File size: 1,290 Bytes
f2c62e2 c49cf82 f2c62e2 c49cf82 f2c62e2 4d6e43d f2c62e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
---
license: apache-2.0
base_model: google/gemma-2-12b-it
tags:
- verilog
- code-generation
- instruction-tuned
- vericoder
---
# Gemma-3-12B-IT (VeriCoder Dataset Ablation)
This is a fine-tuned version of Gemma-3-12B-IT model trained on VeriCoder dataset.
## Model Details
- **Base Model**: Gemma-3-12B-IT
- **Training Dataset**: VeriCoder dataset (126k samples)
- **Model Architecture**: Gemma3ForCausalLM
- **Parameters**: ~11.7B
- **Context Length**: 131,072 tokens
- **Sliding Window**: 1024
## Usage
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "LLM4Code/VeriCoder_Gemma12b"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Example usage
inputs = tokenizer("Your prompt here", return_tensors="pt")
outputs = model.generate(**inputs, max_length=512)
print(tokenizer.decode(outputs[0]))
```
## Training Details
- **Dataset**: VeriCoder dataset ablation (126k samples)
- **Commit**: ae17392c
## Files
The model includes:
- Model weights in SafeTensors format (5 shards)
- Tokenizer files (tokenizer.json, tokenizer.model, tokenizer_config.json)
- Model configuration (config.json)
- Generation configuration (generation_config.json)
- Chat template (chat_template.jinja)
|