File size: 17,398 Bytes
690e3c9 87e3a34 690e3c9 87e3a34 79de16d 87e3a34 79de16d 87e3a34 79de16d 87e3a34 79de16d 87e3a34 690e3c9 87e3a34 aa09677 87e3a34 690e3c9 87e3a34 690e3c9 87e3a34 690e3c9 87e3a34 690e3c9 87e3a34 690e3c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 |
import os
import torch
from transformers import AutoTokenizer, TextStreamer
from unsloth import FastLanguageModel
from peft import PeftModel
class EndpointHandler:
def __init__(self, model_dir):
# Configuration for your safety model
self.max_seq_length = 2048
self.load_in_4bit = True
# Get model configuration from environment variables or use defaults
self.selected_model_name = os.environ.get("SELECTED_MODEL", "Phi-4-old")
# Model configurations
self.model_options = {
"Llama-3.1-8B": {
"model_id": "unsloth/Meta-Llama-3.1-8B-Instruct",
"chat_template": "llama-3",
"lora_adapter": "Machlovi/SafeLlama"
},
"Qwen2.5-7B": {
"model_id": "unsloth/Qwen2.5-7B",
"chat_template": "chatml",
"lora_adapter": "Machlovi/Qwen2.57bHB"
},
"Phi-4": {
"model_id": "unsloth/Phi-4-unsloth-bnb-4bit",
"chat_template": "phi-4",
"lora_adapter": "Machlovi/Phi4_Safe"
},
"Gemma3-4": {
"model_id": "unsloth/gemma-3-4b-it-unsloth-bnb-4bit",
"chat_template": "gemma-3",
"lora_adapter": "Machlovi/Gemma3-4"
},
"Phi-4-old": {
"model_id": "unsloth/Phi-4-unsloth-bnb-4bit",
"chat_template": "safe_phi",
"lora_adapter": "Machlovi/Safe_Phi4"
},
}
# Safety policy template
self.safe_phi_template = """
You are a policy expert trying to help determine whether a user
prompt is in violation of the defined safety policies.
Our safety principle is defined in the below:
### Safety_policy:
{}
<start_of_turn>
### Input:
{}
<end_of_turn>
Does the human question violate the above principle? Your answer must start
with 'Safe' or 'Unsafe'.
- First line must read 'safe' or 'unsafe'.
- If unsafe, a second line must include a comma-separated list of violated categories.
### Response:
{}
"""
self.policy = """You are a policy expert trying to help determine whether a user prompt is in violation of the defined safety policies.
* "No Harassment": The input shall not contain or seek generation of content that is malicious, intimidating, bullying, or abusive content targeting another individual (e.g., physical threats, denial of tragic events, disparaging victims of violence).
* "No Dangerous Content": The input shall not contain or seek generation of content that harming oneself and/or others (e.g., accessing or building firearms and explosive devices, promotion of terrorism, instructions for suicide, violent protest).
* "No Hate Speech": The input shall not contain or seek generation of content that targeting identity and/or protected attributes (e.g., racial slurs, promotion of discrimination, calls to violence against protected groups) or dehumanizing/belittling/vilifying on the bases of race, ethnicity, religion, disability, age, nationality, veteran status, sexual orientation, gender, gender identity, caste, or any other protected status.
* "No Sexually Explicit Information": The input shall not contain or seek generation of content that contains references to sexual acts or other lewd content (e.g., sexually arousal descriptions, content aimed at causing arousal, sexual assault (ex: rape),sexual harassment (physical, verbal, or visual)). Medical or scientific terms related to human anatomy or sex education are permitted.
Does the human question violate the above principle? Your answer must start with 'Safe' or 'Unsafe'.
- If unsafe, a second line must include a comma-separated list of violated categories.
"""
# Load model configuration
config = self.model_options[self.selected_model_name]
model_id = config["model_id"]
self.chat_template = config["chat_template"]
lora_adapter = config["lora_adapter"]
# Load the model and tokenizer
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.model, self.tokenizer = FastLanguageModel.from_pretrained(
model_name=model_id,
max_seq_length=self.max_seq_length,
load_in_4bit=self.load_in_4bit,
)
# Load LoRA adapter
self.model = PeftModel.from_pretrained(self.model, lora_adapter)
self.model.eval()
# Move model to the device (GPU or CPU)
self.model.to(self.device)
print(f"Loaded model: {self.selected_model_name}")
print(f"Chat template: {self.chat_template}")
print(f"LoRA adapter: {lora_adapter}")
def __call__(self, data):
"""
Run safety check on input text
"""
input_text = data.get("inputs", "")
# Prepare input with the safety template
formatted_input = self.safe_phi_template.format(
self.policy,
input_text,
"" # Leave output blank for generation
)
# Tokenize input and move to the same device as the model
inputs = self.tokenizer([formatted_input], return_tensors="pt").to(self.device)
# Generate response
with torch.no_grad():
text_streamer = TextStreamer(self.tokenizer)
output = self.model.generate(
**inputs,
streamer=text_streamer,
max_new_tokens=24
)
# Decode the output
decoded_output = self.tokenizer.decode(output[0], skip_special_tokens=True)
# Extract safety classification
safety_result = decoded_output.split("### Response:")[-1].strip()
# Determine if the input is safe or not
is_safe = safety_result.lower().startswith("safe")
# Prepare the response
response = {
"is_safe": is_safe,
"safety_result": safety_result
}
return response
# # handler.py
# import os
# import torch
# from transformers import AutoTokenizer, TextStreamer
# from unsloth import FastLanguageModel
# from peft import PeftModel
# class EndpointHandler:
# def __init__(self, model_dir):
# # Configuration for your safety model
# self.max_seq_length = 2048
# self.load_in_4bit = True
# # Get model configuration from environment variables or use defaults
# self.selected_model_name = os.environ.get("SELECTED_MODEL", "Phi-4-old")
# # Model configurations
# self.model_options = {
# "Llama-3.1-8B": {
# "model_id": "unsloth/Meta-Llama-3.1-8B-Instruct",
# "chat_template": "llama-3",
# "lora_adapter": "Machlovi/SafeLlama"
# },
# "Qwen2.5-7B": {
# "model_id": "unsloth/Qwen2.5-7B",
# "chat_template": "chatml",
# "lora_adapter": "Machlovi/Qwen2.57bHB"
# },
# "Phi-4": {
# "model_id": "unsloth/Phi-4-unsloth-bnb-4bit",
# "chat_template": "phi-4",
# "lora_adapter": "Machlovi/Phi4_Safe"
# },
# "Gemma3-4": {
# "model_id": "unsloth/gemma-3-4b-it-unsloth-bnb-4bit",
# "chat_template": "gemma-3",
# "lora_adapter": "Machlovi/Gemma3-4"
# },
# "Phi-4-old": {
# "model_id": "unsloth/Phi-4-unsloth-bnb-4bit",
# "chat_template": "safe_phi",
# "lora_adapter": "Machlovi/Safe_Phi4"
# },
# }
# # Safety policy template
# self.safe_phi_template = """
# You are a policy expert trying to help determine whether a user
# prompt is in violation of the defined safety policies.
# Our safety principle is defined in the below:
# ### Safety_policy:
# {}
# <start_of_turn>
# ### Input:
# {}
# <end_of_turn>
# Does the human question violate the above principle? Your answer must start
# with 'Safe' or 'Unsafe'.
# - First line must read 'safe' or 'unsafe'.
# - If unsafe, a second line must include a comma-separated list of violated categories.
# ### Response:
# {}
# """
# self.policy = """You are a policy expert trying to help determine whether a user prompt is in violation of the defined safety policies.
# * "No Harassment": The input shall not contain or seek generation of content that is malicious, intimidating, bullying, or abusive content targeting another individual (e.g., physical threats, denial of tragic events, disparaging victims of violence).
# * "No Dangerous Content": The input shall not contain or seek generation of content that harming oneself and/or others (e.g., accessing or building firearms and explosive devices, promotion of terrorism, instructions for suicide, violent protest).
# * "No Hate Speech": The input shall not contain or seek generation of content that targeting identity and/or protected attributes (e.g., racial slurs, promotion of discrimination, calls to violence against protected groups) or dehumanizing/belittling/vilifying on the bases of race, ethnicity, religion, disability, age, nationality, veteran status, sexual orientation, gender, gender identity, caste, or any other protected status.
# * "No Sexually Explicit Information": The input shall not contain or seek generation of content that contains references to sexual acts or other lewd content (e.g., sexually arousal descriptions, content aimed at causing arousal, sexual assault (ex: rape),sexual harassment (physical, verbal, or visual)). Medical or scientific terms related to human anatomy or sex education are permitted.
# Does the human question violate the above principle? Your answer must start with 'Safe' or 'Unsafe'.
# - If unsafe, a second line must include a comma-separated list of violated categories.
# """
# # Load model configuration
# config = self.model_options[self.selected_model_name]
# model_id = config["model_id"]
# self.chat_template = config["chat_template"]
# lora_adapter = config["lora_adapter"]
# # Load the model and tokenizer
# self.model, self.tokenizer = FastLanguageModel.from_pretrained(
# model_name=model_id,
# max_seq_length=self.max_seq_length,
# load_in_4bit=self.load_in_4bit,
# )
# # Load LoRA adapter
# self.model = PeftModel.from_pretrained(self.model, lora_adapter)
# self.model.eval()
# print(f"Loaded model: {self.selected_model_name}")
# print(f"Chat template: {self.chat_template}")
# print(f"LoRA adapter: {lora_adapter}")
# def __call__(self, data):
# """
# Run safety check on input text
# """
# input_text = data.get("inputs", "")
# # Prepare input with the safety template
# formatted_input = self.safe_phi_template.format(
# self.policy,
# input_text,
# "" # Leave output blank for generation
# )
# # Tokenize input
# inputs = self.tokenizer([formatted_input], return_tensors="pt")
# # Generate response
# with torch.no_grad():
# text_streamer = TextStreamer(self.tokenizer)
# output = self.model.generate(
# **inputs,
# streamer=text_streamer,
# max_new_tokens=24
# )
# # Decode the output
# decoded_output = self.tokenizer.decode(output[0], skip_special_tokens=True)
# # Extract safety classification
# safety_result = decoded_output.split("### Response:")[-1].strip()
# # Determine if the input is safe or not
# is_safe = safety_result.lower().startswith("safe")
# # Prepare the response
# response = {
# "is_safe": is_safe,
# "safety_result": safety_result
# }
# return response
# from unsloth import FastLanguageModel # FastVisionModel for LLMs
# import torch
# import os
# from handler import EndpointHandler # Ensure correct import!
# safe_phi= """"
# You are a policy expert trying to help determine whether a user
# prompt is in violation of the defined safety policies.
# Our safety principle is defined in the below:
# ### Safety_policy:
# {}
# <start_of_turn>
# ### Input:
# {}
# <end_of_turn>
# Does the human question violate the above principle? Your answer must start
# with 'Safe' or 'Unsafe'.
# - First line must read 'safe' or 'unsafe'.
# - If unsafe, a second line must include a comma-separated list of violated categories.
# ### Response:
# {}
# """
# max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!
# load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
# model_options = {
# "Llama-3.1-8B": {
# "model_id": "unsloth/Meta-Llama-3.1-8B-Instruct",
# "chat_template": "llama-3",
# "lora_adapter": "Machlovi/SafeLlama"
# },
# "Qwen2.5-7B": {
# "model_id": "unsloth/Qwen2.5-7B",
# "chat_template": "chatml",
# "lora_adapter": "Machlovi/Qwen2.57bHB"
# },
# "Phi-4":
# {
# "model_id":"unsloth/Phi-4-unsloth-bnb-4bit",
# "chat_template":"phi-4",
# "lora_adapter": "Machlovi/Phi4_Safe"
# },
# "Gemma3-4": ## you have to use vision model as it is multimodal
# {
# "model_id":"unsloth/gemma-3-4b-it-unsloth-bnb-4bit",
# "chat_template":"gemma-3",
# "lora_adapter": "Machlovi/Gemma3-4"
# },
# "Phi-4-old":
# {
# "model_id":"unsloth/Phi-4-unsloth-bnb-4bit",
# "chat_template":"safe_phi",
# "lora_adapter": "Machlovi/Safe_Phi4"
# },
# }
# # Select your desired model here:
# models=["Llama-3.1-8B","Qwen2.5-7B","Phi-4","Gemma3-4","Phi-4-old"]
# selected_model_name = models[-1] # or "Qwen2.5-7B"
# # Retrieve selected model configuration
# config = model_options[selected_model_name]
# model_id = config["model_id"]
# chat_template = config["chat_template"]
# lora_adapter = config["lora_adapter"]
# # Load the model
# model, tokenizer = FastLanguageModel.from_pretrained(
# model_name=model_id,
# max_seq_length=max_seq_length,
# load_in_4bit=load_in_4bit,
# )
# # Optional: Load LoRA Adapter if needed
# from peft import PeftModel
# model = PeftModel.from_pretrained(model, lora_adapter)
# model.eval()
# print(f"Loaded model: {selected_model_name}")
# print(f"Chat template: {chat_template}")
# print(f"LoRA adapter: {lora_adapter}")
# policy="""You are a policy expert trying to help determine whether a user prompt is in violation of the defined safety policies.
# * "No Harassment": The input shall not contain or seek generation of content that is malicious, intimidating, bullying, or abusive content targeting another individual (e.g., physical threats, denial of tragic events, disparaging victims of violence).
# * "No Dangerous Content": The input shall not contain or seek generation of content that harming oneself and/or others (e.g., accessing or building firearms and explosive devices, promotion of terrorism, instructions for suicide, violent protest).
# * "No Hate Speech": The input shall not contain or seek generation of content that targeting identity and/or protected attributes (e.g., racial slurs, promotion of discrimination, calls to violence against protected groups) or dehumanizing/belittling/vilifying on the bases of race, ethnicity, religion, disability, age, nationality, veteran status, sexual orientation, gender, gender identity, caste, or any other protected status.
# * "No Sexually Explicit Information": The input shall not contain or seek generation of content that contains references to sexual acts or other lewd content (e.g., sexually arousal descriptions, content aimed at causing arousal, sexual assault (ex: rape),sexual harassment (physical, verbal, or visual)). Medical or scientific terms related to human anatomy or sex education are permitted.
# Does the human question violate the above principle? Your answer must start with 'Safe' or 'Unsafe'.
# - If unsafe, a second line must include a comma-separated list of violated categories.
# """
# from transformers import TextStreamer
# # FastLanguageModel.for_inference(model) # Enable native 2x faster inference
# inputs = tokenizer(
# [
# safe_phi.format(
# policy,
# "love you", # input
# "", # output - leave this blank for generation!
# )
# ], return_tensors = "pt")
# text_streamer = TextStreamer(tokenizer)
# _ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 12)
|