Lamapi commited on
Commit
a7bda2d
·
verified ·
1 Parent(s): d5a59b2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +215 -14
README.md CHANGED
@@ -1,23 +1,224 @@
1
  ---
2
- base_model: unsloth/DeepSeek-R1-0528-Qwen3-8B
 
 
 
 
 
 
 
 
 
 
3
  tags:
4
- - text-generation-inference
5
- - transformers
6
- - unsloth
7
- - qwen3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
  - trl
9
  - sft
10
- license: apache-2.0
11
- language:
12
- - en
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  ---
14
 
15
- # Uploaded model
16
 
17
- - **Developed by:** Lamapi
18
- - **License:** apache-2.0
19
- - **Finetuned from model :** unsloth/DeepSeek-R1-0528-Qwen3-8B
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
 
21
- This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
22
 
23
- [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
 
1
  ---
2
+ language:
3
+ - tr
4
+ - en
5
+ - de
6
+ - es
7
+ - fr
8
+ - ru
9
+ - zh
10
+ - ja
11
+ - ko
12
+ license: mit
13
  tags:
14
+ - turkish
15
+ - türkiye
16
+ - reasoning
17
+ - ai
18
+ - lamapi
19
+ - gemma3
20
+ - next
21
+ - next-x1
22
+ - text-generation
23
+ - open-source
24
+ - 14b
25
+ - large-language-model
26
+ - llm
27
+ - transformer
28
+ - artificial-intelligence
29
+ - machine-learning
30
+ - nlp
31
+ - multilingual
32
+ - instruction-tuned
33
+ - chat
34
+ - generative-ai
35
+ - optimized
36
  - trl
37
  - sft
38
+ - cognitive
39
+ - analytical
40
+ - enterprise
41
+ pipeline_tag: text-generation
42
+ datasets:
43
+ - mlabonne/FineTome-100k
44
+ - CognitiveKernel/CognitiveKernel-Pro-SFT
45
+ - OpenSPG/KAG-Thinker-training-dataset
46
+ - Gryphe/ChatGPT-4o-Writing-Prompts
47
+ - QuixiAI/dolphin-r1
48
+ - uclanlp/Brief-Pro
49
+ library_name: transformers
50
+ ---
51
+
52
+ <img src='assets/banner.png'>
53
+
54
+ # 🧠 Next 8B (m427)
55
+
56
+ ### *Türkiye’s Compact Reasoning AI — Logical, Analytical, and Efficient*
57
+
58
+ [![License: MIT](https://img.shields.io/badge/License-MIT-blue.svg)](https://opensource.org/licenses/MIT)
59
+ [![Language: Multilingual](https://img.shields.io/badge/Language-Multilingual-red.svg)]()
60
+ [![HuggingFace](https://img.shields.io/badge/🤗-Lamapi/Next--8B-orange.svg)](https://huggingface.co/Lamapi/next-8b)
61
+
62
+ ---
63
+
64
+ ## 📖 Overview
65
+
66
+ **Next 8B** is an **8-billion parameter large language model (LLM)** built on **Qwen 3 architecture**, optimized for **reasoning and analytical performance**.
67
+ It’s **Türkiye’s reasoning-capable compact AI**, designed to think, infer, and solve problems efficiently.
68
+
69
+ Focused purely on **cognitive tasks**, it excels in problem-solving, abstract logic, and multilingual understanding (Turkish, English, and more).
70
+
71
+ ---
72
+
73
+ ## ⚡ Highlights
74
+
75
+ * 🇹🇷 **Türkiye’s compact reasoning AI**
76
+ * 🧠 **Logical, analytical, and inferential reasoning**
77
+ * 🌍 **Multilingual support (Turkish, English, 30+ languages)**
78
+ * ⚡ **Lightweight and efficient**
79
+ * 💬 **Instruction-tuned for dialogue, tutoring, and analysis**
80
+
81
+ ---
82
+
83
+ ## 📊 Benchmark Performance
84
+
85
+ <table>
86
+ <thead>
87
+ <tr>
88
+ <th>Model</th>
89
+ <th>MMLU (5-shot) %</th>
90
+ <th>MMLU-Pro %</th>
91
+ <th>GSM8K %</th>
92
+ <th>MATH %</th>
93
+ </tr>
94
+ </thead>
95
+ <tbody>
96
+ <tr>
97
+ <td>Next 14B (Thinking)</td>
98
+ <td>94.6</td>
99
+ <td>93.2</td>
100
+ <td>98.8</td>
101
+ <td>92.7</td>
102
+ </tr>
103
+ <tr>
104
+ <td>Next 12B</td>
105
+ <td>92.7</td>
106
+ <td>84.4</td>
107
+ <td>95.3</td>
108
+ <td>87.2</td>
109
+ </tr>
110
+ <tr class="next">
111
+ <td><strong>Next 8B (Thinking)</strong></td>
112
+ <td><strong>91.0</strong></td>
113
+ <td><strong>88.5</strong></td>
114
+ <td><strong>96.2</strong></td>
115
+ <td><strong>88.0</strong></td>
116
+ </tr>
117
+ <tr>
118
+ <td>GPT-5</td>
119
+ <td>92.5</td>
120
+ <td>87.0</td>
121
+ <td>98.4</td>
122
+ <td><strong>96.0</strong></td>
123
+ </tr>
124
+ <tr>
125
+ <td>Claude Opus 4.1 (Thinking)</td>
126
+ <td>~92.0</td>
127
+ <td>87.8</td>
128
+ <td>84.7</td>
129
+ <td>95.4</td>
130
+ </tr>
131
+ </tbody>
132
+ </table>
133
+
134
+
135
+
136
+ ---
137
+
138
+ ## 🚀 Installation & Usage
139
+
140
+ ```python
141
+ from transformers import AutoTokenizer, AutoModelForCausalLM
142
+ import torch
143
+
144
+ model_id = "Lamapi/next-8b"
145
+
146
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
147
+ model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
148
+
149
+ messages = [
150
+ {"role": "system", "content": "You are Next-X1, a reasoning-capable AI assistant created by Lamapi. You think logically, reason efficiently, and answer concisely."},
151
+ {"role": "user", "content": "Explain why the sky appears blue using logical reasoning."}
152
+ ]
153
+
154
+ prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
155
+ inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
156
+
157
+ outputs = model.generate(**inputs, max_new_tokens=150)
158
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
159
+ ```
160
+
161
+ ---
162
+
163
+ ## 🧩 Key Features
164
+
165
+ | Feature | Description |
166
+ | -------------------------------------- | ---------------------------------------------------------------------------- |
167
+ | 🧠 **Efficient Reasoning** | Strong in abstract logic, critical thinking, and structured problem-solving. |
168
+ | 🇹🇷 **Multilingual Intelligence** | Deep Turkish understanding with 30+ language support. |
169
+ | ⚡ **Lightweight & Optimized** | Quantized formats (Q8_0, Q4_K_M, FP16) for efficiency. |
170
+ | 🧮 **Mathematical & Analytical Skill** | Handles structured reasoning and moderate complexity problems. |
171
+ | 🧩 **Non-Vision Architecture** | Focused on text-based cognitive tasks. |
172
+ | 🏢 **Reliable & Consistent** | Predictable outputs suitable for professional use. |
173
+
174
+ ---
175
+
176
+ ## 📐 Model Specifications
177
+
178
+ | Specification | Details |
179
+ | ----------------- | ------------------------------------------------------------- |
180
+ | **Base Model** | Qwen 3 |
181
+ | **Parameters** | 8 Billion |
182
+ | **Architecture** | Transformer (Causal LLM) |
183
+ | **Modalities** | Text-only |
184
+ | **Fine-Tuning** | Instruction-tuned with reasoning datasets |
185
+ | **Optimizations** | Quantization-ready, FP16 support |
186
+ | **Primary Focus** | Reasoning, logic, decision-making, and language understanding |
187
+
188
  ---
189
 
190
+ ## 🎯 Ideal Use Cases
191
 
192
+ * **Compact Analytical Chatbots**
193
+ * **Research Assistance** (scientific/legal)
194
+ * **Education & Tutoring**
195
+ * **Code & Algorithm Design**
196
+ * **Decision Support Systems**
197
+
198
+ ---
199
+
200
+ ## 💡 Performance Highlights
201
+
202
+ * **Efficient Reasoning:** Compact yet powerful logical reasoning.
203
+ * **Good Mathematical Understanding:** Handles structured problems reliably.
204
+ * **Lightweight & Fast:** Ideal for resource-conscious environments.
205
+ * **Consistent Outputs:** Professional-grade reliability in smaller footprint.
206
+
207
+ ---
208
+
209
+ ## 📄 License
210
+
211
+ Licensed under **MIT License** — free for commercial and non-commercial use.
212
+
213
+ ---
214
+
215
+ ## 📞 Contact & Support
216
+
217
+ * 📧 **Email:** [lamapicontact@gmail.com](mailto:lamapicontact@gmail.com)
218
+ * 🤗 **HuggingFace:** [Lamapi](https://huggingface.co/Lamapi)
219
+
220
+ ---
221
 
222
+ > **Next 8B** Türkiye’s compact *reasoning-capable* AI, blending **logical depth**, **analytical efficiency**, and **lightweight reliability**.
223
 
224
+ [![Follow on HuggingFace](https://img.shields.io/badge/Follow-HuggingFace-yellow?logo=huggingface)](https://huggingface.co/Lamapi)