Safetensors
File size: 24,896 Bytes
4527b5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
"""
Module: gene_mapper.py

This module provides utilities for mapping gene identifiers between human and mouse datasets,
as well as handling orthology relationships. It is designed to process gene expression data
and map gene IDs to standardized formats for downstream analysis.

Main Features:
- Map human and mouse gene IDs to a common reference format.
- Handle orthology relationships to convert mouse gene symbols to human gene symbols.
- Combine mapping results from multiple sources and flag discrepancies.
- Transform wide-format gene data into long-format for easier processing.
- Categorize gene mappings based on their relationships (e.g., one-to-one, one-to-many).

Dependencies:
- pandas: For data manipulation.
- numpy: For numerical operations.
- warnings: For handling warnings during processing.

Usage:
- Import the functions and use them to map gene IDs or process gene data.
- Run the script directly to execute test cases for the implemented functions.

Why:
- This module is essential for harmonizing gene identifiers across datasets, enabling
  consistent analysis of gene expression data from different species or sources.
"""

import warnings

import numpy as np
import pandas as pd

# import re


def map_mouse_human(data_frame, query_column, human_map_db, mouse_map_db, orthology_db, verbose=False):
    """
    Maps gene IDs from a dataset to human and mouse reference databases, and resolves orthology relationships.

    Args:
        data_frame (pd.DataFrame): Input data containing gene IDs to map.
        query_column (str): Column name in the input data containing gene IDs.
        human_map_db (pd.DataFrame): Reference database for human gene mapping.
        mouse_map_db (pd.DataFrame): Reference database for mouse gene mapping.
        orthology_db (pd.DataFrame): Database containing orthology relationships between mouse and human genes.
        verbose (bool): Whether to print detailed logs during processing.

    Returns:
        pd.DataFrame: A combined mapping result with discrepancies flagged.
    """
    if verbose:
        print("------------    map human gene ids    ------------")
    mapped_hsap = map_genes(
        expr_mat=data_frame,
        expr_ids=query_column,
        annot_mat=human_map_db,
        annot_from="id",
        annot_to="reference_id",
        return_unmapped=True,
        keep_prev_ids=True,
        verbose=verbose,
    )

    if verbose:
        print("------------    map mouse gene ids    ------------")
    mapped_mus = map_genes(
        expr_mat=data_frame,
        expr_ids=query_column,
        annot_mat=mouse_map_db,
        annot_from="id",
        annot_to="reference_id",
        return_unmapped=True,
        keep_prev_ids=True,
        verbose=verbose,
    )

    if verbose:
        print("------------    mouse to human orthologs    ------------")
    mouse_hsap = orthologs_to_human(
        mouse_df=mapped_mus,
        mouse_col="reference_id",
        orthology_df=orthology_db,
        ortho_mouse_col="mouse_gene_symbol",
        ortho_human_col="human_gene_symbol",
        ortho_type_col="mouse_homology_type",
        orthology_type="ortholog_one2one",
    )

    mouse_hsap = mouse_hsap.loc[:, ["previous_ids", "human_gene_symbol"]].drop_duplicates()
    mouse_hsap = mouse_hsap.rename(columns={"human_gene_symbol": "reference_id"})

    if verbose:
        print("------------    combine results    ------------")
    both_mapped = combine_dataframe_columns(
        df1=mapped_hsap, df2=mouse_hsap, id_column="previous_ids", reference_id_column="reference_id", verbose=verbose
    )
    both_mapped = both_mapped.loc[:, ["previous_ids", "reference_id", "discrepancy_flag"]].drop_duplicates()

    return both_mapped


def map_mouse_human2(data_frame, query_column, human_map_db, mouse_map_db, orthology_db, verbose=False):
    if verbose:
        print("------------    map human gene ids    ------------")
    mapped_hsap = map_genes(
        expr_mat=data_frame,
        expr_ids=query_column,
        annot_mat=human_map_db,
        annot_from="id",
        annot_to="reference_id",
        return_unmapped=True,
        keep_prev_ids=True,
        verbose=verbose,
    )

    if verbose:
        print("------------    map mouse gene ids    ------------")
    mapped_mus = map_genes(
        expr_mat=data_frame,
        expr_ids=query_column,
        annot_mat=mouse_map_db,
        annot_from="id",
        annot_to="reference_id",
        return_unmapped=True,
        keep_prev_ids=True,
        verbose=verbose,
    )

    if verbose:
        print("------------    mouse to human orthologs    ------------")
    mouse_hsap = orthologs_to_human(
        mouse_df=mapped_mus,
        mouse_col="reference_id",
        orthology_df=orthology_db,
        ortho_mouse_col="mouse_gene_symbol",
        ortho_human_col="human_gene_symbol",
        ortho_type_col="mouse_homology_type",
        orthology_type="ortholog_one2one",
    )

    ## this testing confirms that the filtering step produces the same result as the script below that takes ENSMUSG to fill the NA from orthologs that are not one2one
    ## however not filtering causes discrepancies when combinding the two data_processing frames. this step is reqiured to avoid that

    ## filter on mouse gene symbol - if not mapped then the input was not a mouse gene (or not a mouse gene that can be mapped)
    ## alternative is to filter on ENSMUSG - but this will only work if the input list is ensembl gene ids, other ids will not be matched
    if verbose:
        print(mouse_hsap.shape)
    mouse_hsap_filt = mouse_hsap.loc[
        (mouse_hsap.previous_ids.str.contains("ENSMUS")) | (~mouse_hsap.mouse_gene_symbol.isnull()), :
    ]
    # mouse_hsap_remainder=mouse_hsap.loc[~((mouse_hsap.previous_ids.str.contains('ENSMUS')) | (~mouse_hsap.mouse_gene_symbol.isnull())),:]
    if verbose:
        print(mouse_hsap_filt.shape)
    # (mouse_hsap_remainder)
    mouse_hsap = mouse_hsap_filt

    ## convert all gene human gene symbols to NA if they are not one2one orthologs
    mouse_hsap.loc[mouse_hsap["mouse_homology_type"] != "ortholog_one2one", "human_gene_symbol"] = pd.NA

    if verbose:
        print("\n=========\tcount missing\t=========")
        print(sum(mouse_hsap.human_gene_symbol.isnull()))
        # fill missing human gene symbols with ENSMUSG
    mouse_hsap["human_gene_symbol"] = mouse_hsap["human_gene_symbol"].fillna(mouse_hsap["previous_ids"])

    if verbose:
        print(sum(mouse_hsap.human_gene_symbol.str.contains("ENSMUSG")))

    if verbose:
        print("\n=========\tdoes not contain ENSMUSG\t=========")
        print(mouse_hsap["previous_ids"][~mouse_hsap["previous_ids"].str.contains("ENSMUSG")].shape)
        print(mouse_hsap["human_gene_symbol"][~mouse_hsap["human_gene_symbol"].str.contains("ENSMUSG")].shape)

        print("\n=========\tcount missing\t=========")
        print(sum(mouse_hsap.human_gene_symbol.isnull()))

    mouse_hsap = mouse_hsap.loc[:, ["previous_ids", "human_gene_symbol"]].drop_duplicates()
    mouse_hsap = mouse_hsap.rename(columns={"human_gene_symbol": "reference_id"})

    if verbose:
        print("------------    combine results    ------------")
    both_mapped = combine_dataframe_columns(
        df1=mapped_hsap, df2=mouse_hsap, id_column="previous_ids", reference_id_column="reference_id", verbose=verbose
    )
    both_mapped = both_mapped.loc[:, ["previous_ids", "reference_id", "discrepancy_flag"]].drop_duplicates()

    return both_mapped


def combine_dataframe_columns(df1, df2, id_column, reference_id_column, verbose=True):
    """
    Combines two dataframes by merging on a common ID column and flags discrepancies in reference IDs.

    Args:
        df1 (pd.DataFrame): First dataframe to merge.
        df2 (pd.DataFrame): Second dataframe to merge.
        id_column (str): Column name to merge on.
        reference_id_column (str): Column name containing reference IDs.
        verbose (bool): Whether to print detailed logs during processing.

    Returns:
        pd.DataFrame: A merged dataframe with discrepancies flagged.
    """
    # Standardize missing values by replacing empty strings with NaN
    df1[reference_id_column] = df1[reference_id_column].replace("", pd.NA)
    df2[reference_id_column] = df2[reference_id_column].replace("", pd.NA)

    if verbose:
        # Calculate and print the number of missing values in the reference_id columns of each dataframe
        missing_df1 = df1[reference_id_column].isna().sum()
        missing_df2 = df2[reference_id_column].isna().sum()
        print(f"Missing values in {reference_id_column} of df1: {missing_df1}")
        print(f"Missing values in {reference_id_column} of df2: {missing_df2}")

    # Merge the dataframes on the specified 'id' column
    merged_df = pd.merge(df1, df2, on=id_column, how="outer", suffixes=("_df1", "_df2"))

    # Flag discrepancies where both reference IDs are present but do not match
    merged_df["discrepancy_flag"] = np.where(
        (merged_df[f"{reference_id_column}_df1"].notna())
        & (merged_df[f"{reference_id_column}_df2"].notna())
        & (merged_df[f"{reference_id_column}_df1"] != merged_df[f"{reference_id_column}_df2"]),
        True,
        False,
    )

    # Use numpy.where to combine the 'reference_id' columns, preferring non-null values from df1
    merged_df[reference_id_column] = np.where(
        merged_df[f"{reference_id_column}_df1"].notna(),
        merged_df[f"{reference_id_column}_df1"],
        merged_df[f"{reference_id_column}_df2"],
    )

    # Replace NaN with empty strings in the final dataframe
    final_df = merged_df[
        [id_column, reference_id_column, f"{reference_id_column}_df1", f"{reference_id_column}_df2", "discrepancy_flag"]
    ].fillna("")

    if verbose:
        # Calculate and print the number of missing values in the final result
        missing_final = final_df[reference_id_column].isna().sum()
        print(f"Missing values in final merged {reference_id_column}: {missing_final}")

        # Print a warning if there are any discrepancies
        if final_df["discrepancy_flag"].any():
            print("Warning: There are discrepancies in the reference IDs between the two dataframes.")

    return final_df


def orthologs_to_human(
    mouse_df,
    orthology_df,
    mouse_col,
    ortho_mouse_col,
    ortho_human_col,
    ortho_type_col,
    orthology_type="ortholog_one2one",
):
    """
    Merges a mouse data_processing frame with an orthology data_processing frame to convert mouse gene symbols to human gene symbols.

    Parameters:
    - mouse_df: pd.DataFrame - The data_processing frame containing mouse gene symbols.
    - orthology_df: pd.DataFrame - The data_processing frame containing orthology information.
    - mouse_col: str - The column name in the mouse_df that contains mouse gene symbols.
    - ortho_mouse_col: str - The column name in the orthology_df that contains mouse gene symbols.
    - ortho_human_col: str - The column name in the orthology_df that contains human gene symbols.
    - ortho_type_col: str - The column name in the orthology_df that contains the orthology type.
    - orthology_type: str - The type of orthology to keep (default is 'ortholog_one2one').

    Returns:
    - merged_df: pd.DataFrame - The merged data_processing frame with human gene symbols included.
    """

    # Check if the specified orthology type exists in the orthology dataframe
    unique_ortho_types = orthology_df[ortho_type_col].unique()

    if orthology_type not in unique_ortho_types:
        print(f"Error: Specified orthology type '{orthology_type}' not found.")
        print("Available orthology types are:", unique_ortho_types)
        return None

    # Filter the orthology dataframe based on the specified orthology type
    filtered_orthology_df = orthology_df[orthology_df[ortho_type_col] == orthology_type]

    # Merge the mouse dataframe with the filtered orthology dataframe
    merged_df = mouse_df.merge(
        filtered_orthology_df[[ortho_mouse_col, ortho_human_col, ortho_type_col]],
        left_on=mouse_col,
        right_on=ortho_mouse_col,
        how="left",
    )

    return merged_df


# Example usage:
# merged_df = merge_with_orthology(mouse_df, orthology_df, 'mouse_gene_column', 'ortho_mouse_gene_column', 'ortho_human_gene_column', 'orthology_type_column', 'ortholog_one2one')


def preprocess_wide_to_long(df, reference_id, sep="|", keep_id_type=True):
    """
    Transforms the given DataFrame into a long format table where one specified column represents reference IDs
    and all the entries from the other columns, including the specified column, are put into the second column.
    Entries separated by a specified separator are split into individual values. Removes any duplicate values.
    Handles NaN values appropriately by skipping them and removes rows with NaN in the reference_id column.

    Args:
    df (pd.DataFrame): The input DataFrame with gene information.
    reference_id (str): The column name to be used as the reference identifier.
    sep (str): The separator used to split entries in the ID columns.
    keep_id_type (bool): Whether to keep the id_type column in the final output.

    Returns:
    pd.DataFrame: The transformed long format DataFrame with split values.
    """
    # Check for duplicate column names
    if df.columns.duplicated().any():
        raise ValueError("Duplicate column names detected in the DataFrame.")

    # Remove rows where reference_id is NaN
    initial_row_count = df.shape[0]
    df = df.dropna(subset=[reference_id])
    final_row_count = df.shape[0]

    if initial_row_count != final_row_count:
        print(
            f"Removed {initial_row_count - final_row_count} rows with NaN in '{reference_id}'. {final_row_count} rows remain."
        )
    else:
        print("No rows with NaN in the reference_id were found.")

    # Check for duplicate values in reference_id column
    if df[reference_id].duplicated().any():
        print(
            f"Warning: Duplicate values found in the '{reference_id}' column. This may cause issues with the transformation."
        )

    long_format_data = []

    # Process each column except the reference_id
    for col in df.columns:
        if col != reference_id:
            # Convert numeric columns to string
            if pd.api.types.is_numeric_dtype(df[col]):
                df[col] = df[col].astype(str)
            # Split the values by the separator and create a new DataFrame for each column
            exploded_df = df[[reference_id, col]].dropna().assign(**{col: df[col].str.split(sep)})
            exploded_df = exploded_df.explode(col)
            exploded_df["id_type"] = col
            exploded_df = exploded_df.rename(columns={col: "id"})
            long_format_data.append(exploded_df)

    # Concatenate all the long format DataFrames
    long_df = pd.concat(long_format_data)

    # Add the reference_id as its own column
    reference_id_df = df[[reference_id]].dropna()
    reference_id_df["id_type"] = reference_id
    reference_id_df["id"] = reference_id_df[reference_id]
    long_df = pd.concat([long_df, reference_id_df], ignore_index=True)

    # Rename the reference_id column to "reference_id"
    long_df = long_df.rename(columns={reference_id: "reference_id"})

    # Drop duplicate values
    long_df.drop_duplicates(inplace=True)

    if not keep_id_type:
        # Drop the id_type column and remove duplicates based only on 'id' and 'reference_id'
        long_df = long_df.drop(columns=["id_type"]).drop_duplicates()

    # Reorder the columns
    columns_order = ["id", "reference_id"] if not keep_id_type else ["id", "id_type", "reference_id"]
    long_df = long_df[columns_order]

    return long_df


def categorise_mapping(df, ids_from_col, ids_to_col):
    # Calculate the occurrences of each id and each gene_name
    id_counts = df[ids_from_col].value_counts()
    gene_counts = df[ids_to_col].value_counts()

    # Map the counts back to the dataframe
    df["id_count"] = df[ids_from_col].map(id_counts)
    df["gene_count"] = df[ids_to_col].map(gene_counts)

    # Determine match type based on counts
    conditions = [(df["id_count"] > 1) & (df["gene_count"] > 1), (df["id_count"] > 1), (df["gene_count"] > 1)]
    choices = ["many2many", "one2many", "many2one"]
    df["match_type"] = np.select(conditions, choices, default="one2one")

    # Drop the temporary columns used for counts
    df.drop(columns=["id_count", "gene_count"], inplace=True)

    return df


def remove_whitespace(series):
    # return series.astype(str).str.replace(r'^\s+|\s+$', '', regex=True)
    return series.astype(str).str.strip()


def unlist(nested_list):
    """
    Recursively flattens a nested list.

    Args:
    nested_list (list): A list that may contain nested lists.

    Returns:
    list: A flattened list.
    """
    flattened = []
    for item in nested_list:
        if isinstance(item, list):
            flattened.extend(unlist(item))
        else:
            flattened.append(item)
    return flattened


def map_genes(
    expr_mat,
    expr_ids=None,
    annot_mat=None,
    annot_from="id",
    annot_to="hgnc_symbol",
    return_unmapped=False,
    verbose=True,
    error=False,
    keep_prev_ids=False,
):
    """TODO: The code currently breaks when expr_mat already has a column called referene_id. This is because the mapped = pd.merge(...) does not merge the reference_id columns. Try to fix this."""

    if expr_ids is not None:
        expr_mat = expr_mat.rename(columns={expr_ids: "previous_ids"})
        expr_ids = "previous_ids"

    if expr_ids is None:
        expr_ids = "previous_ids"
        expr_mat[expr_ids] = expr_mat.index

    with warnings.catch_warnings():
        warnings.simplefilter(action="ignore", category=pd.errors.SettingWithCopyWarning)
        # Remove any whitespace - trailing or otherwise
        expr_mat[expr_ids] = remove_whitespace(expr_mat[expr_ids])

        if verbose:
            print("\n [ gene ID mapping ] \n")
            print(
                f"\tdataset contains  : {len(expr_mat['previous_ids'])} ids, of which unique: {len(expr_mat['previous_ids'].unique())} - {round(len(expr_mat['previous_ids'].unique()) / len(expr_mat['previous_ids']) * 100, 1)}%"
            )

        # Remove any missing ids
        missing_genes = expr_mat[expr_mat[expr_ids].isin([None, "", "nan"])]
        if not missing_genes.empty:
            if verbose:
                print(f"\tfound {len(missing_genes)} missing ids", list(missing_genes[expr_ids].unique())[:5])
            expr_mat = expr_mat[~expr_mat[expr_ids].isin([None, "", "nan"])]

        # Check for ids that are already mapping
        premapped = expr_mat[expr_mat["previous_ids"].isin(annot_mat[annot_to])]
        premapped.loc[:, annot_to] = premapped["previous_ids"]

        if verbose:
            print(
                f'\n\texpr_mat - of {len(expr_mat["previous_ids"].unique())} ids  {len(premapped["previous_ids"].unique())} - {round(len(premapped["previous_ids"].unique()) / len(expr_mat["previous_ids"].unique()) * 100, 3)}% directly map to annot_mat${annot_to}\n'
            )

        # Map using exact match
        unmapped_hgnc = expr_mat[~expr_mat["previous_ids"].isin(premapped["previous_ids"])]
        if unmapped_hgnc.empty:
            if keep_prev_ids:
                return premapped.drop_duplicates()
            return premapped.drop(columns=["previous_ids"], errors="ignore").drop_duplicates()

        mapped = pd.merge(
            expr_mat[~expr_mat["previous_ids"].isin(premapped["previous_ids"])],
            annot_mat[[annot_from, annot_to]].drop_duplicates(),
            left_on="previous_ids",
            right_on=annot_from,
            how="inner",
        )

        mapped = pd.concat([mapped, premapped if not premapped.empty else None])

        # Map the remainder using lowercase
        remap = expr_mat[~expr_mat["previous_ids"].isin(mapped["previous_ids"])]
        remap.loc[:, "previous_ids"] = remap["previous_ids"].str.lower()

        reannot = annot_mat[[annot_from, annot_to]].drop_duplicates()
        reannot[annot_from] = reannot[annot_from].str.lower()

        remap = pd.merge(remap, reannot, left_on="previous_ids", right_on=annot_from, how="inner")

        mapped = pd.concat([mapped, remap]).drop_duplicates()

        dups = mapped[mapped.duplicated(subset=[annot_to], keep=False)][annot_to].unique()
        uniq = mapped[~mapped[annot_to].isin(dups)][annot_to].unique()

        if verbose:
            print(f'\tone2one: {len(uniq)}\t{", ".join(uniq[:5])}')
            print(f'\tmany2one: {len(dups)}\t{", ".join(dups[:5])}')

        unmapped = expr_mat["previous_ids"][
            ~expr_mat["previous_ids"].str.lower().isin(mapped["previous_ids"].str.lower())
        ].unique()

        if verbose:
            print(f'\n\tunmapped genes: {len(unmapped)}\t::  {", ".join(unmapped[:5])}\n')
            print("\n\n")

        result = mapped

        if return_unmapped:
            unmapped_expr_mat = expr_mat[expr_mat["previous_ids"].isin(unmapped)]
            if not unmapped_expr_mat.empty:
                unmapped_expr_mat.loc[:, annot_to] = ""
                result = pd.concat([result, unmapped_expr_mat])

        result = result.loc[:, result.columns.isin(unlist([list(expr_mat.columns.values), annot_to]))]

    if keep_prev_ids:
        return result.drop_duplicates()
    return result.drop(columns=["previous_ids"], errors="ignore").drop_duplicates()


##========================================================================================================================
##==========    Test functions    ================================================================================
##========================================================================================================================


def test_transform_function():
    """
    Test case for the transform_and_split_to_long_format function using a toy example.
    """
    data = {
        "Gene stable ID": ["ID1|ID2", "ID3", "ID4|ID5"],
        "Gene stable ID version": ["ID1.1", "ID3.1", None],
        "Gene Synonym": ["Syn1", None, "Syn4"],
        "Gene name": ["GeneA", "GeneB", "GeneC"],
    }

    df = pd.DataFrame(data)

    expected_data = {
        "id": ["ID1", "ID2", "ID1.1", "Syn1", "GeneA", "ID3", "ID3.1", "GeneB", "ID4", "ID5", "Syn4", "GeneC"],
        "id_type": [
            "Gene stable ID",
            "Gene stable ID",
            "Gene stable ID version",
            "Gene Synonym",
            "Gene name",
            "Gene stable ID",
            "Gene stable ID version",
            "Gene name",
            "Gene stable ID",
            "Gene stable ID",
            "Gene Synonym",
            "Gene name",
        ],
        "reference_id": [
            "GeneA",
            "GeneA",
            "GeneA",
            "GeneA",
            "GeneA",
            "GeneB",
            "GeneB",
            "GeneB",
            "GeneC",
            "GeneC",
            "GeneC",
            "GeneC",
        ],
    }

    expected_df = pd.DataFrame(expected_data)

    # Transform the DataFrame
    long_df = transform_and_split_to_long_format(df, "Gene name")  # noqa

    # Sort the DataFrame for comparison
    long_df = long_df.sort_values(by=["id", "id_type", "reference_id"]).reset_index(drop=True)
    expected_df = expected_df.sort_values(by=["id", "id_type", "reference_id"]).reset_index(drop=True)

    # Check if the transformed DataFrame matches the expected DataFrame
    assert long_df.equals(expected_df), "test_transform_function\t\t- did not produce expected result"

    print("test_transform_function\t\t- passed")


# Run tests
def test_categorise_function():
    mapping_test_data = {
        "ids": ["id1", "id2", "id3", "id4", "id1", "id5"],
        "gene_names": ["gene1", "gene2", "gene3", "gene3", "gene4", "gene5"],
        "expected_match_type": ["one2many", "one2one", "many2one", "many2one", "one2many", "one2one"],
    }

    mapping_test_data = pd.DataFrame(mapping_test_data)

    test_data = {
        "ids": ["id1", "id2", "id3", "id4", "id1", "id5"],
        "gene_names": ["gene1", "gene2", "gene3", "gene3", "gene4", "gene5"],
    }

    df_test = pd.DataFrame(test_data)

    print("\nRunning optimized version:")
    annotated_df_optimized = categorise_mapping(df_test.copy(), "ids", "gene_names")
    print(annotated_df_optimized)

    # Verify the results
    assert (
        annotated_df_optimized["match type"].tolist() == mapping_test_data["expected_match_type"].tolist()
    ), "Optimized version failed"

    print("\ntest_categorise_function\t\t- passed")


# Only scripts the test if this script is executed directly (not imported)
if __name__ == "__main__":
    test_transform_function()
    test_categorise_function()