Update moondream.py
Browse filesfix: udpate KV to support batch and single prompt inference.
- moondream.py +47 -12
moondream.py
CHANGED
|
@@ -77,22 +77,57 @@ class KVCache(nn.Module):
|
|
| 77 |
"v_cache", torch.zeros(*cache_shape, device=device, dtype=dtype)
|
| 78 |
)
|
| 79 |
|
|
|
|
| 80 |
def update(self, pos_ids, k, v):
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
kout[:, :, pos_ids, :] = k
|
| 86 |
vout[:, :, pos_ids, :] = v
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
for i in range(B):
|
| 92 |
-
pi = int(pos_ids[i]
|
| 93 |
-
kout[i, :, pi, :] = k[i]
|
| 94 |
-
vout[i, :, pi, :] = v[i]
|
| 95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
|
| 97 |
|
| 98 |
|
|
|
|
| 77 |
"v_cache", torch.zeros(*cache_shape, device=device, dtype=dtype)
|
| 78 |
)
|
| 79 |
|
| 80 |
+
# in class KVCache
|
| 81 |
def update(self, pos_ids, k, v):
|
| 82 |
+
"""
|
| 83 |
+
Supports both:
|
| 84 |
+
- PREFILL: pos_ids shape == (q_len,), k/v shape == (B, H, q_len, D)
|
| 85 |
+
- STEP-DECODE (batched): pos_ids shape == (B,), k/v shape == (B, H, 1, D)
|
| 86 |
+
- STEP-DECODE (single): scalar pos_ids, k/v shape == (1, H, 1, D)
|
| 87 |
+
"""
|
| 88 |
+
kout, vout = self.k_cache, self.v_cache # (Bcache, H, T, D)
|
| 89 |
+
B, H, Q, D = k.shape
|
| 90 |
+
|
| 91 |
+
# Case A: PREFILL — a vector of all time indices
|
| 92 |
+
if torch.is_tensor(pos_ids) and pos_ids.ndim == 1 and pos_ids.numel() == Q and Q > 1:
|
| 93 |
+
# broadcast batch dimension into cache if needed
|
| 94 |
+
if kout.size(0) != B:
|
| 95 |
+
# grow/shrink the first dim to match B (this happens after you cloned
|
| 96 |
+
# image caches to B rows for batched prefill)
|
| 97 |
+
new_k = kout.new_zeros((B,) + tuple(kout.shape[1:]))
|
| 98 |
+
new_v = vout.new_zeros((B,) + tuple(vout.shape[1:]))
|
| 99 |
+
# copy row 0 as base (image prefix) into all rows
|
| 100 |
+
new_k[:] = kout[0]
|
| 101 |
+
new_v[:] = vout[0]
|
| 102 |
+
self.k_cache = kout = new_k
|
| 103 |
+
self.v_cache = vout = new_v
|
| 104 |
+
|
| 105 |
+
# write the whole segment for all rows at once
|
| 106 |
kout[:, :, pos_ids, :] = k
|
| 107 |
vout[:, :, pos_ids, :] = v
|
| 108 |
+
return kout, vout
|
| 109 |
+
|
| 110 |
+
# Case B: STEP-DECODE (batched) — one position per row, q_len == 1
|
| 111 |
+
if torch.is_tensor(pos_ids) and pos_ids.ndim == 1 and pos_ids.numel() == B and Q == 1:
|
| 112 |
for i in range(B):
|
| 113 |
+
pi = int(pos_ids[i])
|
| 114 |
+
kout[i, :, pi, :] = k[i, :, 0, :]
|
| 115 |
+
vout[i, :, pi, :] = v[i, :, 0, :]
|
| 116 |
+
return kout, vout
|
| 117 |
+
|
| 118 |
+
# Case C: STEP-DECODE (single) — scalar pos, B==1, q_len==1
|
| 119 |
+
if (not torch.is_tensor(pos_ids)) or pos_ids.ndim == 0:
|
| 120 |
+
pi = int(pos_ids)
|
| 121 |
+
kout[:B, :, pi, :] = k[:, :, 0, :]
|
| 122 |
+
vout[:B, :, pi, :] = v[:, :, 0, :]
|
| 123 |
+
return kout, vout
|
| 124 |
+
|
| 125 |
+
# Fallback: shape combo we didn't expect
|
| 126 |
+
raise RuntimeError(
|
| 127 |
+
f"KVCache.update: unsupported shapes pos_ids={tuple(pos_ids.shape) if torch.is_tensor(pos_ids) else '()'}, "
|
| 128 |
+
f"k={tuple(k.shape)}, v={tuple(v.shape)}"
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
|
| 132 |
|
| 133 |
|