Krishna Indukuri
commited on
Upload handler.py
Browse files- handler.py +155 -0
handler.py
ADDED
|
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
+
import torch
|
| 4 |
+
import base64
|
| 5 |
+
from io import BytesIO
|
| 6 |
+
from typing import List, Dict, Any, Union
|
| 7 |
+
from PIL import Image
|
| 8 |
+
from transformers import AutoProcessor
|
| 9 |
+
from custom_st import Transformer
|
| 10 |
+
|
| 11 |
+
class ModelHandler:
|
| 12 |
+
"""
|
| 13 |
+
Custom handler for the embedding model using the Transformer class from custom_st.py
|
| 14 |
+
"""
|
| 15 |
+
def __init__(self):
|
| 16 |
+
self.initialized = False
|
| 17 |
+
self.model = None
|
| 18 |
+
self.processor = None
|
| 19 |
+
self.device = None
|
| 20 |
+
self.default_task = "retrieval" # Default task, can be overridden in initialize
|
| 21 |
+
self.max_seq_length = 8192 # Default max sequence length
|
| 22 |
+
|
| 23 |
+
def initialize(self, context):
|
| 24 |
+
"""
|
| 25 |
+
Initialize model and processor
|
| 26 |
+
"""
|
| 27 |
+
self.initialized = True
|
| 28 |
+
|
| 29 |
+
# Get model directory
|
| 30 |
+
properties = context.system_properties
|
| 31 |
+
model_dir = properties.get("model_dir")
|
| 32 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 33 |
+
|
| 34 |
+
# Load config if exists
|
| 35 |
+
config_path = os.path.join(model_dir, "config.json")
|
| 36 |
+
if os.path.exists(config_path):
|
| 37 |
+
with open(config_path, 'r') as f:
|
| 38 |
+
config = json.load(f)
|
| 39 |
+
self.default_task = config.get("default_task", self.default_task)
|
| 40 |
+
self.max_seq_length = config.get("max_seq_length", self.max_seq_length)
|
| 41 |
+
|
| 42 |
+
# Initialize model
|
| 43 |
+
self.model = Transformer(
|
| 44 |
+
model_name_or_path=model_dir,
|
| 45 |
+
max_seq_length=self.max_seq_length,
|
| 46 |
+
model_args={"default_task": self.default_task}
|
| 47 |
+
)
|
| 48 |
+
self.model.model.to(self.device)
|
| 49 |
+
self.model.model.eval()
|
| 50 |
+
|
| 51 |
+
# Get processor from the model
|
| 52 |
+
self.processor = self.model.processor
|
| 53 |
+
|
| 54 |
+
def preprocess(self, data):
|
| 55 |
+
"""
|
| 56 |
+
Process input data for the model
|
| 57 |
+
"""
|
| 58 |
+
inputs = []
|
| 59 |
+
|
| 60 |
+
# Extract request body
|
| 61 |
+
for row in data:
|
| 62 |
+
body = row.get("body", {})
|
| 63 |
+
if isinstance(body, (bytes, bytearray)):
|
| 64 |
+
body = json.loads(body.decode('utf-8'))
|
| 65 |
+
elif isinstance(body, str):
|
| 66 |
+
body = json.loads(body)
|
| 67 |
+
|
| 68 |
+
# Handle different input formats
|
| 69 |
+
if "inputs" in body:
|
| 70 |
+
raw_inputs = body["inputs"]
|
| 71 |
+
if isinstance(raw_inputs, str):
|
| 72 |
+
inputs.append(raw_inputs)
|
| 73 |
+
elif isinstance(raw_inputs, list):
|
| 74 |
+
inputs.extend(raw_inputs)
|
| 75 |
+
elif "text" in body:
|
| 76 |
+
inputs.append(body["text"])
|
| 77 |
+
elif "image" in body:
|
| 78 |
+
# Handle base64 encoded images
|
| 79 |
+
image_data = body["image"]
|
| 80 |
+
if isinstance(image_data, str) and image_data.startswith("data:image"):
|
| 81 |
+
# Extract base64 data from data URL
|
| 82 |
+
image_data = image_data.split(",")[1]
|
| 83 |
+
image = Image.open(BytesIO(base64.b64decode(image_data))).convert("RGB")
|
| 84 |
+
inputs.append(image)
|
| 85 |
+
else:
|
| 86 |
+
inputs.append(image_data) # URL or file path
|
| 87 |
+
elif "inputs" not in body and not body:
|
| 88 |
+
# Empty request, return empty response
|
| 89 |
+
return []
|
| 90 |
+
|
| 91 |
+
# Use the model's tokenize method to process inputs
|
| 92 |
+
if inputs:
|
| 93 |
+
features = self.model.tokenize(inputs)
|
| 94 |
+
return features
|
| 95 |
+
|
| 96 |
+
return []
|
| 97 |
+
|
| 98 |
+
def inference(self, features):
|
| 99 |
+
"""
|
| 100 |
+
Run inference with the processed features
|
| 101 |
+
"""
|
| 102 |
+
if not features:
|
| 103 |
+
return {"embeddings": []}
|
| 104 |
+
|
| 105 |
+
# Move tensors to the device
|
| 106 |
+
for key, value in features.items():
|
| 107 |
+
if isinstance(value, torch.Tensor):
|
| 108 |
+
features[key] = value.to(self.device)
|
| 109 |
+
|
| 110 |
+
with torch.no_grad():
|
| 111 |
+
outputs = self.model.forward(features, task=self.default_task)
|
| 112 |
+
|
| 113 |
+
# Get the embeddings
|
| 114 |
+
embeddings = outputs.get("sentence_embedding", None)
|
| 115 |
+
|
| 116 |
+
if embeddings is not None:
|
| 117 |
+
# Convert to list for JSON serialization
|
| 118 |
+
return {"embeddings": embeddings.cpu().numpy().tolist()}
|
| 119 |
+
else:
|
| 120 |
+
return {"error": "No embeddings were generated"}
|
| 121 |
+
|
| 122 |
+
def postprocess(self, inference_output):
|
| 123 |
+
"""
|
| 124 |
+
Process model output for the response
|
| 125 |
+
"""
|
| 126 |
+
return [inference_output]
|
| 127 |
+
|
| 128 |
+
def handle(self, data, context):
|
| 129 |
+
"""
|
| 130 |
+
Main handler function
|
| 131 |
+
"""
|
| 132 |
+
if not self.initialized:
|
| 133 |
+
self.initialize(context)
|
| 134 |
+
|
| 135 |
+
if not data:
|
| 136 |
+
return {"embeddings": []}
|
| 137 |
+
|
| 138 |
+
try:
|
| 139 |
+
processed_data = self.preprocess(data)
|
| 140 |
+
if not processed_data:
|
| 141 |
+
return [{"embeddings": []}]
|
| 142 |
+
|
| 143 |
+
inference_result = self.inference(processed_data)
|
| 144 |
+
return self.postprocess(inference_result)
|
| 145 |
+
except Exception as e:
|
| 146 |
+
raise Exception(f"Error processing request: {str(e)}")
|
| 147 |
+
|
| 148 |
+
# Define the handler for torchserve
|
| 149 |
+
_service = ModelHandler()
|
| 150 |
+
|
| 151 |
+
def handle(data, context):
|
| 152 |
+
"""
|
| 153 |
+
Torchserve handler function
|
| 154 |
+
"""
|
| 155 |
+
return _service.handle(data, context)
|