Add ResNet-50 as a backbone option
Browse files- README.md +1 -1
- src/wireseghr/model/encoder.py +65 -49
README.md
CHANGED
|
@@ -32,7 +32,7 @@ python src/wireseghr/infer.py --config configs/default.yaml --image /path/to/ima
|
|
| 32 |
|
| 33 |
### Backbone Source
|
| 34 |
- HuggingFace Transformers SegFormer (e.g., `nvidia/mit-b3`). We set `num_channels` to match input channels.
|
| 35 |
-
-
|
| 36 |
|
| 37 |
## Dataset Convention
|
| 38 |
- Flat directories with numeric filenames; images are `.jpg`/`.jpeg`, masks are `.png`.
|
|
|
|
| 32 |
|
| 33 |
### Backbone Source
|
| 34 |
- HuggingFace Transformers SegFormer (e.g., `nvidia/mit-b3`). We set `num_channels` to match input channels.
|
| 35 |
+
- Alternative: TorchVision ResNet-50 (`backbone: resnet50`). The stem is adapted to the requested `in_channels`, and we expose features from `layer1`..`layer4` at strides 1/4, 1/8, 1/16, 1/32 with channels [256, 512, 1024, 2048].
|
| 36 |
|
| 37 |
## Dataset Convention
|
| 38 |
- Flat directories with numeric filenames; images are `.jpg`/`.jpeg`, masks are `.png`.
|
src/wireseghr/model/encoder.py
CHANGED
|
@@ -1,14 +1,18 @@
|
|
| 1 |
-
"""
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
|
|
|
|
|
|
|
|
|
| 6 |
"""
|
| 7 |
|
| 8 |
from typing import List, Tuple
|
| 9 |
|
| 10 |
import torch
|
| 11 |
import torch.nn as nn
|
|
|
|
| 12 |
|
| 13 |
|
| 14 |
class SegFormerEncoder(nn.Module):
|
|
@@ -23,62 +27,74 @@ class SegFormerEncoder(nn.Module):
|
|
| 23 |
self.in_channels = in_channels
|
| 24 |
self.pretrained = pretrained
|
| 25 |
|
| 26 |
-
# Prefer HuggingFace SegFormer for 'mit_*' backbones.
|
| 27 |
-
# Fallback to Tiny CNN if HF unavailable or unsupported.
|
| 28 |
self.hf = None
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
else:
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
|
| 44 |
def forward(self, x: torch.Tensor) -> List[torch.Tensor]:
|
| 45 |
if self.hf is not None:
|
| 46 |
return self.hf(x)
|
| 47 |
-
|
| 48 |
-
return self.
|
|
|
|
| 49 |
|
| 50 |
|
| 51 |
-
class
|
| 52 |
-
def __init__(self, in_chans: int):
|
| 53 |
super().__init__()
|
| 54 |
-
#
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
nn.
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
def forward(self, x: torch.Tensor) -> List[torch.Tensor]:
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
|
| 84 |
class _HFEncoderWrapper(nn.Module):
|
|
|
|
| 1 |
+
"""Encoder wrappers with adjustable input channels.
|
| 2 |
|
| 3 |
+
Supports two backbone families:
|
| 4 |
+
- HuggingFace Transformers SegFormer (e.g., "mit_b2")
|
| 5 |
+
- TorchVision ResNet-50 (use backbone "resnet50" | "resnet-50" | "resnet_50")
|
| 6 |
+
|
| 7 |
+
Both return a list of 4 multi-scale feature maps [C1, C2, C3, C4] at strides
|
| 8 |
+
1/4, 1/8, 1/16, 1/32 respectively.
|
| 9 |
"""
|
| 10 |
|
| 11 |
from typing import List, Tuple
|
| 12 |
|
| 13 |
import torch
|
| 14 |
import torch.nn as nn
|
| 15 |
+
from torchvision.models import resnet50, ResNet50_Weights
|
| 16 |
|
| 17 |
|
| 18 |
class SegFormerEncoder(nn.Module):
|
|
|
|
| 27 |
self.in_channels = in_channels
|
| 28 |
self.pretrained = pretrained
|
| 29 |
|
|
|
|
|
|
|
| 30 |
self.hf = None
|
| 31 |
+
self.resnet = None
|
| 32 |
+
|
| 33 |
+
# SegFormer path
|
| 34 |
+
if backbone.startswith("mit_") or backbone.startswith("segformer"):
|
| 35 |
+
self.hf = _HFEncoderWrapper(in_channels, backbone, pretrained)
|
| 36 |
+
self.feature_dims = self.hf.feature_dims
|
| 37 |
+
# ResNet-50 path
|
| 38 |
+
elif backbone in ("resnet50", "resnet-50", "resnet_50"):
|
| 39 |
+
self.resnet = _ResNetEncoderWrapper(in_channels, pretrained)
|
| 40 |
+
self.feature_dims = self.resnet.feature_dims
|
| 41 |
else:
|
| 42 |
+
raise ValueError(
|
| 43 |
+
f"Unsupported backbone '{backbone}'. Use one of: mit_b[0-5], segformer*, resnet50."
|
| 44 |
+
)
|
| 45 |
|
| 46 |
def forward(self, x: torch.Tensor) -> List[torch.Tensor]:
|
| 47 |
if self.hf is not None:
|
| 48 |
return self.hf(x)
|
| 49 |
+
if self.resnet is not None:
|
| 50 |
+
return self.resnet(x)
|
| 51 |
+
raise AssertionError("No encoder instantiated")
|
| 52 |
|
| 53 |
|
| 54 |
+
class _ResNetEncoderWrapper(nn.Module):
|
| 55 |
+
def __init__(self, in_chans: int, pretrained: bool):
|
| 56 |
super().__init__()
|
| 57 |
+
# Build base ResNet-50
|
| 58 |
+
if pretrained:
|
| 59 |
+
self.model = resnet50(weights=ResNet50_Weights.DEFAULT)
|
| 60 |
+
else:
|
| 61 |
+
self.model = resnet50(weights=None)
|
| 62 |
+
|
| 63 |
+
# Adjust input stem for arbitrary channel count
|
| 64 |
+
if in_chans != 3:
|
| 65 |
+
old_conv = self.model.conv1
|
| 66 |
+
new_conv = nn.Conv2d(
|
| 67 |
+
in_chans, old_conv.out_channels, kernel_size=old_conv.kernel_size[0],
|
| 68 |
+
stride=old_conv.stride[0], padding=old_conv.padding[0], bias=False
|
| 69 |
+
)
|
| 70 |
+
with torch.no_grad():
|
| 71 |
+
if pretrained and old_conv.weight.shape[1] == 3:
|
| 72 |
+
w = old_conv.weight # [64, 3, 7, 7]
|
| 73 |
+
if in_chans > 3:
|
| 74 |
+
w_mean = w.mean(dim=1, keepdim=True)
|
| 75 |
+
new_w = w_mean.repeat(1, in_chans, 1, 1)
|
| 76 |
+
else:
|
| 77 |
+
new_w = w[:, :in_chans, :, :]
|
| 78 |
+
new_conv.weight.copy_(new_w)
|
| 79 |
+
else:
|
| 80 |
+
nn.init.kaiming_normal_(new_conv.weight, mode="fan_out", nonlinearity="relu")
|
| 81 |
+
self.model.conv1 = new_conv
|
| 82 |
+
|
| 83 |
+
self.feature_dims = [256, 512, 1024, 2048]
|
| 84 |
|
| 85 |
def forward(self, x: torch.Tensor) -> List[torch.Tensor]:
|
| 86 |
+
# Stem
|
| 87 |
+
x = self.model.conv1(x)
|
| 88 |
+
x = self.model.bn1(x)
|
| 89 |
+
x = self.model.relu(x)
|
| 90 |
+
x = self.model.maxpool(x) # 1/4
|
| 91 |
+
|
| 92 |
+
# Stages
|
| 93 |
+
c1 = self.model.layer1(x) # 1/4, 256
|
| 94 |
+
c2 = self.model.layer2(c1) # 1/8, 512
|
| 95 |
+
c3 = self.model.layer3(c2) # 1/16, 1024
|
| 96 |
+
c4 = self.model.layer4(c3) # 1/32, 2048
|
| 97 |
+
return [c1, c2, c3, c4]
|
| 98 |
|
| 99 |
|
| 100 |
class _HFEncoderWrapper(nn.Module):
|