File size: 10,951 Bytes
1206896 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
"""Image processor for Sybil CT scan preprocessing"""
import numpy as np
import torch
from typing import Dict, List, Optional, Union, Tuple
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
from transformers.utils import TensorType
import pydicom
from PIL import Image
import torchio as tio
def order_slices(dicoms: List) -> List:
"""Order DICOM slices by their position"""
# Sort by ImagePositionPatient if available
try:
dicoms = sorted(dicoms, key=lambda x: float(x.ImagePositionPatient[2]))
except (AttributeError, TypeError):
# Fall back to InstanceNumber if ImagePositionPatient not available
try:
dicoms = sorted(dicoms, key=lambda x: int(x.InstanceNumber))
except (AttributeError, TypeError):
pass # Keep original order if neither attribute is available
return dicoms
class SybilImageProcessor(BaseImageProcessor):
"""
Constructs a Sybil image processor for preprocessing CT scans.
Args:
voxel_spacing (`List[float]`, *optional*, defaults to `[0.703125, 0.703125, 2.5]`):
Target voxel spacing for resampling (row, column, slice thickness).
img_size (`List[int]`, *optional*, defaults to `[512, 512]`):
Target image size after resizing.
num_images (`int`, *optional*, defaults to `208`):
Number of slices to use from the CT scan.
windowing (`Dict[str, float]`, *optional*):
Windowing parameters for CT scan visualization.
Default uses lung window: center=-600, width=1500.
normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize pixel values to [0, 1].
**kwargs:
Additional keyword arguments passed to the parent class.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
voxel_spacing: List[float] = None,
img_size: List[int] = None,
num_images: int = 208,
windowing: Dict[str, float] = None,
normalize: bool = True,
**kwargs
):
super().__init__(**kwargs)
self.voxel_spacing = voxel_spacing if voxel_spacing is not None else [0.703125, 0.703125, 2.5]
self.img_size = img_size if img_size is not None else [512, 512]
self.num_images = num_images
# Default lung window settings
self.windowing = windowing if windowing is not None else {
"center": -600,
"width": 1500
}
self.normalize = normalize
# TorchIO transforms for standardization
self.resample_transform = tio.transforms.Resample(target=self.voxel_spacing)
# Note: Original Sybil uses 200 depth, 256x256 images
self.default_depth = 200
self.default_size = [256, 256]
self.padding_transform = tio.transforms.CropOrPad(
target_shape=(self.default_depth, *self.default_size),
padding_mode=0
)
def load_dicom_series(self, paths: List[str]) -> Tuple[np.ndarray, Dict]:
"""
Load a series of DICOM files.
Args:
paths: List of paths to DICOM files.
Returns:
Tuple of (volume array, metadata dict)
"""
dicoms = []
for path in paths:
try:
dcm = pydicom.dcmread(path, stop_before_pixels=False)
dicoms.append(dcm)
except Exception as e:
print(f"Error reading DICOM file {path}: {e}")
continue
if not dicoms:
raise ValueError("No valid DICOM files found")
# Order slices by position
dicoms = order_slices(dicoms)
# Extract pixel arrays
volume = np.stack([dcm.pixel_array.astype(np.float32) for dcm in dicoms])
# Extract metadata
metadata = {
"slice_thickness": float(dicoms[0].SliceThickness) if hasattr(dicoms[0], 'SliceThickness') else None,
"pixel_spacing": list(map(float, dicoms[0].PixelSpacing)) if hasattr(dicoms[0], 'PixelSpacing') else None,
"manufacturer": str(dicoms[0].Manufacturer) if hasattr(dicoms[0], 'Manufacturer') else None,
"num_slices": len(dicoms)
}
# Apply rescale if present
if hasattr(dicoms[0], 'RescaleSlope') and hasattr(dicoms[0], 'RescaleIntercept'):
slope = float(dicoms[0].RescaleSlope)
intercept = float(dicoms[0].RescaleIntercept)
volume = volume * slope + intercept
return volume, metadata
def load_png_series(self, paths: List[str]) -> np.ndarray:
"""
Load a series of PNG files.
Args:
paths: List of paths to PNG files (must be in anatomical order).
Returns:
3D volume array
"""
images = []
for path in paths:
img = Image.open(path).convert('L') # Convert to grayscale
images.append(np.array(img, dtype=np.float32))
return np.stack(images)
def apply_windowing(self, volume: np.ndarray) -> np.ndarray:
"""
Apply windowing to CT scan for better visualization.
Args:
volume: 3D CT volume.
Returns:
Windowed volume.
"""
center = self.windowing["center"]
width = self.windowing["width"]
# Calculate window boundaries
lower = center - width / 2
upper = center + width / 2
# Apply windowing
volume = np.clip(volume, lower, upper)
# Normalize to [0, 1] if requested
if self.normalize:
volume = (volume - lower) / (upper - lower)
return volume
def resample_volume(
self,
volume: torch.Tensor,
original_spacing: Optional[List[float]] = None
) -> torch.Tensor:
"""
Resample volume to target voxel spacing.
Args:
volume: 3D volume tensor.
original_spacing: Original voxel spacing.
Returns:
Resampled volume.
"""
# Create TorchIO subject
subject = tio.Subject(
image=tio.ScalarImage(tensor=volume.unsqueeze(0), spacing=original_spacing)
)
# Apply resampling
resampled = self.resample_transform(subject)
return resampled['image'].data.squeeze(0)
def pad_or_crop_volume(self, volume: torch.Tensor) -> torch.Tensor:
"""
Pad or crop volume to target shape.
Args:
volume: 3D volume tensor.
Returns:
Padded/cropped volume.
"""
# Create TorchIO subject
subject = tio.Subject(
image=tio.ScalarImage(tensor=volume.unsqueeze(0))
)
# Apply padding/cropping
transformed = self.padding_transform(subject)
return transformed['image'].data.squeeze(0)
def preprocess(
self,
images: Union[List[str], np.ndarray, torch.Tensor],
file_type: str = "dicom",
voxel_spacing: Optional[List[float]] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
**kwargs
) -> BatchFeature:
"""
Preprocess CT scan images.
Args:
images: Either list of file paths or numpy/torch array of images.
file_type: Type of input files ("dicom" or "png").
voxel_spacing: Original voxel spacing (required for PNG files).
return_tensors: The type of tensors to return.
Returns:
BatchFeature with preprocessed images.
"""
# Load images if paths are provided
if isinstance(images, list) and isinstance(images[0], str):
if file_type == "dicom":
volume, metadata = self.load_dicom_series(images)
if voxel_spacing is None and metadata["pixel_spacing"]:
voxel_spacing = metadata["pixel_spacing"] + [metadata["slice_thickness"]]
elif file_type == "png":
if voxel_spacing is None:
raise ValueError("voxel_spacing must be provided for PNG files")
volume = self.load_png_series(images)
else:
raise ValueError(f"Unknown file type: {file_type}")
elif isinstance(images, (np.ndarray, torch.Tensor)):
volume = images
else:
raise ValueError("Images must be file paths, numpy array, or torch tensor")
# Convert to torch tensor
if isinstance(volume, np.ndarray):
volume = torch.from_numpy(volume).float()
# Apply windowing
if isinstance(volume, torch.Tensor):
volume_np = volume.numpy()
else:
volume_np = volume
volume_np = self.apply_windowing(volume_np)
volume = torch.from_numpy(volume_np).float()
# Resample if spacing is provided
if voxel_spacing is not None:
volume = self.resample_volume(volume, voxel_spacing)
# Pad or crop to target shape
volume = self.pad_or_crop_volume(volume)
# Reshape to match original Sybil format: (D, H, W) -> (C, D, H, W)
# The model expects 3 channels (RGB format), so repeat grayscale to 3 channels
volume = volume.unsqueeze(0).repeat(3, 1, 1, 1) # Now (3, D, H, W)
# Prepare output
data = {"pixel_values": volume}
# Convert to requested tensor type
if return_tensors == "pt":
return BatchFeature(data=data, tensor_type=TensorType.PYTORCH)
elif return_tensors == "np":
data = {k: v.numpy() for k, v in data.items()}
return BatchFeature(data=data, tensor_type=TensorType.NUMPY)
else:
return BatchFeature(data=data)
def __call__(
self,
images: Union[List[str], List[List[str]], np.ndarray, torch.Tensor],
**kwargs
) -> BatchFeature:
"""
Main method to prepare images for the model.
Args:
images: Images to preprocess. Can be:
- List of file paths for a single series
- List of lists of file paths for multiple series
- Numpy array or torch tensor
Returns:
BatchFeature with preprocessed images ready for model input.
"""
# Handle batch processing
if isinstance(images, list) and images and isinstance(images[0], list):
# Multiple series
batch_volumes = []
for series_paths in images:
result = self.preprocess(series_paths, **kwargs)
batch_volumes.append(result["pixel_values"])
# Stack into batch (B, C, D, H, W)
pixel_values = torch.stack(batch_volumes)
return BatchFeature(data={"pixel_values": pixel_values})
else:
# Single series
return self.preprocess(images, **kwargs) |