|
|
import torch
|
|
|
from PIL import Image
|
|
|
import torchvision.transforms as T
|
|
|
import os
|
|
|
from typing import Union, List, Tuple
|
|
|
import numpy as np
|
|
|
|
|
|
from .utils.benchmark import benchmark
|
|
|
|
|
|
|
|
|
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
print(f"Using device: {device}")
|
|
|
if device.type == 'cuda':
|
|
|
print(f"CUDA Device Name: {torch.cuda.get_device_name(torch.cuda.current_device())}")
|
|
|
|
|
|
def cityscape_benchmark(
|
|
|
model: torch.nn.Module,
|
|
|
image_path: str,
|
|
|
batch_size: Union[int, List[int]] = 1,
|
|
|
image_size: Union[Tuple[int], List[Tuple[int]]] = (3, 1024, 1024),
|
|
|
save_output: bool = True,
|
|
|
|
|
|
):
|
|
|
"""
|
|
|
Calculate the FPS of a given model using an actual Cityscapes image.
|
|
|
|
|
|
Args:
|
|
|
model: instance of a model (e.g. SegFormer)
|
|
|
image_path: the path to the Cityscapes image
|
|
|
batch_size: the batch size(s) at which to calculate the FPS (e.g. 1 or [1, 2, 4])
|
|
|
image_size: the size of the images to use (e.g. (3, 1024, 1024))
|
|
|
save_output: whether to save the output prediction (default True)
|
|
|
|
|
|
Returns:
|
|
|
the FPS values calculated for all image sizes and batch sizes in the form of a dictionary
|
|
|
"""
|
|
|
|
|
|
|
|
|
if isinstance(batch_size, int):
|
|
|
batch_size = [batch_size]
|
|
|
if isinstance(image_size, tuple):
|
|
|
image_size = [image_size]
|
|
|
|
|
|
values = {}
|
|
|
throughput_values = []
|
|
|
|
|
|
model = model.to(device)
|
|
|
model.eval()
|
|
|
|
|
|
assert os.path.exists(image_path), f"Image not found: {image_path}"
|
|
|
image = Image.open(image_path).convert("RGB")
|
|
|
|
|
|
img_tensor = T.ToTensor()(image)
|
|
|
mean = img_tensor.mean(dim=(1, 2))
|
|
|
std = img_tensor.std(dim=(1, 2))
|
|
|
print(f"Calculated Mean: {mean}")
|
|
|
print(f"Calculated Std: {std}")
|
|
|
|
|
|
transform = T.Compose([
|
|
|
T.Resize((image_size[0][1], image_size[0][2])),
|
|
|
T.ToTensor(),
|
|
|
T.Normalize(mean=mean.tolist(),
|
|
|
std=std.tolist())
|
|
|
])
|
|
|
|
|
|
img_tensor = transform(image).unsqueeze(0).to(device)
|
|
|
|
|
|
for i in image_size:
|
|
|
|
|
|
fps = []
|
|
|
for b in batch_size:
|
|
|
for _ in range(4):
|
|
|
|
|
|
if i[1] >= 1024:
|
|
|
r = 16
|
|
|
else:
|
|
|
r = 32
|
|
|
baseline_throughput = benchmark(
|
|
|
model.to(device),
|
|
|
device=device,
|
|
|
verbose=True,
|
|
|
runs=r,
|
|
|
batch_size=b,
|
|
|
input_size=i
|
|
|
)
|
|
|
throughput_values.append(baseline_throughput)
|
|
|
throughput_values = np.asarray(throughput_values)
|
|
|
throughput = np.around(np.mean(throughput_values), decimals=2)
|
|
|
print('Im_size:', i, 'Batch_size:', b, 'Mean:', throughput, 'Std:',
|
|
|
np.around(np.std(throughput_values), decimals=2))
|
|
|
throughput_values = []
|
|
|
fps.append({b: throughput})
|
|
|
values[i] = fps
|
|
|
|
|
|
if save_output:
|
|
|
with torch.no_grad():
|
|
|
output = model(img_tensor)
|
|
|
pred = torch.argmax(output, dim=1).squeeze(0).cpu().numpy()
|
|
|
|
|
|
|
|
|
cwd = os.getcwd()
|
|
|
output_path = os.path.join(cwd, 'segformer_plusplus', 'cityscapes_prediction_output.txt')
|
|
|
np.savetxt(output_path, pred, fmt="%d")
|
|
|
|
|
|
print("Prediction saved as cityscapes_prediction_output.txt")
|
|
|
|
|
|
return values
|
|
|
|