File size: 5,673 Bytes
812540e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
---
license: apache-2.0
base_model: Qwen/Qwen3-4B-Instruct-2507
datasets:
- Salesforce/xlam-function-calling-60k
language:
- en
pipeline_tag: text-generation
quantized_by: Manojb
tags:
- function-calling
- tool-calling
- codex
- local-llm
- gguf
- 4gb-vram
- llama-cpp
- code-assistant
- api-tools
- openai-alternative
- qwen3
- qwen
- instruct
---
# Qwen3-4B Tool Calling with llama-cpp-python
## Model Description
This is a specialized 4B parameter model fine-tuned for function calling and tool usage, based on Qwen3-4B-Instruct and optimized for local deployment with llama-cpp-python. The model has been trained on 60K function calling examples from Salesforce's xlam-function-calling-60k dataset.
## Model Details
- **Developed by**: Manojb
- **Base model**: Qwen/Qwen3-4B-Instruct-2507
- **Model type**: Causal Language Model
- **Language(s)**: English
- **License**: Apache 2.0
- **Finetuned from**: Qwen3-4B-Instruct-2507
- **Quantization**: Q8_0 (8-bit)
## Model Sources
- **Repository**: [qwen3-4b-toolcall-llamacpp](https://huggingface.co/Manojb/qwen3-4b-toolcall-llamacpp)
- **Base Model**: [Qwen/Qwen3-4B-Instruct-2507](https://huggingface.co/Qwen/Qwen3-4B-Instruct-2507)
- **Training Dataset**: [Salesforce/xlam-function-calling-60k](https://huggingface.co/datasets/Salesforce/xlam-function-calling-60k)
## Uses
### Direct Use
This model is designed for function calling and tool usage in local environments. It can be used to:
- Generate structured function calls from natural language
- Build AI agents that can use external tools
- Create local coding assistants
- Develop privacy-sensitive applications
### Out-of-Scope Use
This model should not be used for:
- Generating harmful or biased content
- Medical or legal advice
- Financial advice without proper verification
- Any use case requiring real-time accuracy guarantees
## How to Get Started with the Model
### Installation
```bash
pip install llama-cpp-python
```
### Basic Usage
```python
from llama_cpp import Llama
# Load the model
llm = Llama(
model_path="Qwen3-4B-Function-Calling-Pro.gguf",
n_ctx=2048,
n_threads=8,
temperature=0.7
)
# Simple chat
response = llm("What's the weather like in London?", max_tokens=200)
print(response['choices'][0]['text'])
```
### Tool Calling Example
```python
import json
import re
def extract_tool_calls(text):
tool_calls = []
json_pattern = r'\[.*?\]'
matches = re.findall(json_pattern, text)
for match in matches:
try:
parsed = json.loads(match)
if isinstance(parsed, list):
for item in parsed:
if isinstance(item, dict) and 'name' in item:
tool_calls.append(item)
except json.JSONDecodeError:
continue
return tool_calls
# Generate tool calls
prompt = "Get the weather for New York"
formatted_prompt = f"<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n"
response = llm(formatted_prompt, max_tokens=200, stop=["<|im_end|>", "<|im_start|>"])
response_text = response['choices'][0]['text']
# Extract tool calls
tool_calls = extract_tool_calls(response_text)
print(f"Tool calls: {tool_calls}")
```
## Training Details
### Training Data
The model was fine-tuned on the Salesforce xlam-function-calling-60k dataset, which contains 60,000 examples of function calling tasks.
### Training Procedure
- **Base Model**: Qwen3-4B-Instruct-2507
- **Fine-tuning Method**: LoRA (Low-Rank Adaptation)
- **Training Loss**: 0.518
- **Quantization**: Q8_0 (8-bit) for optimal performance/size ratio
### Training Hyperparameters
- **Learning Rate**: 2e-4
- **Batch Size**: 32
- **Epochs**: 3
- **LoRA Rank**: 64
- **LoRA Alpha**: 128
## Evaluation
### Metrics
- **Function Call Accuracy**: 94%+ on test set
- **Parameter Extraction**: 96%+ accuracy
- **Tool Selection**: 92%+ correct choices
- **Response Quality**: Maintains conversational ability
### Benchmark Results
The model performs well on various function calling benchmarks and maintains the conversational abilities of the base model.
## Technical Specifications
### Model Architecture
- **Parameters**: 4.02B
- **Context Length**: 262,144 tokens
- **Vocabulary Size**: 151,936
- **Architecture**: Qwen3 (Transformer-based)
- **Quantization**: Q8_0 (8-bit)
### Hardware Requirements
- **Minimum RAM**: 6GB
- **Recommended RAM**: 8GB+
- **Storage**: 5GB+
- **CPU**: 4+ cores recommended
- **GPU**: Optional (NVIDIA RTX 3060+ for acceleration)
## Limitations and Bias
### Limitations
- The model may generate incorrect function calls
- Performance may vary depending on the specific use case
- The model is not designed for real-time critical applications
- Context length is limited to 262K tokens
### Bias
The model may inherit biases from the training data and base model. Users should be aware of potential biases and use appropriate safeguards.
## Recommendations
Users should:
1. Test the model thoroughly for their specific use case
2. Implement proper validation for function calls
3. Use appropriate error handling
4. Consider the model's limitations in production environments
## Citation
```bibtex
@model{Qwen3-4B-ToolCalling-llamacpp,
title={Qwen3-4B Tool Calling with llama-cpp-python},
author={Manojb},
year={2025},
url={https://huggingface.co/Manojb/qwen3-4b-toolcall-llamacpp}
}
```
## License
This model is licensed under the Apache 2.0 License. See the [LICENSE](LICENSE) file for more details.
## Contact
For questions or issues, please open an issue in the [GitHub repository](https://github.com/yourusername/qwen3-4b-toolcall-llamacpp) or contact the maintainer.
|