from utils import calculate_metrics, get_classes, CLASSES from sklearn.ensemble import RandomForestRegressor from sklearn.utils import shuffle from typing import List, Tuple from sklearn import metrics from tqdm import tqdm import pandas as pd import numpy as np import joblib import pywt import fire import json import os TRAIN_SIZE = 1732 TEST_SIZE = 1154 TRAIN_DIR = "train_data_simulated/" TEST_DIR = "test_data_simulated/" def load_data() -> Tuple[List, pd.DataFrame, List, pd.DataFrame]: X_train = [os.path.join(TRAIN_DIR, f"{i}.npz") for i in range(TRAIN_SIZE)] X_test = [os.path.join(TEST_DIR, f"{i}.npz") for i in range(TEST_SIZE)] y_train = pd.read_csv("train_gt.csv") y_test = pd.read_csv("test_gt.csv") return X_train, y_train, X_test, y_test class SpectralCurveFiltering: def __init__(self, merge_function=np.mean): self.merge_function = merge_function def __call__(self, sample: np.ndarray) -> np.ndarray: return self.merge_function(sample, axis=(1, 2)) class BaselineRegressor: def __init__(self): self.mean = 0 def fit(self, X_train: np.ndarray, y_train: np.ndarray): self.mean = np.mean(y_train, axis=0) self.classes_count = y_train.shape[1] return self def predict(self, X_test: np.ndarray) -> np.ndarray: return np.full((len(X_test), self.classes_count), self.mean) def preprocess(samples_lst: List[str], features: List[str]) -> Tuple: def _shape_pad(data: np.ndarray) -> np.ndarray: """ This sub-function makes padding to have square fields sizes. Not mandatory but eliminates the risk of calculation error in singular value decomposition. Padding by warping also improves the performance slightly. """ max_edge = np.max(data.shape[1:]) shape = (max_edge, max_edge) padded = np.pad( data, ((0, 0), (0, (shape[0] - data.shape[1])), (0, (shape[1] - data.shape[2]))), "wrap", ) return padded filtering = SpectralCurveFiltering() w1 = pywt.Wavelet("sym3") w2 = pywt.Wavelet("dmey") all_feature_names = [] for sample_index, sample_path in tqdm( enumerate(samples_lst), total=len(samples_lst) ): with np.load(sample_path) as npz: data = np.ma.MaskedArray(**npz) data = _shape_pad(data) # Get the spatial features: s = np.linalg.svd(data, full_matrices=False, compute_uv=False) s0 = s[:, 0] s1 = s[:, 1] s2 = s[:, 2] s3 = s[:, 3] s4 = s[:, 4] dXds1 = s0 / (s1 + np.finfo(float).eps) ffts = np.fft.fft(s0) reals = np.real(ffts) imags = np.imag(ffts) # Get the specific spectral features: data = filtering(data) cA0, cD0 = pywt.dwt(data, wavelet=w2, mode="constant") cAx, cDx = pywt.dwt(cA0[12:92], wavelet=w2, mode="constant") cAy, cDy = pywt.dwt(cAx[15:55], wavelet=w2, mode="constant") cAz, cDz = pywt.dwt(cAy[15:35], wavelet=w2, mode="constant") cAw2 = np.concatenate((cA0[12:92], cAx[15:55], cAy[15:35], cAz[15:25]), -1) cDw2 = np.concatenate((cD0[12:92], cDx[15:55], cDy[15:35], cDz[15:25]), -1) cA0, cD0 = pywt.dwt(data, wavelet=w1, mode="constant") cAx, cDx = pywt.dwt(cA0[1:-1], wavelet=w1, mode="constant") cAy, cDy = pywt.dwt(cAx[1:-1], wavelet=w1, mode="constant") cAz, cDz = pywt.dwt(cAy[1:-1], wavelet=w1, mode="constant") cAw1 = np.concatenate((cA0, cAx, cAy, cAz), -1) cDw1 = np.concatenate((cD0, cDx, cDy, cDz), -1) dXdl = np.gradient(data, axis=0) d2Xdl2 = np.gradient(dXdl, axis=0) d3Xdl3 = np.gradient(d2Xdl2, axis=0) fft = np.fft.fft(data) real = np.real(fft) imag = np.imag(fft) features_to_select = { "spatial": (dXds1, s0, s1, s2, s3, s4, reals, imags), "fft": (real, imag), "gradient": (dXdl, d2Xdl2, d3Xdl3), "mean": (data,), "dwt": (cAw1, cAw2), } # The best Feature combination for Random Forest based regression: sample_features = [] sample_feature_names = [] for feature_name in features: sample_features.extend(features_to_select[feature_name]) sample_feature_names.extend( [feature_name] * len(np.concatenate(features_to_select[feature_name])) ) sample_features = np.concatenate(sample_features, -1) samples_lst[sample_index] = sample_features all_feature_names.append(sample_feature_names) return np.vstack(samples_lst), all_feature_names def runner(features: List[str] = "spatial,fft,dwt,gradient,mean".split(",")): X_train, y_train, X_test, y_test = load_data() X_train, train_feature_names = preprocess(X_train, features) X_test, test_feature_names = preprocess(X_test, features) X_train, y_train = shuffle(X_train, y_train, random_state=2023) model = RandomForestRegressor(random_state=2023) print(f"Training model on {X_train.shape} features...") model = model.fit(X_train, y_train[CLASSES].values) joblib.dump(model, f"RF_model_{'-'.join(features)}.joblib") submission_df = pd.DataFrame(data=model.predict(X_test), columns=CLASSES) submission_df.to_csv(",".join(features) + ".csv", index_label="sample_index") baseline_reg = BaselineRegressor() baseline_reg = baseline_reg.fit(X_train, y_train[CLASSES].values) baselines_mse = np.mean( (y_test[CLASSES].values - baseline_reg.predict(X_test)) ** 2, axis=0 ) mse = np.mean((y_test[CLASSES].values - submission_df[CLASSES].values) ** 2, axis=0) scores = mse / baselines_mse final_score = np.mean(scores) r2 = metrics.r2_score( y_true=y_test[CLASSES].values, y_pred=submission_df[CLASSES].values, multioutput="raw_values", ) mse = metrics.mean_squared_error( y_true=y_test[CLASSES].values, y_pred=submission_df[CLASSES].values, multioutput="raw_values", ) mae = metrics.mean_absolute_error( y_true=y_test[CLASSES].values, y_pred=submission_df[CLASSES].values, multioutput="raw_values", ) all_metrics = calculate_metrics( y_pred=get_classes(submission_df[CLASSES]), y_true=get_classes(y_test[CLASSES]), ) mse = {k + "_mse": v for k, v in zip(["P", "K", "Mg", "pH"], mse.tolist())} r2 = {k + "_r2": v for k, v in zip(["P", "K", "Mg", "pH"], r2.tolist())} mae = {k + "_mae": v for k, v in zip(["P", "K", "Mg", "pH"], mae.tolist())} all_metrics["custom"] = final_score all_metrics = pd.DataFrame.from_dict({**all_metrics, **r2, **mse, **mae}) all_metrics.to_csv(f"all_metrics.csv", index=False) with open("all_metrics.json", "w", encoding="utf-8") as f: json.dump(all_metrics.to_dict(), f, ensure_ascii=True, indent=4) print(f"Custom score: {final_score}") return final_score if __name__ == "__main__": fire.Fire(runner) model = joblib.load( f"RF_model_{'-'.join('spatial,fft,dwt,gradient,mean'.split(','))}.joblib" ) import sklearn assert isinstance(model, sklearn.ensemble._forest.RandomForestRegressor)