Fyodor Family
Collection
A collection of Fyodor First Generation Model
•
5 items
•
Updated
Fine-tuned SmolLM3-3B with enhanced general knowledge, coding, math, tool calling, reasoning, and instruction-following capabilities.
This model was trained using LoRA (Low-Rank Adaptation) fine-tuning with the following configuration:
lora_r: 32
lora_alpha: 64
lora_dropout: 0.05
lora_target_modules: ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"]
The model was trained on a carefully balanced mix of high-quality datasets:
pip install transformers torch accelerate
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
# Load model and tokenizer
model = AutoModelForCausalLM.from_pretrained(
"Kiy-K/Fyodor-Mini-3B",
torch_dtype=torch.bfloat16,
trust_remote_code=True,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("Kiy-K/Fyodor-Mini-3B")
# Generate text
prompt = """### Instruction:
Write a Python function to calculate Fibonacci numbers using dynamic programming.
### Response:
"""
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=512,
temperature=0.7,
top_p=0.95,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
prompt = """### Instruction:
Create a Python class for a binary search tree with insert and search methods.
### Response:
"""
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=512, temperature=0.2)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
prompt = """You have access to the following functions:
[
{
"name": "get_weather",
"description": "Get current weather for a location",
"parameters": {
"location": {"type": "string", "description": "City name"}
}
}
]
User: What's the weather in Paris?
Assistant:"""
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=256, temperature=0.3)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
prompt = """Question: A train travels 120 km in 2 hours. What is its average speed in km/h?
Answer:"""
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=256, temperature=0.1)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
This model excels at:
For best results, use these generation settings based on your use case:
temperature=0.2
top_p=0.95
max_new_tokens=512
do_sample=True
temperature=0.8
top_p=0.95
max_new_tokens=1024
do_sample=True
temperature=0.1
top_p=0.9
max_new_tokens=512
do_sample=True
temperature=0.7
top_p=0.95
max_new_tokens=512
do_sample=True
Training metrics:
For questions, feedback, or issues, please:
If you use this model in your research or applications, please cite:
@misc{fyodor-mini-2025,
author = {Khoi},
title = {Fyodor SmolLM3-3B v2 Instruct},
year = {2025},
publisher = {HuggingFace},
url = {https://huggingface.co/Kiy-K/Fyodor-Mini-3B}
}
This model was trained with care and attention to quality. Always verify outputs for your specific use case.