgd) | | **Epochs** | 30 | | **Batch Size** | 32 | | **Image Size** | 640×640 | | **Optimizer** | Auto | | **Freeze Layers** | 10 | | **Precision** | FP16 (half=True) | | **Export Format** | ONNX | | **Device** | GPU (0,1) | --- ## 🩺 Example Detection ![Blood Cell Detection](https://huggingface.co/Jesteban247/yolo11-blood_cell-onnx/resolve/main/Blood.png) --- ## 📈 Results | Metric | Value | |---------|-------| | **mAP50** | 0.974 | | **mAP50-95** | 0.905 | | **Precision (B)** | 0.951 | | **Recall (B)** | 0.920 | | **Inference Time (ms)** | 33.73 | | **FPS** | 29.65 | | **Model Size (MB)** | 5.2 | > FP16 inference maintained **identical accuracy** to FP32 while reducing latency. > Layer freezing improved training stability and avoided overfitting on the limited dataset.