Add export to onnx and tensorRT
Browse files- scripts/export_onnx_trt.py +130 -0
scripts/export_onnx_trt.py
ADDED
|
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import os
|
| 3 |
+
import pprint
|
| 4 |
+
from typing import Tuple
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
|
| 8 |
+
from src.wireseghr.model import WireSegHR
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class CoarseModule(torch.nn.Module):
|
| 12 |
+
def __init__(self, core: WireSegHR):
|
| 13 |
+
super().__init__()
|
| 14 |
+
self.core = core
|
| 15 |
+
|
| 16 |
+
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 17 |
+
logits, cond = self.core.forward_coarse(x)
|
| 18 |
+
return logits, cond
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
class FineModule(torch.nn.Module):
|
| 22 |
+
def __init__(self, core: WireSegHR):
|
| 23 |
+
super().__init__()
|
| 24 |
+
self.core = core
|
| 25 |
+
|
| 26 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 27 |
+
logits = self.core.forward_fine(x)
|
| 28 |
+
return logits
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def build_model(cfg: dict, device: torch.device) -> WireSegHR:
|
| 32 |
+
pretrained_flag = bool(cfg.get("pretrained", False))
|
| 33 |
+
model = WireSegHR(backbone=cfg["backbone"], in_channels=6, pretrained=pretrained_flag)
|
| 34 |
+
model = model.to(device)
|
| 35 |
+
return model
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def main():
|
| 39 |
+
parser = argparse.ArgumentParser(description="Export WireSegHR to ONNX and TensorRT")
|
| 40 |
+
parser.add_argument("--config", type=str, default="configs/default.yaml")
|
| 41 |
+
parser.add_argument("--ckpt", type=str, default="", help="Path to checkpoint .pt")
|
| 42 |
+
parser.add_argument("--out_dir", type=str, default="exports")
|
| 43 |
+
parser.add_argument("--coarse_size", type=int, default=1024)
|
| 44 |
+
parser.add_argument("--fine_patch_size", type=int, default=1024)
|
| 45 |
+
parser.add_argument("--opset", type=int, default=17)
|
| 46 |
+
parser.add_argument("--trtexec", type=str, default="", help="Optional path to trtexec to build TRT engines")
|
| 47 |
+
|
| 48 |
+
args = parser.parse_args()
|
| 49 |
+
|
| 50 |
+
import yaml
|
| 51 |
+
|
| 52 |
+
with open(args.config, "r") as f:
|
| 53 |
+
cfg = yaml.safe_load(f)
|
| 54 |
+
print("[export] Loaded config:")
|
| 55 |
+
pprint.pprint(cfg)
|
| 56 |
+
|
| 57 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 58 |
+
model = build_model(cfg, device)
|
| 59 |
+
|
| 60 |
+
ckpt_path = args.ckpt if args.ckpt else cfg.get("resume", "")
|
| 61 |
+
if ckpt_path:
|
| 62 |
+
assert os.path.isfile(ckpt_path), f"Checkpoint not found: {ckpt_path}"
|
| 63 |
+
print(f"[export] Loading checkpoint: {ckpt_path}")
|
| 64 |
+
state = torch.load(ckpt_path, map_location=device)
|
| 65 |
+
model.load_state_dict(state["model"]) # expects dict with key 'model'
|
| 66 |
+
model.eval()
|
| 67 |
+
|
| 68 |
+
os.makedirs(args.out_dir, exist_ok=True)
|
| 69 |
+
|
| 70 |
+
# Prepare dummy inputs (static shapes for best TRT performance)
|
| 71 |
+
coarse_in = torch.randn(1, 6, args.coarse_size, args.coarse_size, device=device)
|
| 72 |
+
fine_in = torch.randn(1, 6, args.fine_patch_size, args.fine_patch_size, device=device)
|
| 73 |
+
|
| 74 |
+
# Coarse export
|
| 75 |
+
coarse_wrapper = CoarseModule(model).to(device).eval()
|
| 76 |
+
coarse_onnx = os.path.join(args.out_dir, f"wireseghr_coarse_{args.coarse_size}.onnx")
|
| 77 |
+
print(f"[export] Exporting COARSE to {coarse_onnx}")
|
| 78 |
+
torch.onnx.export(
|
| 79 |
+
coarse_wrapper,
|
| 80 |
+
coarse_in,
|
| 81 |
+
coarse_onnx,
|
| 82 |
+
export_params=True,
|
| 83 |
+
opset_version=args.opset,
|
| 84 |
+
do_constant_folding=True,
|
| 85 |
+
input_names=["x_coarse"],
|
| 86 |
+
output_names=["logits", "cond"],
|
| 87 |
+
dynamic_axes=None,
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
# Fine export
|
| 91 |
+
fine_wrapper = FineModule(model).to(device).eval()
|
| 92 |
+
fine_onnx = os.path.join(args.out_dir, f"wireseghr_fine_{args.fine_patch_size}.onnx")
|
| 93 |
+
print(f"[export] Exporting FINE to {fine_onnx}")
|
| 94 |
+
torch.onnx.export(
|
| 95 |
+
fine_wrapper,
|
| 96 |
+
fine_in,
|
| 97 |
+
fine_onnx,
|
| 98 |
+
export_params=True,
|
| 99 |
+
opset_version=args.opset,
|
| 100 |
+
do_constant_folding=True,
|
| 101 |
+
input_names=["x_fine"],
|
| 102 |
+
output_names=["logits"],
|
| 103 |
+
dynamic_axes=None,
|
| 104 |
+
)
|
| 105 |
+
|
| 106 |
+
# Optional TensorRT building via trtexec
|
| 107 |
+
if args.trtexec:
|
| 108 |
+
import subprocess
|
| 109 |
+
|
| 110 |
+
def build_engine(onnx_path: str, engine_path: str):
|
| 111 |
+
print(f"[export] Building TRT engine: {engine_path}")
|
| 112 |
+
cmd = [
|
| 113 |
+
args.trtexec,
|
| 114 |
+
f"--onnx={onnx_path}",
|
| 115 |
+
f"--saveEngine={engine_path}",
|
| 116 |
+
"--explicitBatch",
|
| 117 |
+
"--fp16",
|
| 118 |
+
]
|
| 119 |
+
subprocess.run(cmd, check=True)
|
| 120 |
+
|
| 121 |
+
coarse_engine = os.path.join(args.out_dir, f"wireseghr_coarse_{args.coarse_size}.engine")
|
| 122 |
+
fine_engine = os.path.join(args.out_dir, f"wireseghr_fine_{args.fine_patch_size}.engine")
|
| 123 |
+
build_engine(coarse_onnx, coarse_engine)
|
| 124 |
+
build_engine(fine_onnx, fine_engine)
|
| 125 |
+
|
| 126 |
+
print("[export] Done.")
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
if __name__ == "__main__":
|
| 130 |
+
main()
|