Update moondream.py
Browse filesfix: corrupted kv cache
- moondream.py +150 -79
moondream.py
CHANGED
|
@@ -64,33 +64,33 @@ class EncodedImage:
|
|
| 64 |
pos: int
|
| 65 |
caches: List[Tuple[torch.Tensor, torch.Tensor]]
|
| 66 |
|
|
|
|
| 67 |
class KVCache(nn.Module):
|
| 68 |
def __init__(self, n_heads, n_kv_heads, max_context, dim, device, dtype):
|
| 69 |
super().__init__()
|
| 70 |
-
|
|
|
|
| 71 |
self.register_buffer("k_cache", torch.zeros(*cache_shape, device=device, dtype=dtype))
|
| 72 |
self.register_buffer("v_cache", torch.zeros(*cache_shape, device=device, dtype=dtype))
|
| 73 |
|
| 74 |
def update(self, pos_ids, k, v):
|
| 75 |
"""
|
| 76 |
Supports:
|
| 77 |
-
• Prefill:
|
| 78 |
-
• 1-step:
|
| 79 |
-
• Legacy: k,v = (B, n_kv_heads, 1, d), pos_ids = scalar
|
| 80 |
-
Writes into self.k_cache/self.v_cache shaped (B, n_kv_heads, T_max, d).
|
| 81 |
"""
|
|
|
|
|
|
|
| 82 |
if not torch.is_tensor(pos_ids):
|
| 83 |
pos_ids = torch.tensor(pos_ids, device=k.device, dtype=torch.long)
|
| 84 |
else:
|
| 85 |
-
pos_ids = pos_ids.to(
|
| 86 |
-
|
| 87 |
if k.dim() != 4 or v.dim() != 4:
|
| 88 |
raise RuntimeError(f"KV update expects k,v 4D. Got k={tuple(k.shape)} v={tuple(v.shape)}")
|
| 89 |
-
|
| 90 |
B, Hkv, q_len, D = k.shape
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
# Expand caches from B=1 lazily if needed
|
| 94 |
if kout.size(0) != B:
|
| 95 |
if kout.size(0) == 1:
|
| 96 |
self.k_cache = kout.expand(B, -1, -1, -1).clone()
|
|
@@ -98,30 +98,28 @@ class KVCache(nn.Module):
|
|
| 98 |
kout, vout = self.k_cache, self.v_cache
|
| 99 |
else:
|
| 100 |
raise RuntimeError(f"KV cache batch mismatch: cache.B={kout.size(0)} vs k.B={B}")
|
| 101 |
-
|
| 102 |
-
#
|
| 103 |
if pos_ids.dim() == 1 and pos_ids.numel() == q_len:
|
| 104 |
for i in range(B):
|
| 105 |
kout[i, :, pos_ids, :] = k[i]
|
| 106 |
vout[i, :, pos_ids, :] = v[i]
|
| 107 |
return kout, vout
|
| 108 |
-
|
| 109 |
-
#
|
| 110 |
-
if q_len == 1 and pos_ids.numel()
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
pi =
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
kout[:, :, pi, :] = k[:, :, 0, :]
|
| 122 |
-
vout[:, :, pi, :] = v[:, :, 0, :]
|
| 123 |
return kout, vout
|
| 124 |
-
|
| 125 |
raise RuntimeError(f"Unsupported KV update combo: k={tuple(k.shape)}, pos_ids={tuple(pos_ids.shape)}")
|
| 126 |
|
| 127 |
|
|
@@ -129,6 +127,7 @@ class KVCache(nn.Module):
|
|
| 129 |
|
| 130 |
|
| 131 |
|
|
|
|
| 132 |
class MoondreamModel(nn.Module):
|
| 133 |
|
| 134 |
def __init__(
|
|
@@ -211,6 +210,7 @@ class MoondreamModel(nn.Module):
|
|
| 211 |
blk.kv_cache.v_cache = torch.zeros(shape, device=device, dtype=dtype)
|
| 212 |
|
| 213 |
|
|
|
|
| 214 |
|
| 215 |
|
| 216 |
def _setup_caches(self):
|
|
@@ -567,13 +567,13 @@ class MoondreamModel(nn.Module):
|
|
| 567 |
image: Union[Image.Image, EncodedImage],
|
| 568 |
settings: Optional[ImageEncodingSettings] = None,
|
| 569 |
) -> EncodedImage:
|
| 570 |
-
#
|
| 571 |
-
self._setup_caches() # re-create caches
|
| 572 |
-
for blk in self.text.blocks:
|
| 573 |
if blk.kv_cache.k_cache.size(0) != 1:
|
| 574 |
blk.kv_cache.k_cache = blk.kv_cache.k_cache[:1].contiguous()
|
| 575 |
blk.kv_cache.v_cache = blk.kv_cache.v_cache[:1].contiguous()
|
| 576 |
-
|
| 577 |
if isinstance(image, EncodedImage):
|
| 578 |
return image
|
| 579 |
if not isinstance(image, Image.Image):
|
|
@@ -602,6 +602,7 @@ class MoondreamModel(nn.Module):
|
|
| 602 |
)
|
| 603 |
|
| 604 |
|
|
|
|
| 605 |
def query(
|
| 606 |
self,
|
| 607 |
image: Optional[Union[Image.Image, EncodedImage]] = None,
|
|
@@ -893,6 +894,7 @@ class MoondreamModel(nn.Module):
|
|
| 893 |
return {"points": objects}
|
| 894 |
|
| 895 |
|
|
|
|
| 896 |
def _load_encoded_image_batched(self, encoded_image, batch_size: int):
|
| 897 |
for b, (k, v) in zip(self.text.blocks, encoded_image.caches):
|
| 898 |
T = k.size(2)
|
|
@@ -904,11 +906,7 @@ class MoondreamModel(nn.Module):
|
|
| 904 |
b.kv_cache.k_cache[:, :, :T, :] = k.expand(batch_size, -1, -1, -1)
|
| 905 |
b.kv_cache.v_cache[:, :, :T, :] = v.expand(batch_size, -1, -1, -1)
|
| 906 |
|
| 907 |
-
|
| 908 |
-
|
| 909 |
-
|
| 910 |
-
def _prefill_prompt_batched(self, labels, pos: int, lora=None,
|
| 911 |
-
temperature: float = 0.0, top_p: float = 0.0):
|
| 912 |
tpl = self.config.tokenizer.templates["detect"]
|
| 913 |
if tpl is None:
|
| 914 |
raise NotImplementedError("Model does not support object detection (no detect template).")
|
|
@@ -925,39 +923,43 @@ class MoondreamModel(nn.Module):
|
|
| 925 |
for i, ids in enumerate(rows):
|
| 926 |
prompt_ids[i, : ids.numel()] = ids
|
| 927 |
|
| 928 |
-
prompt_emb = text_encoder(prompt_ids, self.text)
|
| 929 |
torch._dynamo.mark_dynamic(prompt_emb, 1)
|
| 930 |
|
| 931 |
-
|
| 932 |
-
|
| 933 |
-
|
| 934 |
|
| 935 |
-
|
|
|
|
|
|
|
| 936 |
logits_BTV = lm_head(hidden_BTC, self.text)
|
| 937 |
|
| 938 |
-
idx = (torch.tensor(lens, device=self.device) - 1).clamp_min(0)
|
| 939 |
last_hidden = hidden_BTC[torch.arange(B, device=self.device), idx][:, None, :] # (B,1,C)
|
| 940 |
last_logits = logits_BTV[torch.arange(B, device=self.device), idx] # (B,V)
|
| 941 |
|
| 942 |
if temperature == 0.0:
|
| 943 |
-
next_token = last_logits.argmax(dim=-1, keepdim=True)
|
| 944 |
else:
|
| 945 |
probs = torch.softmax(last_logits / temperature, dim=-1)
|
| 946 |
probs = self._apply_top_p(probs, top_p)
|
| 947 |
-
next_token = torch.multinomial(probs, num_samples=1)
|
| 948 |
|
|
|
|
| 949 |
return last_hidden, next_token, int(pos + T)
|
| 950 |
|
| 951 |
|
|
|
|
| 952 |
def _generate_points_batched(
|
| 953 |
self,
|
| 954 |
hidden, # (B,1,C)
|
| 955 |
-
next_token, # (B,1)
|
| 956 |
-
pos, # int
|
| 957 |
include_size: bool = True,
|
| 958 |
max_objects: int = 50,
|
| 959 |
lora=None,
|
| 960 |
-
use_soft_argmax: bool =
|
| 961 |
):
|
| 962 |
B = hidden.size(0)
|
| 963 |
device = self.device
|
|
@@ -965,40 +967,110 @@ class MoondreamModel(nn.Module):
|
|
| 965 |
eos_id = self.config.tokenizer.eos_id
|
| 966 |
max_ctx = self.config.text.max_context
|
| 967 |
|
| 968 |
-
# mask
|
| 969 |
mask = torch.zeros(B, 1, 1, max_ctx, device=device, dtype=torch.bool)
|
| 970 |
if pos > 0:
|
| 971 |
mask[:, :, :, :pos] = True
|
| 972 |
-
|
|
|
|
|
|
|
| 973 |
|
| 974 |
alive = torch.ones(B, dtype=torch.bool, device=device)
|
| 975 |
counts = torch.zeros(B, dtype=torch.int32, device=device)
|
| 976 |
|
| 977 |
-
def
|
| 978 |
# logits_2d: (B, bins)
|
|
|
|
|
|
|
|
|
|
| 979 |
if use_soft_argmax:
|
| 980 |
-
|
| 981 |
-
|
| 982 |
-
|
| 983 |
-
|
| 984 |
-
|
| 985 |
-
return idx / float(logits_2d.size(-1) - 1)
|
| 986 |
|
| 987 |
with torch.inference_mode():
|
| 988 |
while alive.any() and (counts < max_objects).any():
|
| 989 |
-
# x
|
| 990 |
-
x_logits = decode_coordinate(hidden, self.region)
|
| 991 |
-
|
| 992 |
-
|
| 993 |
-
|
| 994 |
-
self.region).unsqueeze(1) # (B,1,C)
|
| 995 |
mask[alive, :, :, pos] = True
|
| 996 |
-
_, hidden = self._decode_one_tok(x_emb, mask,
|
| 997 |
-
|
|
|
|
| 998 |
|
| 999 |
-
# y
|
| 1000 |
y_logits = decode_coordinate(hidden, self.region)
|
| 1001 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1002 |
|
| 1003 |
|
| 1004 |
|
|
@@ -1008,38 +1080,37 @@ class MoondreamModel(nn.Module):
|
|
| 1008 |
raise NotImplementedError("Model does not support object detection.")
|
| 1009 |
settings = settings or {}
|
| 1010 |
|
| 1011 |
-
|
| 1012 |
-
image = self.encode_image(image, settings)
|
| 1013 |
B = len(objects)
|
| 1014 |
-
self._load_encoded_image_batched(
|
| 1015 |
|
| 1016 |
-
lora = None
|
| 1017 |
-
if "variant" in settings:
|
| 1018 |
-
lora = variant_state_dict(settings["variant"], device=self.device)
|
| 1019 |
|
| 1020 |
last_hidden, next_token, pos_end = self._prefill_prompt_batched(
|
| 1021 |
-
objects,
|
| 1022 |
)
|
| 1023 |
|
| 1024 |
-
max_objects = settings.get("max_objects", 50)
|
| 1025 |
det_lists = self._generate_points_batched(
|
| 1026 |
last_hidden, next_token, pos_end,
|
| 1027 |
-
include_size=True,
|
|
|
|
|
|
|
| 1028 |
)
|
| 1029 |
|
| 1030 |
-
# Map back to labels and tag
|
| 1031 |
res = {}
|
| 1032 |
for lab, lst in zip(objects, det_lists):
|
| 1033 |
for d in lst:
|
| 1034 |
d["label"] = lab
|
| 1035 |
res[lab] = lst
|
| 1036 |
|
| 1037 |
-
#
|
| 1038 |
self._reset_kv_caches(1)
|
| 1039 |
return {"objects": res}
|
| 1040 |
|
| 1041 |
|
| 1042 |
|
|
|
|
|
|
|
| 1043 |
def _detect_gaze(
|
| 1044 |
self,
|
| 1045 |
image: EncodedImage,
|
|
|
|
| 64 |
pos: int
|
| 65 |
caches: List[Tuple[torch.Tensor, torch.Tensor]]
|
| 66 |
|
| 67 |
+
# -------------------- KVCache --------------------
|
| 68 |
class KVCache(nn.Module):
|
| 69 |
def __init__(self, n_heads, n_kv_heads, max_context, dim, device, dtype):
|
| 70 |
super().__init__()
|
| 71 |
+
head_dim = dim // n_heads
|
| 72 |
+
cache_shape = (1, n_kv_heads, max_context, head_dim)
|
| 73 |
self.register_buffer("k_cache", torch.zeros(*cache_shape, device=device, dtype=dtype))
|
| 74 |
self.register_buffer("v_cache", torch.zeros(*cache_shape, device=device, dtype=dtype))
|
| 75 |
|
| 76 |
def update(self, pos_ids, k, v):
|
| 77 |
"""
|
| 78 |
Supports:
|
| 79 |
+
• Prefill: k,v = (B, n_kv, q_len, d), pos_ids = (q_len,)
|
| 80 |
+
• 1-step : k,v = (B, n_kv, 1, d), pos_ids = (B,) or scalar
|
|
|
|
|
|
|
| 81 |
"""
|
| 82 |
+
kout, vout = self.k_cache, self.v_cache
|
| 83 |
+
|
| 84 |
if not torch.is_tensor(pos_ids):
|
| 85 |
pos_ids = torch.tensor(pos_ids, device=k.device, dtype=torch.long)
|
| 86 |
else:
|
| 87 |
+
pos_ids = pos_ids.to(k.device, dtype=torch.long)
|
| 88 |
+
|
| 89 |
if k.dim() != 4 or v.dim() != 4:
|
| 90 |
raise RuntimeError(f"KV update expects k,v 4D. Got k={tuple(k.shape)} v={tuple(v.shape)}")
|
|
|
|
| 91 |
B, Hkv, q_len, D = k.shape
|
| 92 |
+
|
| 93 |
+
# Expand caches’ batch dim if needed
|
|
|
|
| 94 |
if kout.size(0) != B:
|
| 95 |
if kout.size(0) == 1:
|
| 96 |
self.k_cache = kout.expand(B, -1, -1, -1).clone()
|
|
|
|
| 98 |
kout, vout = self.k_cache, self.v_cache
|
| 99 |
else:
|
| 100 |
raise RuntimeError(f"KV cache batch mismatch: cache.B={kout.size(0)} vs k.B={B}")
|
| 101 |
+
|
| 102 |
+
# Prefill (vector of positions shared across the batch)
|
| 103 |
if pos_ids.dim() == 1 and pos_ids.numel() == q_len:
|
| 104 |
for i in range(B):
|
| 105 |
kout[i, :, pos_ids, :] = k[i]
|
| 106 |
vout[i, :, pos_ids, :] = v[i]
|
| 107 |
return kout, vout
|
| 108 |
+
|
| 109 |
+
# 1-step with per-row positions
|
| 110 |
+
if q_len == 1 and pos_ids.numel() in {1, B}:
|
| 111 |
+
if pos_ids.numel() == 1:
|
| 112 |
+
pi = int(pos_ids.item())
|
| 113 |
+
kout[:, :, pi, :] = k[:, :, 0, :]
|
| 114 |
+
vout[:, :, pi, :] = v[:, :, 0, :]
|
| 115 |
+
else:
|
| 116 |
+
pos_ids = pos_ids.view(B)
|
| 117 |
+
for i in range(B):
|
| 118 |
+
pi = int(pos_ids[i].item())
|
| 119 |
+
kout[i, :, pi, :] = k[i, :, 0, :]
|
| 120 |
+
vout[i, :, pi, :] = v[i, :, 0, :]
|
|
|
|
|
|
|
| 121 |
return kout, vout
|
| 122 |
+
|
| 123 |
raise RuntimeError(f"Unsupported KV update combo: k={tuple(k.shape)}, pos_ids={tuple(pos_ids.shape)}")
|
| 124 |
|
| 125 |
|
|
|
|
| 127 |
|
| 128 |
|
| 129 |
|
| 130 |
+
|
| 131 |
class MoondreamModel(nn.Module):
|
| 132 |
|
| 133 |
def __init__(
|
|
|
|
| 210 |
blk.kv_cache.v_cache = torch.zeros(shape, device=device, dtype=dtype)
|
| 211 |
|
| 212 |
|
| 213 |
+
|
| 214 |
|
| 215 |
|
| 216 |
def _setup_caches(self):
|
|
|
|
| 567 |
image: Union[Image.Image, EncodedImage],
|
| 568 |
settings: Optional[ImageEncodingSettings] = None,
|
| 569 |
) -> EncodedImage:
|
| 570 |
+
# Always start from single-row caches; avoids leftovers from batched runs
|
| 571 |
+
self._setup_caches() # re-create caches (B=1)
|
| 572 |
+
for blk in self.text.blocks: # make absolutely sure batch dim == 1
|
| 573 |
if blk.kv_cache.k_cache.size(0) != 1:
|
| 574 |
blk.kv_cache.k_cache = blk.kv_cache.k_cache[:1].contiguous()
|
| 575 |
blk.kv_cache.v_cache = blk.kv_cache.v_cache[:1].contiguous()
|
| 576 |
+
|
| 577 |
if isinstance(image, EncodedImage):
|
| 578 |
return image
|
| 579 |
if not isinstance(image, Image.Image):
|
|
|
|
| 602 |
)
|
| 603 |
|
| 604 |
|
| 605 |
+
|
| 606 |
def query(
|
| 607 |
self,
|
| 608 |
image: Optional[Union[Image.Image, EncodedImage]] = None,
|
|
|
|
| 894 |
return {"points": objects}
|
| 895 |
|
| 896 |
|
| 897 |
+
# -------------------- batched helpers --------------------
|
| 898 |
def _load_encoded_image_batched(self, encoded_image, batch_size: int):
|
| 899 |
for b, (k, v) in zip(self.text.blocks, encoded_image.caches):
|
| 900 |
T = k.size(2)
|
|
|
|
| 906 |
b.kv_cache.k_cache[:, :, :T, :] = k.expand(batch_size, -1, -1, -1)
|
| 907 |
b.kv_cache.v_cache[:, :, :T, :] = v.expand(batch_size, -1, -1, -1)
|
| 908 |
|
| 909 |
+
def _prefill_prompt_batched(self, labels, pos: int, lora=None, temperature: float = 0.0, top_p: float = 0.0):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 910 |
tpl = self.config.tokenizer.templates["detect"]
|
| 911 |
if tpl is None:
|
| 912 |
raise NotImplementedError("Model does not support object detection (no detect template).")
|
|
|
|
| 923 |
for i, ids in enumerate(rows):
|
| 924 |
prompt_ids[i, : ids.numel()] = ids
|
| 925 |
|
| 926 |
+
prompt_emb = text_encoder(prompt_ids, self.text) # (B,T,C)
|
| 927 |
torch._dynamo.mark_dynamic(prompt_emb, 1)
|
| 928 |
|
| 929 |
+
# mask: (B,1,T,kv_len)
|
| 930 |
+
base = self.attn_mask[:, :, pos:pos+T, :] # (1,1,T,K)
|
| 931 |
+
mask = base.expand(B, -1, -1, -1).contiguous() # (B,1,T,K)
|
| 932 |
|
| 933 |
+
# IMPORTANT: for prefill pass a 1-D vector of length T (matches upstream)
|
| 934 |
+
pos_ids = torch.arange(pos, pos + T, device=self.device, dtype=torch.long) # (T,)
|
| 935 |
+
hidden_BTC = self._prefill(prompt_emb, mask, pos_ids, lora) # (B,T,C)
|
| 936 |
logits_BTV = lm_head(hidden_BTC, self.text)
|
| 937 |
|
| 938 |
+
idx = (torch.tensor(lens, device=self.device) - 1).clamp_min(0)
|
| 939 |
last_hidden = hidden_BTC[torch.arange(B, device=self.device), idx][:, None, :] # (B,1,C)
|
| 940 |
last_logits = logits_BTV[torch.arange(B, device=self.device), idx] # (B,V)
|
| 941 |
|
| 942 |
if temperature == 0.0:
|
| 943 |
+
next_token = last_logits.argmax(dim=-1, keepdim=True) # (B,1)
|
| 944 |
else:
|
| 945 |
probs = torch.softmax(last_logits / temperature, dim=-1)
|
| 946 |
probs = self._apply_top_p(probs, top_p)
|
| 947 |
+
next_token = torch.multinomial(probs, num_samples=1) # (B,1)
|
| 948 |
|
| 949 |
+
# shared scalar end position
|
| 950 |
return last_hidden, next_token, int(pos + T)
|
| 951 |
|
| 952 |
|
| 953 |
+
|
| 954 |
def _generate_points_batched(
|
| 955 |
self,
|
| 956 |
hidden, # (B,1,C)
|
| 957 |
+
next_token, # (B,1) (ignored in greedy)
|
| 958 |
+
pos, # int
|
| 959 |
include_size: bool = True,
|
| 960 |
max_objects: int = 50,
|
| 961 |
lora=None,
|
| 962 |
+
use_soft_argmax: bool = False, # default OFF to match upstream numerics
|
| 963 |
):
|
| 964 |
B = hidden.size(0)
|
| 965 |
device = self.device
|
|
|
|
| 967 |
eos_id = self.config.tokenizer.eos_id
|
| 968 |
max_ctx = self.config.text.max_context
|
| 969 |
|
| 970 |
+
# 4-D mask: (B,1,1,kv_len)
|
| 971 |
mask = torch.zeros(B, 1, 1, max_ctx, device=device, dtype=torch.bool)
|
| 972 |
if pos > 0:
|
| 973 |
mask[:, :, :, :pos] = True
|
| 974 |
+
|
| 975 |
+
# rotary & KV path are happiest with a 1-D scalar position vector (like upstream)
|
| 976 |
+
pos_id_vec = torch.tensor([pos], device=device, dtype=torch.long) # (1,)
|
| 977 |
|
| 978 |
alive = torch.ones(B, dtype=torch.bool, device=device)
|
| 979 |
counts = torch.zeros(B, dtype=torch.int32, device=device)
|
| 980 |
|
| 981 |
+
def _center01(logits_2d):
|
| 982 |
# logits_2d: (B, bins)
|
| 983 |
+
if logits_2d.dim() == 3: # (B,1,bins) -> (B,bins)
|
| 984 |
+
logits_2d = logits_2d.squeeze(1)
|
| 985 |
+
bins = logits_2d.size(-1)
|
| 986 |
if use_soft_argmax:
|
| 987 |
+
p = torch.softmax(logits_2d, dim=-1)
|
| 988 |
+
idx = (p * torch.arange(bins, device=logits_2d.device, dtype=torch.float32)).sum(dim=-1)
|
| 989 |
+
return idx / float(bins) # match upstream scale
|
| 990 |
+
else:
|
| 991 |
+
return logits_2d.argmax(dim=-1).to(torch.float32) / float(bins)
|
|
|
|
| 992 |
|
| 993 |
with torch.inference_mode():
|
| 994 |
while alive.any() and (counts < max_objects).any():
|
| 995 |
+
# --- x ---
|
| 996 |
+
x_logits = decode_coordinate(hidden, self.region) # (B,1,1024) or (B,1024)
|
| 997 |
+
x_center = _center01(x_logits) # (B,) in [0,1]
|
| 998 |
+
x_emb = encode_coordinate(x_center.to(x_logits.dtype).unsqueeze(-1), self.region).unsqueeze(1) # (B,1,C)
|
| 999 |
+
|
|
|
|
| 1000 |
mask[alive, :, :, pos] = True
|
| 1001 |
+
_, hidden = self._decode_one_tok(x_emb, mask, pos_id_vec, lora)
|
| 1002 |
+
pos += 1
|
| 1003 |
+
pos_id_vec[0] = pos
|
| 1004 |
|
| 1005 |
+
# --- y ---
|
| 1006 |
y_logits = decode_coordinate(hidden, self.region)
|
| 1007 |
+
y_center = _center01(y_logits)
|
| 1008 |
+
y_emb = encode_coordinate(y_center.to(y_logits.dtype).unsqueeze(-1), self.region).unsqueeze(1)
|
| 1009 |
+
|
| 1010 |
+
mask[alive, :, :, pos] = True
|
| 1011 |
+
_, hidden = self._decode_one_tok(y_emb, mask, pos_id_vec, lora)
|
| 1012 |
+
pos += 1
|
| 1013 |
+
pos_id_vec[0] = pos
|
| 1014 |
+
|
| 1015 |
+
if include_size:
|
| 1016 |
+
# --- size ---
|
| 1017 |
+
size_ret = decode_size(hidden, self.region)
|
| 1018 |
+
# Works for tuple or stacked tensor
|
| 1019 |
+
if isinstance(size_ret, (tuple, list)):
|
| 1020 |
+
w_logits, h_logits = size_ret
|
| 1021 |
+
else:
|
| 1022 |
+
# expected shapes: (B,2,1024) or (B,1,2,1024)
|
| 1023 |
+
if size_ret.dim() == 3: # (B,2,1024)
|
| 1024 |
+
w_logits, h_logits = size_ret[:, 0], size_ret[:, 1]
|
| 1025 |
+
else: # (B,1,2,1024)
|
| 1026 |
+
w_logits, h_logits = size_ret[:, 0, 0], size_ret[:, 0, 1]
|
| 1027 |
+
if w_logits.dim() == 3: w_logits = w_logits.squeeze(1)
|
| 1028 |
+
if h_logits.dim() == 3: h_logits = h_logits.squeeze(1)
|
| 1029 |
+
|
| 1030 |
+
# bins -> size via the same inverse log2 scale as upstream
|
| 1031 |
+
w_bin = w_logits.argmax(dim=-1).to(torch.float32)
|
| 1032 |
+
h_bin = h_logits.argmax(dim=-1).to(torch.float32)
|
| 1033 |
+
w = torch.pow(2.0, (w_bin / 1023.0) * 10.0 - 10.0)
|
| 1034 |
+
h = torch.pow(2.0, (h_bin / 1023.0) * 10.0 - 10.0)
|
| 1035 |
+
|
| 1036 |
+
size_emb = encode_size(torch.stack([w, h], dim=1).to(w_logits.dtype), self.region).unsqueeze(1)
|
| 1037 |
+
|
| 1038 |
+
# record boxes (clamped)
|
| 1039 |
+
for i in range(B):
|
| 1040 |
+
if not alive[i]:
|
| 1041 |
+
continue
|
| 1042 |
+
xl = (x_center[i] - w[i] / 2).item()
|
| 1043 |
+
xr = (x_center[i] + w[i] / 2).item()
|
| 1044 |
+
yt = (y_center[i] - h[i] / 2).item()
|
| 1045 |
+
yb = (y_center[i] + h[i] / 2).item()
|
| 1046 |
+
out[i].append({
|
| 1047 |
+
"x_min": max(0.0, min(1.0, xl)),
|
| 1048 |
+
"y_min": max(0.0, min(1.0, yt)),
|
| 1049 |
+
"x_max": max(0.0, min(1.0, xr)),
|
| 1050 |
+
"y_max": max(0.0, min(1.0, yb)),
|
| 1051 |
+
})
|
| 1052 |
+
|
| 1053 |
+
mask[alive, :, :, pos] = True
|
| 1054 |
+
logits, hidden = self._decode_one_tok(size_emb, mask, pos_id_vec, lora)
|
| 1055 |
+
pos += 1
|
| 1056 |
+
pos_id_vec[0] = pos
|
| 1057 |
+
next_tok = logits.argmax(dim=-1).squeeze(-1) # (B,)
|
| 1058 |
+
else:
|
| 1059 |
+
for i in range(B):
|
| 1060 |
+
if alive[i]:
|
| 1061 |
+
out[i].append({"x": x_center[i].item(), "y": y_center[i].item()})
|
| 1062 |
+
mask[alive, :, :, pos] = True
|
| 1063 |
+
logits, hidden = self._decode_one_tok(y_emb, mask, pos_id_vec, lora)
|
| 1064 |
+
pos += 1
|
| 1065 |
+
pos_id_vec[0] = pos
|
| 1066 |
+
next_tok = logits.argmax(dim=-1).squeeze(-1)
|
| 1067 |
+
|
| 1068 |
+
finished_now = (next_tok == eos_id) | (counts >= max_objects - 1)
|
| 1069 |
+
counts = counts + ((~finished_now) & alive).to(counts.dtype)
|
| 1070 |
+
alive &= ~finished_now
|
| 1071 |
+
|
| 1072 |
+
return out
|
| 1073 |
+
|
| 1074 |
|
| 1075 |
|
| 1076 |
|
|
|
|
| 1080 |
raise NotImplementedError("Model does not support object detection.")
|
| 1081 |
settings = settings or {}
|
| 1082 |
|
| 1083 |
+
enc = self.encode_image(image, settings)
|
|
|
|
| 1084 |
B = len(objects)
|
| 1085 |
+
self._load_encoded_image_batched(enc, B)
|
| 1086 |
|
| 1087 |
+
lora = variant_state_dict(settings["variant"], device=self.device) if "variant" in settings else None
|
|
|
|
|
|
|
| 1088 |
|
| 1089 |
last_hidden, next_token, pos_end = self._prefill_prompt_batched(
|
| 1090 |
+
objects, enc.pos, lora=lora, temperature=0.0, top_p=0.0
|
| 1091 |
)
|
| 1092 |
|
|
|
|
| 1093 |
det_lists = self._generate_points_batched(
|
| 1094 |
last_hidden, next_token, pos_end,
|
| 1095 |
+
include_size=True,
|
| 1096 |
+
max_objects=settings.get("max_objects", 50),
|
| 1097 |
+
lora=lora,
|
| 1098 |
)
|
| 1099 |
|
|
|
|
| 1100 |
res = {}
|
| 1101 |
for lab, lst in zip(objects, det_lists):
|
| 1102 |
for d in lst:
|
| 1103 |
d["label"] = lab
|
| 1104 |
res[lab] = lst
|
| 1105 |
|
| 1106 |
+
# make subsequent single-image calls stable
|
| 1107 |
self._reset_kv_caches(1)
|
| 1108 |
return {"objects": res}
|
| 1109 |
|
| 1110 |
|
| 1111 |
|
| 1112 |
+
|
| 1113 |
+
|
| 1114 |
def _detect_gaze(
|
| 1115 |
self,
|
| 1116 |
image: EncodedImage,
|