--- license: apache-2.0 base_model: google/gemma-2-12b-it tags: - verilog - code-generation - instruction-tuned - vericoder --- # Gemma-3-12B-IT (VeriCoder Dataset Ablation) This is a fine-tuned version of Gemma-3-12B-IT model trained on VeriCoder dataset. ## Model Details - **Base Model**: Gemma-3-12B-IT - **Training Dataset**: VeriCoder dataset (126k samples) - **Model Architecture**: Gemma3ForCausalLM - **Parameters**: ~11.7B - **Context Length**: 131,072 tokens - **Sliding Window**: 1024 ## Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "LLM4Code/VeriCoder_Gemma12b" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) # Example usage inputs = tokenizer("Your prompt here", return_tensors="pt") outputs = model.generate(**inputs, max_length=512) print(tokenizer.decode(outputs[0])) ``` ## Training Details - **Dataset**: VeriCoder dataset ablation (126k samples) - **Commit**: ae17392c ## Files The model includes: - Model weights in SafeTensors format (5 shards) - Tokenizer files (tokenizer.json, tokenizer.model, tokenizer_config.json) - Model configuration (config.json) - Generation configuration (generation_config.json) - Chat template (chat_template.jinja)