Delete configuration_sybil.py
Browse files- configuration_sybil.py +0 -63
configuration_sybil.py
DELETED
|
@@ -1,63 +0,0 @@
|
|
| 1 |
-
"""Sybil model configuration"""
|
| 2 |
-
|
| 3 |
-
from transformers import PretrainedConfig
|
| 4 |
-
from typing import Optional, List, Dict
|
| 5 |
-
import json
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
class SybilConfig(PretrainedConfig):
|
| 9 |
-
"""
|
| 10 |
-
This is the configuration class to store the configuration of a [`SybilForRiskPrediction`].
|
| 11 |
-
It is used to instantiate a Sybil model according to the specified arguments, defining the model architecture.
|
| 12 |
-
|
| 13 |
-
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs.
|
| 14 |
-
|
| 15 |
-
Args:
|
| 16 |
-
hidden_dim (`int`, *optional*, defaults to 512):
|
| 17 |
-
Dimensionality of the hidden representations.
|
| 18 |
-
dropout (`float`, *optional*, defaults to 0.0):
|
| 19 |
-
The dropout probability for all fully connected layers.
|
| 20 |
-
max_followup (`int`, *optional*, defaults to 6):
|
| 21 |
-
Maximum number of years for risk prediction.
|
| 22 |
-
num_images (`int`, *optional*, defaults to 208):
|
| 23 |
-
Number of CT scan slices to process.
|
| 24 |
-
img_size (`List[int]`, *optional*, defaults to `[512, 512]`):
|
| 25 |
-
Size of input images after preprocessing.
|
| 26 |
-
voxel_spacing (`List[float]`, *optional*, defaults to `[0.703125, 0.703125, 2.5]`):
|
| 27 |
-
Target voxel spacing for CT scans (row, column, slice thickness).
|
| 28 |
-
censoring_distribution (`str`, *optional*, defaults to "weibull"):
|
| 29 |
-
Distribution used for censoring in survival analysis.
|
| 30 |
-
ensemble_size (`int`, *optional*, defaults to 5):
|
| 31 |
-
Number of models in the ensemble.
|
| 32 |
-
calibrator_data (`Dict`, *optional*):
|
| 33 |
-
Calibration data for risk score adjustment.
|
| 34 |
-
"""
|
| 35 |
-
|
| 36 |
-
model_type = "sybil"
|
| 37 |
-
|
| 38 |
-
def __init__(
|
| 39 |
-
self,
|
| 40 |
-
hidden_dim: int = 512,
|
| 41 |
-
dropout: float = 0.0,
|
| 42 |
-
max_followup: int = 6,
|
| 43 |
-
num_images: int = 208,
|
| 44 |
-
img_size: List[int] = None,
|
| 45 |
-
voxel_spacing: List[float] = None,
|
| 46 |
-
censoring_distribution: str = "weibull",
|
| 47 |
-
ensemble_size: int = 5,
|
| 48 |
-
calibrator_data: Optional[Dict] = None,
|
| 49 |
-
initializer_range: float = 0.02,
|
| 50 |
-
**kwargs
|
| 51 |
-
):
|
| 52 |
-
super().__init__(**kwargs)
|
| 53 |
-
|
| 54 |
-
self.hidden_dim = hidden_dim
|
| 55 |
-
self.dropout = dropout
|
| 56 |
-
self.max_followup = max_followup
|
| 57 |
-
self.num_images = num_images
|
| 58 |
-
self.img_size = img_size if img_size is not None else [512, 512]
|
| 59 |
-
self.voxel_spacing = voxel_spacing if voxel_spacing is not None else [0.703125, 0.703125, 2.5]
|
| 60 |
-
self.censoring_distribution = censoring_distribution
|
| 61 |
-
self.ensemble_size = ensemble_size
|
| 62 |
-
self.calibrator_data = calibrator_data
|
| 63 |
-
self.initializer_range = initializer_range
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|