File size: 2,403 Bytes
38fd365
 
5e50960
38fd365
5e50960
38fd365
 
 
 
 
 
 
 
 
 
 
 
5e50960
 
 
38fd365
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
{
    "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20240725.json",
    "version": "0.0.4",
    "changelog": {
        "0.0.4": "enhanced metadata with improved descriptions and task specification",
        "0.0.3": "update to huggingface hosting",
        "0.0.2": "update large file yml",
        "0.0.1": "Initial version"
    },
    "monai_version": "1.4.0",
    "pytorch_version": "2.4.0",
    "numpy_version": "1.24.4",
    "required_packages_version": {
        "pytorch-ignite": "0.4.11",
        "pyyaml": "6.0.2"
    },
    "supported_apps": {},
    "name": "Medical Image Classification Template",
    "task": "Template for 2D Medical Image Classification",
    "description": "A comprehensive template for developing 2D medical image classification models, featuring a modular architecture and standardized training pipeline. The template supports single-channel 128x128 pixel input images and outputs 4-class probability distributions, serving as a foundation for custom medical image classification tasks.",
    "authors": "Yun Liu",
    "copyright": "Copyright (c) 2023 MONAI Consortium",
    "network_data_format": {
        "inputs": {
            "image": {
                "type": "image",
                "format": "magnitude",
                "modality": "none",
                "num_channels": 1,
                "spatial_shape": [
                    128,
                    128
                ],
                "dtype": "float32",
                "value_range": [],
                "is_patch_data": false,
                "channel_def": {
                    "0": "image"
                }
            }
        },
        "outputs": {
            "pred": {
                "type": "probabilities",
                "format": "classes",
                "num_channels": 4,
                "spatial_shape": [
                    1,
                    4
                ],
                "dtype": "float32",
                "value_range": [
                    0,
                    1,
                    2,
                    3
                ],
                "is_patch_data": false,
                "channel_def": {
                    "0": "background",
                    "1": "circle",
                    "2": "triangle",
                    "3": "rectangle"
                }
            }
        }
    }
}