juhirats commited on
Commit
215ff70
Β·
verified Β·
1 Parent(s): d6fa5e2

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +41 -173
README.md CHANGED
@@ -29,6 +29,8 @@ widget:
29
 
30
  # LCM-LoRA SD1.5 - Checkpoint 1600
31
 
 
 
32
  ## Final Training - Mature
33
 
34
  <div align="center">
@@ -60,76 +62,6 @@ This checkpoint represents training at **1600 steps** in our LCM-LoRA progressio
60
  - πŸ”§ **Easy Integration**: Drop-in replacement using diffusers
61
  - πŸ“Š **Proven Quality**: See comparison grid above
62
 
63
- ---
64
-
65
- ## πŸ“¦ All Checkpoints in Series
66
-
67
- Click any checkpoint to view its specific characteristics and outputs:
68
-
69
- ### [Checkpoint 400 - Early Training - Foundation](https://huggingface.co/Mercity/lcm-lora-sd1.5-400)
70
-
71
- **Characteristics:** Early training checkpoint showing foundational LCM capabilities. Provides decent quality with room for refinement.
72
-
73
- **Best for:** Fast experimentation, understanding early LCM behavior
74
-
75
- **Quality:** Good baseline quality, all prompts work correctly
76
-
77
- <div align="center">
78
- <img src="https://huggingface.co/Mercity/lcm-lora-sd1.5-400/resolve/main/comparison_grid.png" alt="Checkpoint 400" width="100%">
79
- </div>
80
-
81
- [β†’ View Full Details for Checkpoint 400](https://huggingface.co/Mercity/lcm-lora-sd1.5-400)
82
-
83
- ---
84
-
85
- ### [Checkpoint 800 - Mid Training - Vibrant Style](https://huggingface.co/Mercity/lcm-lora-sd1.5-800)
86
-
87
- **Characteristics:** Mid-training checkpoint with vibrant, artistic outputs. Strong visual impact with saturated colors and expressive style.
88
-
89
- **Best for:** Artistic applications, vibrant aesthetic, expressive style
90
-
91
- **Quality:** High visual impact, strong artistic direction, vivid colors
92
-
93
- <div align="center">
94
- <img src="https://huggingface.co/Mercity/lcm-lora-sd1.5-800/resolve/main/comparison_grid.png" alt="Checkpoint 800" width="100%">
95
- </div>
96
-
97
- [β†’ View Full Details for Checkpoint 800](https://huggingface.co/Mercity/lcm-lora-sd1.5-800)
98
-
99
- ---
100
-
101
- ### [Checkpoint 1200 - High Training - Refined](https://huggingface.co/Mercity/lcm-lora-sd1.5-1200)
102
-
103
- **Characteristics:** Higher training with more refined outputs. Some prompts may show signs of overfitting (e.g., occasional missing details).
104
-
105
- **Best for:** Balanced colors, natural tones, specific use cases
106
-
107
- **Quality:** High technical quality but may miss some prompt details
108
-
109
- <div align="center">
110
- <img src="https://huggingface.co/Mercity/lcm-lora-sd1.5-1200/resolve/main/comparison_grid.png" alt="Checkpoint 1200" width="100%">
111
- </div>
112
-
113
- [β†’ View Full Details for Checkpoint 1200](https://huggingface.co/Mercity/lcm-lora-sd1.5-1200)
114
-
115
- ---
116
-
117
- ### ✨ Checkpoint 1600 - Final Training - Mature (Current)
118
-
119
- **Characteristics:** Final training checkpoint with mature, consistent outputs. Well-balanced and reliable across all prompts.
120
-
121
- **Best for:** Most training, consistent results, production use
122
-
123
- **Quality:** Excellent consistency, balanced outputs, reliable
124
-
125
- <div align="center">
126
- <img src="https://huggingface.co/Mercity/lcm-lora-sd1.5-1600/resolve/main/comparison_grid.png" alt="Checkpoint 1600" width="100%">
127
- </div>
128
-
129
- ---
130
-
131
-
132
-
133
  ---
134
 
135
  ## Checkpoint Comparison
@@ -158,79 +90,25 @@ Compare training progression and characteristics:
158
 
159
  ---
160
 
161
- ## πŸ§ͺ Out-of-Distribution (OOD) Validation
162
 
163
- To test generalization beyond the training distribution, we generated images for 5 OOD prompts that are deliberately different from training prompts.
164
 
165
- **Why OOD Validation?** These prompts test whether the model truly learned general concepts rather than just memorizing training prompts. Good OOD performance indicates robust generalization.
166
-
167
- ### 🐠 Underwater Scene
168
 
169
- **Prompt:** *"underwater coral reef with colorful fish and sea anemones, crystal clear water, natural sunlight filtering through"*
170
 
171
- **Tests:** Water effects, marine life, underwater lighting (not in training)
172
 
173
- <div align="center">
174
- <img src="https://huggingface.co/Mercity/lcm-lora-sd1.5-1600/resolve/main/validation/ood_underwater.png" alt="Underwater Scene" width="100%" style="max-width: 512px;">
175
- <p><em>Image: ood_underwater.png</em></p>
176
- </div>
177
 
178
- ---
179
 
180
- ### πŸš€ Space/Astronomy
181
 
182
- **Prompt:** *"astronaut floating in space with earth in background, stars and galaxies, cinematic lighting, 4k"*
183
-
184
- **Tests:** Zero gravity, cosmic environment, space rendering (not in training)
185
-
186
- <div align="center">
187
- <img src="https://huggingface.co/Mercity/lcm-lora-sd1.5-1600/resolve/main/validation/ood_space.png" alt="Space/Astronomy" width="100%" style="max-width: 512px;">
188
- <p><em>Image: ood_space.png</em></p>
189
- </div>
190
-
191
- ---
192
-
193
- ### 🍰 Food Photography
194
-
195
- **Prompt:** *"gourmet chocolate cake with berries on elegant plate, professional food photography, soft studio lighting"*
196
-
197
- **Tests:** Food textures, studio lighting, product photography (not in training)
198
-
199
- <div align="center">
200
- <img src="https://huggingface.co/Mercity/lcm-lora-sd1.5-1600/resolve/main/validation/ood_food.png" alt="Food Photography" width="100%" style="max-width: 512px;">
201
- <p><em>Image: ood_food.png</em></p>
202
- </div>
203
-
204
- ---
205
-
206
- ### πŸ‘΄ Human Portrait
207
-
208
- **Prompt:** *"close-up portrait of elderly man with weathered face and kind eyes, dramatic side lighting, black and white"*
209
-
210
- **Tests:** Human facial features, skin texture, B&W conversion (training had cat portrait, not human closeup)
211
-
212
- <div align="center">
213
- <img src="https://huggingface.co/Mercity/lcm-lora-sd1.5-1600/resolve/main/validation/ood_portrait.png" alt="Human Portrait" width="100%" style="max-width: 512px;">
214
- <p><em>Image: ood_portrait.png</em></p>
215
- </div>
216
-
217
- ---
218
-
219
- ### 🎨 Abstract Art
220
-
221
- **Prompt:** *"abstract watercolor painting with flowing colors, pink and blue gradient, artistic ethereal style"*
222
-
223
- **Tests:** Non-representational art, color blending (training was all representational)
224
-
225
- <div align="center">
226
- <img src="https://huggingface.co/Mercity/lcm-lora-sd1.5-1600/resolve/main/validation/ood_abstract.png" alt="Abstract Art" width="100%" style="max-width: 512px;">
227
- <p><em>Image: ood_abstract.png</em></p>
228
- </div>
229
-
230
- ---
231
-
232
- All validation images and prompts can be found in the `validation/` directory.
233
 
 
234
 
235
 
236
  ---
@@ -299,7 +177,7 @@ guidance_scale = 1.0 # Required for LCM
299
 
300
  ---
301
 
302
- ## In-Distribution Sample Outputs
303
 
304
  The comparison grid above shows outputs from this checkpoint at 2, 4, and 6 inference steps, compared to standard SD1.5 at 50 steps.
305
 
@@ -319,6 +197,34 @@ All sample images for this checkpoint are available in the `samples/` directory.
319
 
320
  </details>
321
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
322
  ---
323
 
324
  ## Performance
@@ -341,44 +247,6 @@ All sample images for this checkpoint are available in the `samples/` directory.
341
 
342
  ---
343
 
344
- ## Advanced Usage
345
-
346
- ### Speed Optimization
347
-
348
- ```python
349
- # Fuse LoRA for faster inference
350
- pipe.fuse_lora(lora_scale=1.0)
351
-
352
- # Use xformers for memory efficiency
353
- pipe.enable_xformers_memory_efficient_attention()
354
-
355
- # Compile model (PyTorch 2.0+)
356
- pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
357
- ```
358
-
359
- ### Multiple LoRAs
360
-
361
- ```python
362
- # Combine with other LoRAs
363
- pipe.load_lora_weights("other_style.safetensors", adapter_name="style")
364
- pipe.load_lora_weights("Mercity/lcm-lora-sd1.5-1600", adapter_name="lcm")
365
-
366
- # Adjust weights
367
- pipe.set_adapters(["style", "lcm"], adapter_weights=[0.8, 1.0])
368
- ```
369
-
370
- ### Switch Between Checkpoints
371
-
372
- ```python
373
- # Load different checkpoints from this series
374
- pipe.load_lora_weights("Mercity/lcm-lora-sd1.5-400")
375
- pipe.load_lora_weights("Mercity/lcm-lora-sd1.5-800")
376
- pipe.load_lora_weights("Mercity/lcm-lora-sd1.5-1200")
377
- pipe.load_lora_weights("Mercity/lcm-lora-sd1.5-1600")
378
- ```
379
-
380
- ---
381
-
382
  ## Series Information
383
 
384
  ### Training Progression
 
29
 
30
  # LCM-LoRA SD1.5 - Checkpoint 1600
31
 
32
+ **Author:** Juhi Singh | [HuggingFace](https://huggingface.co/juhirats)
33
+
34
  ## Final Training - Mature
35
 
36
  <div align="center">
 
62
  - πŸ”§ **Easy Integration**: Drop-in replacement using diffusers
63
  - πŸ“Š **Proven Quality**: See comparison grid above
64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65
  ---
66
 
67
  ## Checkpoint Comparison
 
90
 
91
  ---
92
 
93
+ ## Visual Comparison Across All Checkpoints
94
 
95
+ See how outputs evolve across the training series. Each grid shows: Baseline SD1.5 (50 steps) vs LCM-LoRA at 2, 4, and 6 steps.
96
 
97
+ ### [Checkpoint 400](https://huggingface.co/Mercity/lcm-lora-sd1.5-400)
 
 
98
 
99
+ ![Checkpoint 400](https://huggingface.co/Mercity/lcm-lora-sd1.5-400/resolve/main/comparison_grid.png)
100
 
101
+ ### [Checkpoint 800](https://huggingface.co/Mercity/lcm-lora-sd1.5-800)
102
 
103
+ ![Checkpoint 800](https://huggingface.co/Mercity/lcm-lora-sd1.5-800/resolve/main/comparison_grid.png)
 
 
 
104
 
105
+ ### [Checkpoint 1200](https://huggingface.co/Mercity/lcm-lora-sd1.5-1200)
106
 
107
+ ![Checkpoint 1200](https://huggingface.co/Mercity/lcm-lora-sd1.5-1200/resolve/main/comparison_grid.png)
108
 
109
+ ### Checkpoint 1600 (This Checkpoint)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
110
 
111
+ ![Checkpoint 1600](https://huggingface.co/Mercity/lcm-lora-sd1.5-1600/resolve/main/comparison_grid.png)
112
 
113
 
114
  ---
 
177
 
178
  ---
179
 
180
+ ## Sample Outputs
181
 
182
  The comparison grid above shows outputs from this checkpoint at 2, 4, and 6 inference steps, compared to standard SD1.5 at 50 steps.
183
 
 
197
 
198
  </details>
199
 
200
+ ### Out-of-Distribution (OOD) Validation Images
201
+
202
+ To test generalization beyond the training distribution, we generated images for 5 OOD prompts that are deliberately different from training prompts:
203
+
204
+ 1. **🐠 Underwater Scene**
205
+ - *"underwater coral reef with colorful fish and sea anemones, crystal clear water, natural sunlight filtering through"*
206
+ - Tests: Water effects, marine life, underwater lighting (not in training)
207
+
208
+ 2. **πŸš€ Space/Astronomy**
209
+ - *"astronaut floating in space with earth in background, stars and galaxies, cinematic lighting, 4k"*
210
+ - Tests: Zero gravity, cosmic environment, space rendering (not in training)
211
+
212
+ 3. **🍰 Food Photography**
213
+ - *"gourmet chocolate cake with berries on elegant plate, professional food photography, soft studio lighting"*
214
+ - Tests: Food textures, studio lighting, product photography (not in training)
215
+
216
+ 4. **πŸ‘΄ Human Portrait**
217
+ - *"close-up portrait of elderly man with weathered face and kind eyes, dramatic side lighting, black and white"*
218
+ - Tests: Human facial features, skin texture, B&W conversion (training had cat portrait, not human closeup)
219
+
220
+ 5. **🎨 Abstract Art**
221
+ - *"abstract watercolor painting with flowing colors, pink and blue gradient, artistic ethereal style"*
222
+ - Tests: Non-representational art, color blending (training was all representational)
223
+
224
+ **Why OOD Validation?** These prompts test whether the model truly learned general concepts rather than just memorizing training prompts. Good OOD performance indicates robust generalization.
225
+
226
+ All validation images can be found in the `validation/` directory. See [`validation/prompts.txt`](validation/prompts.txt) for the complete list of prompts used.
227
+
228
  ---
229
 
230
  ## Performance
 
247
 
248
  ---
249
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
250
  ## Series Information
251
 
252
  ### Training Progression