Update pintar.py
Browse files
pintar.py
CHANGED
|
@@ -1,12 +1,13 @@
|
|
| 1 |
import os
|
| 2 |
import numpy as np
|
| 3 |
from skimage import color, io
|
|
|
|
| 4 |
import torch
|
| 5 |
import torch.nn.functional as F
|
|
|
|
| 6 |
from PIL import Image
|
| 7 |
from models import ColorEncoder, ColorUNet
|
| 8 |
from extractor.manga_panel_extractor import PanelExtractor
|
| 9 |
-
import argparse
|
| 10 |
|
| 11 |
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
|
| 12 |
|
|
@@ -20,7 +21,7 @@ def Lab2RGB_out(img_lab):
|
|
| 20 |
img_ab = img_lab[:,1:,:,:]
|
| 21 |
img_l = img_l + 50
|
| 22 |
pred_lab = torch.cat((img_l, img_ab), 1)[0,...].numpy()
|
| 23 |
-
out = (np.clip(color.lab2rgb(pred_lab.transpose(1, 2, 0)), 0, 1)
|
| 24 |
return out
|
| 25 |
|
| 26 |
def RGB2Lab(inputs):
|
|
@@ -49,16 +50,16 @@ def preprocessing(inputs):
|
|
| 49 |
return img.unsqueeze(0), img_lab.unsqueeze(0)
|
| 50 |
|
| 51 |
if __name__ == "__main__":
|
| 52 |
-
parser = argparse.ArgumentParser(description="Colorize manga images.")
|
| 53 |
-
parser.add_argument("-i", "--input_folder", type=str, required=True, help="Path to the input folder containing manga images.")
|
| 54 |
-
parser.add_argument("-ckpt", "--model_checkpoint", type=str, required=True, help="Path to the model checkpoint file.")
|
| 55 |
-
parser.add_argument("-o", "--output_folder", type=str, required=True, help="Path to the output folder where colorized images will be saved.")
|
| 56 |
-
parser.add_argument("-ne", "--no_extractor", action="store_true", help="Do not segment the manga panels.")
|
| 57 |
-
args = parser.parse_args()
|
| 58 |
-
|
| 59 |
device = "cuda"
|
| 60 |
|
| 61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
colorEncoder = ColorEncoder().to(device)
|
| 64 |
colorEncoder.load_state_dict(ckpt["colorEncoder"])
|
|
@@ -68,82 +69,32 @@ if __name__ == "__main__":
|
|
| 68 |
colorUNet.load_state_dict(ckpt["colorUNet"])
|
| 69 |
colorUNet.eval()
|
| 70 |
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
if os.path.isfile(input_path):
|
| 77 |
-
if args.no_extractor:
|
| 78 |
-
ref_img_path = input("Please enter the path of the reference image: ")
|
| 79 |
-
|
| 80 |
-
img1 = Image.open(ref_img_path).convert("RGB")
|
| 81 |
-
width, height = img1.size
|
| 82 |
-
img2 = Image.open(input_path).convert("RGB")
|
| 83 |
-
|
| 84 |
-
img1, img1_lab = preprocessing(img1)
|
| 85 |
-
img2, img2_lab = preprocessing(img2)
|
| 86 |
-
|
| 87 |
-
img1 = img1.to(device)
|
| 88 |
-
img1_lab = img1_lab.to(device)
|
| 89 |
-
img2 = img2.to(device)
|
| 90 |
-
img2_lab = img2_lab.to(device)
|
| 91 |
-
|
| 92 |
-
with torch.no_grad():
|
| 93 |
-
img2_resize = F.interpolate(img2 / 255., size=(256, 256), mode='bilinear', recompute_scale_factor=False, align_corners=False)
|
| 94 |
-
img1_L_resize = F.interpolate(img1_lab[:, :1, :, :] / 50., size=(256, 256), mode='bilinear', recompute_scale_factor=False, align_corners=False)
|
| 95 |
-
|
| 96 |
-
color_vector = colorEncoder(img2_resize)
|
| 97 |
-
fake_ab = colorUNet((img1_L_resize, color_vector))
|
| 98 |
-
fake_ab = F.interpolate(fake_ab * 110, size=(height, width), mode='bilinear', recompute_scale_factor=False, align_corners=False)
|
| 99 |
-
|
| 100 |
-
fake_img = torch.cat((img1_lab[:, :1, :, :], fake_ab), 1)
|
| 101 |
-
fake_img = Lab2RGB_out(fake_img)
|
| 102 |
-
|
| 103 |
-
out_folder = os.path.join(args.output_folder, 'color')
|
| 104 |
-
mkdirs(out_folder)
|
| 105 |
-
out_img_path = os.path.join(out_folder, f'{os.path.splitext(input_file)[0]}_color.png')
|
| 106 |
-
io.imsave(out_img_path, fake_img)
|
| 107 |
-
|
| 108 |
-
else:
|
| 109 |
-
panel_extractor = PanelExtractor(min_pct_panel=5, max_pct_panel=90) # You might need to adjust these parameters
|
| 110 |
-
panels, masks, panel_masks = panel_extractor.extract(input_path)
|
| 111 |
-
|
| 112 |
-
ref_img_paths = []
|
| 113 |
-
print("Please enter the name of the reference image in order according to the number prompts on the picture")
|
| 114 |
-
for i in range(len(panels)):
|
| 115 |
-
ref_img_path = input(f"{i+1}/{len(panels)} reference image:")
|
| 116 |
-
ref_img_paths.append(ref_img_path)
|
| 117 |
-
|
| 118 |
-
fake_imgs = []
|
| 119 |
-
for i in range(len(panels)):
|
| 120 |
-
img1 = Image.fromarray(panels[i]).convert("RGB")
|
| 121 |
-
width, height = img1.size
|
| 122 |
-
img2 = Image.open(ref_img_paths[i]).convert("RGB")
|
| 123 |
-
|
| 124 |
-
img1, img1_lab = preprocessing(img1)
|
| 125 |
-
img2, img2_lab = preprocessing(img2)
|
| 126 |
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
|
| 136 |
-
|
| 137 |
|
| 138 |
-
|
| 139 |
-
|
| 140 |
|
| 141 |
-
|
| 142 |
-
|
| 143 |
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
|
| 149 |
-
print(f'Colored
|
|
|
|
| 1 |
import os
|
| 2 |
import numpy as np
|
| 3 |
from skimage import color, io
|
| 4 |
+
|
| 5 |
import torch
|
| 6 |
import torch.nn.functional as F
|
| 7 |
+
|
| 8 |
from PIL import Image
|
| 9 |
from models import ColorEncoder, ColorUNet
|
| 10 |
from extractor.manga_panel_extractor import PanelExtractor
|
|
|
|
| 11 |
|
| 12 |
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
|
| 13 |
|
|
|
|
| 21 |
img_ab = img_lab[:,1:,:,:]
|
| 22 |
img_l = img_l + 50
|
| 23 |
pred_lab = torch.cat((img_l, img_ab), 1)[0,...].numpy()
|
| 24 |
+
out = (np.clip(color.lab2rgb(pred_lab.transpose(1, 2, 0)), 0, 1)* 255).astype("uint8")
|
| 25 |
return out
|
| 26 |
|
| 27 |
def RGB2Lab(inputs):
|
|
|
|
| 50 |
return img.unsqueeze(0), img_lab.unsqueeze(0)
|
| 51 |
|
| 52 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
device = "cuda"
|
| 54 |
|
| 55 |
+
# Specify the paths here
|
| 56 |
+
img_path = 'path/to/your/input/image.jpg'
|
| 57 |
+
ckpt_path = 'path/to/your/model_checkpoint.pt'
|
| 58 |
+
reference_image_path = 'path/to/your/reference/image.jpg'
|
| 59 |
+
|
| 60 |
+
imgsize = 256
|
| 61 |
+
|
| 62 |
+
ckpt = torch.load(ckpt_path, map_location=lambda storage, loc: storage)
|
| 63 |
|
| 64 |
colorEncoder = ColorEncoder().to(device)
|
| 65 |
colorEncoder.load_state_dict(ckpt["colorEncoder"])
|
|
|
|
| 69 |
colorUNet.load_state_dict(ckpt["colorUNet"])
|
| 70 |
colorUNet.eval()
|
| 71 |
|
| 72 |
+
img_name = os.path.splitext(os.path.basename(img_path))[0]
|
| 73 |
+
img1 = Image.open(img_path).convert("RGB")
|
| 74 |
+
width, height = img1.size
|
| 75 |
+
img1, img1_lab = preprocessing(img1)
|
| 76 |
+
img2, img2_lab = preprocessing(Image.open(reference_image_path).convert("RGB"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
+
img1 = img1.to(device)
|
| 79 |
+
img1_lab = img1_lab.to(device)
|
| 80 |
+
img2 = img2.to(device)
|
| 81 |
+
img2_lab = img2_lab.to(device)
|
| 82 |
|
| 83 |
+
with torch.no_grad():
|
| 84 |
+
img2_resize = F.interpolate(img2 / 255., size=(imgsize, imgsize), mode='bilinear', recompute_scale_factor=False, align_corners=False)
|
| 85 |
+
img1_L_resize = F.interpolate(img1_lab[:,:1,:,:] / 50., size=(imgsize, imgsize), mode='bilinear', recompute_scale_factor=False, align_corners=False)
|
| 86 |
|
| 87 |
+
color_vector = colorEncoder(img2_resize)
|
| 88 |
|
| 89 |
+
fake_ab = colorUNet((img1_L_resize, color_vector))
|
| 90 |
+
fake_ab = F.interpolate(fake_ab*110, size=(height, width), mode='bilinear', recompute_scale_factor=False, align_corners=False)
|
| 91 |
|
| 92 |
+
fake_img = torch.cat((img1_lab[:,:1,:,:], fake_ab), 1)
|
| 93 |
+
fake_img = Lab2RGB_out(fake_img)
|
| 94 |
|
| 95 |
+
out_folder = os.path.dirname(img_path)
|
| 96 |
+
mkdirs(out_folder)
|
| 97 |
+
out_img_path = os.path.join(out_folder, f'{img_name}_color.png')
|
| 98 |
+
io.imsave(out_img_path, fake_img)
|
| 99 |
|
| 100 |
+
print(f'Colored image has been saved to {out_img_path}.')
|