File size: 24,896 Bytes
4527b5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 |
"""
Module: gene_mapper.py
This module provides utilities for mapping gene identifiers between human and mouse datasets,
as well as handling orthology relationships. It is designed to process gene expression data
and map gene IDs to standardized formats for downstream analysis.
Main Features:
- Map human and mouse gene IDs to a common reference format.
- Handle orthology relationships to convert mouse gene symbols to human gene symbols.
- Combine mapping results from multiple sources and flag discrepancies.
- Transform wide-format gene data into long-format for easier processing.
- Categorize gene mappings based on their relationships (e.g., one-to-one, one-to-many).
Dependencies:
- pandas: For data manipulation.
- numpy: For numerical operations.
- warnings: For handling warnings during processing.
Usage:
- Import the functions and use them to map gene IDs or process gene data.
- Run the script directly to execute test cases for the implemented functions.
Why:
- This module is essential for harmonizing gene identifiers across datasets, enabling
consistent analysis of gene expression data from different species or sources.
"""
import warnings
import numpy as np
import pandas as pd
# import re
def map_mouse_human(data_frame, query_column, human_map_db, mouse_map_db, orthology_db, verbose=False):
"""
Maps gene IDs from a dataset to human and mouse reference databases, and resolves orthology relationships.
Args:
data_frame (pd.DataFrame): Input data containing gene IDs to map.
query_column (str): Column name in the input data containing gene IDs.
human_map_db (pd.DataFrame): Reference database for human gene mapping.
mouse_map_db (pd.DataFrame): Reference database for mouse gene mapping.
orthology_db (pd.DataFrame): Database containing orthology relationships between mouse and human genes.
verbose (bool): Whether to print detailed logs during processing.
Returns:
pd.DataFrame: A combined mapping result with discrepancies flagged.
"""
if verbose:
print("------------ map human gene ids ------------")
mapped_hsap = map_genes(
expr_mat=data_frame,
expr_ids=query_column,
annot_mat=human_map_db,
annot_from="id",
annot_to="reference_id",
return_unmapped=True,
keep_prev_ids=True,
verbose=verbose,
)
if verbose:
print("------------ map mouse gene ids ------------")
mapped_mus = map_genes(
expr_mat=data_frame,
expr_ids=query_column,
annot_mat=mouse_map_db,
annot_from="id",
annot_to="reference_id",
return_unmapped=True,
keep_prev_ids=True,
verbose=verbose,
)
if verbose:
print("------------ mouse to human orthologs ------------")
mouse_hsap = orthologs_to_human(
mouse_df=mapped_mus,
mouse_col="reference_id",
orthology_df=orthology_db,
ortho_mouse_col="mouse_gene_symbol",
ortho_human_col="human_gene_symbol",
ortho_type_col="mouse_homology_type",
orthology_type="ortholog_one2one",
)
mouse_hsap = mouse_hsap.loc[:, ["previous_ids", "human_gene_symbol"]].drop_duplicates()
mouse_hsap = mouse_hsap.rename(columns={"human_gene_symbol": "reference_id"})
if verbose:
print("------------ combine results ------------")
both_mapped = combine_dataframe_columns(
df1=mapped_hsap, df2=mouse_hsap, id_column="previous_ids", reference_id_column="reference_id", verbose=verbose
)
both_mapped = both_mapped.loc[:, ["previous_ids", "reference_id", "discrepancy_flag"]].drop_duplicates()
return both_mapped
def map_mouse_human2(data_frame, query_column, human_map_db, mouse_map_db, orthology_db, verbose=False):
if verbose:
print("------------ map human gene ids ------------")
mapped_hsap = map_genes(
expr_mat=data_frame,
expr_ids=query_column,
annot_mat=human_map_db,
annot_from="id",
annot_to="reference_id",
return_unmapped=True,
keep_prev_ids=True,
verbose=verbose,
)
if verbose:
print("------------ map mouse gene ids ------------")
mapped_mus = map_genes(
expr_mat=data_frame,
expr_ids=query_column,
annot_mat=mouse_map_db,
annot_from="id",
annot_to="reference_id",
return_unmapped=True,
keep_prev_ids=True,
verbose=verbose,
)
if verbose:
print("------------ mouse to human orthologs ------------")
mouse_hsap = orthologs_to_human(
mouse_df=mapped_mus,
mouse_col="reference_id",
orthology_df=orthology_db,
ortho_mouse_col="mouse_gene_symbol",
ortho_human_col="human_gene_symbol",
ortho_type_col="mouse_homology_type",
orthology_type="ortholog_one2one",
)
## this testing confirms that the filtering step produces the same result as the script below that takes ENSMUSG to fill the NA from orthologs that are not one2one
## however not filtering causes discrepancies when combinding the two data_processing frames. this step is reqiured to avoid that
## filter on mouse gene symbol - if not mapped then the input was not a mouse gene (or not a mouse gene that can be mapped)
## alternative is to filter on ENSMUSG - but this will only work if the input list is ensembl gene ids, other ids will not be matched
if verbose:
print(mouse_hsap.shape)
mouse_hsap_filt = mouse_hsap.loc[
(mouse_hsap.previous_ids.str.contains("ENSMUS")) | (~mouse_hsap.mouse_gene_symbol.isnull()), :
]
# mouse_hsap_remainder=mouse_hsap.loc[~((mouse_hsap.previous_ids.str.contains('ENSMUS')) | (~mouse_hsap.mouse_gene_symbol.isnull())),:]
if verbose:
print(mouse_hsap_filt.shape)
# (mouse_hsap_remainder)
mouse_hsap = mouse_hsap_filt
## convert all gene human gene symbols to NA if they are not one2one orthologs
mouse_hsap.loc[mouse_hsap["mouse_homology_type"] != "ortholog_one2one", "human_gene_symbol"] = pd.NA
if verbose:
print("\n=========\tcount missing\t=========")
print(sum(mouse_hsap.human_gene_symbol.isnull()))
# fill missing human gene symbols with ENSMUSG
mouse_hsap["human_gene_symbol"] = mouse_hsap["human_gene_symbol"].fillna(mouse_hsap["previous_ids"])
if verbose:
print(sum(mouse_hsap.human_gene_symbol.str.contains("ENSMUSG")))
if verbose:
print("\n=========\tdoes not contain ENSMUSG\t=========")
print(mouse_hsap["previous_ids"][~mouse_hsap["previous_ids"].str.contains("ENSMUSG")].shape)
print(mouse_hsap["human_gene_symbol"][~mouse_hsap["human_gene_symbol"].str.contains("ENSMUSG")].shape)
print("\n=========\tcount missing\t=========")
print(sum(mouse_hsap.human_gene_symbol.isnull()))
mouse_hsap = mouse_hsap.loc[:, ["previous_ids", "human_gene_symbol"]].drop_duplicates()
mouse_hsap = mouse_hsap.rename(columns={"human_gene_symbol": "reference_id"})
if verbose:
print("------------ combine results ------------")
both_mapped = combine_dataframe_columns(
df1=mapped_hsap, df2=mouse_hsap, id_column="previous_ids", reference_id_column="reference_id", verbose=verbose
)
both_mapped = both_mapped.loc[:, ["previous_ids", "reference_id", "discrepancy_flag"]].drop_duplicates()
return both_mapped
def combine_dataframe_columns(df1, df2, id_column, reference_id_column, verbose=True):
"""
Combines two dataframes by merging on a common ID column and flags discrepancies in reference IDs.
Args:
df1 (pd.DataFrame): First dataframe to merge.
df2 (pd.DataFrame): Second dataframe to merge.
id_column (str): Column name to merge on.
reference_id_column (str): Column name containing reference IDs.
verbose (bool): Whether to print detailed logs during processing.
Returns:
pd.DataFrame: A merged dataframe with discrepancies flagged.
"""
# Standardize missing values by replacing empty strings with NaN
df1[reference_id_column] = df1[reference_id_column].replace("", pd.NA)
df2[reference_id_column] = df2[reference_id_column].replace("", pd.NA)
if verbose:
# Calculate and print the number of missing values in the reference_id columns of each dataframe
missing_df1 = df1[reference_id_column].isna().sum()
missing_df2 = df2[reference_id_column].isna().sum()
print(f"Missing values in {reference_id_column} of df1: {missing_df1}")
print(f"Missing values in {reference_id_column} of df2: {missing_df2}")
# Merge the dataframes on the specified 'id' column
merged_df = pd.merge(df1, df2, on=id_column, how="outer", suffixes=("_df1", "_df2"))
# Flag discrepancies where both reference IDs are present but do not match
merged_df["discrepancy_flag"] = np.where(
(merged_df[f"{reference_id_column}_df1"].notna())
& (merged_df[f"{reference_id_column}_df2"].notna())
& (merged_df[f"{reference_id_column}_df1"] != merged_df[f"{reference_id_column}_df2"]),
True,
False,
)
# Use numpy.where to combine the 'reference_id' columns, preferring non-null values from df1
merged_df[reference_id_column] = np.where(
merged_df[f"{reference_id_column}_df1"].notna(),
merged_df[f"{reference_id_column}_df1"],
merged_df[f"{reference_id_column}_df2"],
)
# Replace NaN with empty strings in the final dataframe
final_df = merged_df[
[id_column, reference_id_column, f"{reference_id_column}_df1", f"{reference_id_column}_df2", "discrepancy_flag"]
].fillna("")
if verbose:
# Calculate and print the number of missing values in the final result
missing_final = final_df[reference_id_column].isna().sum()
print(f"Missing values in final merged {reference_id_column}: {missing_final}")
# Print a warning if there are any discrepancies
if final_df["discrepancy_flag"].any():
print("Warning: There are discrepancies in the reference IDs between the two dataframes.")
return final_df
def orthologs_to_human(
mouse_df,
orthology_df,
mouse_col,
ortho_mouse_col,
ortho_human_col,
ortho_type_col,
orthology_type="ortholog_one2one",
):
"""
Merges a mouse data_processing frame with an orthology data_processing frame to convert mouse gene symbols to human gene symbols.
Parameters:
- mouse_df: pd.DataFrame - The data_processing frame containing mouse gene symbols.
- orthology_df: pd.DataFrame - The data_processing frame containing orthology information.
- mouse_col: str - The column name in the mouse_df that contains mouse gene symbols.
- ortho_mouse_col: str - The column name in the orthology_df that contains mouse gene symbols.
- ortho_human_col: str - The column name in the orthology_df that contains human gene symbols.
- ortho_type_col: str - The column name in the orthology_df that contains the orthology type.
- orthology_type: str - The type of orthology to keep (default is 'ortholog_one2one').
Returns:
- merged_df: pd.DataFrame - The merged data_processing frame with human gene symbols included.
"""
# Check if the specified orthology type exists in the orthology dataframe
unique_ortho_types = orthology_df[ortho_type_col].unique()
if orthology_type not in unique_ortho_types:
print(f"Error: Specified orthology type '{orthology_type}' not found.")
print("Available orthology types are:", unique_ortho_types)
return None
# Filter the orthology dataframe based on the specified orthology type
filtered_orthology_df = orthology_df[orthology_df[ortho_type_col] == orthology_type]
# Merge the mouse dataframe with the filtered orthology dataframe
merged_df = mouse_df.merge(
filtered_orthology_df[[ortho_mouse_col, ortho_human_col, ortho_type_col]],
left_on=mouse_col,
right_on=ortho_mouse_col,
how="left",
)
return merged_df
# Example usage:
# merged_df = merge_with_orthology(mouse_df, orthology_df, 'mouse_gene_column', 'ortho_mouse_gene_column', 'ortho_human_gene_column', 'orthology_type_column', 'ortholog_one2one')
def preprocess_wide_to_long(df, reference_id, sep="|", keep_id_type=True):
"""
Transforms the given DataFrame into a long format table where one specified column represents reference IDs
and all the entries from the other columns, including the specified column, are put into the second column.
Entries separated by a specified separator are split into individual values. Removes any duplicate values.
Handles NaN values appropriately by skipping them and removes rows with NaN in the reference_id column.
Args:
df (pd.DataFrame): The input DataFrame with gene information.
reference_id (str): The column name to be used as the reference identifier.
sep (str): The separator used to split entries in the ID columns.
keep_id_type (bool): Whether to keep the id_type column in the final output.
Returns:
pd.DataFrame: The transformed long format DataFrame with split values.
"""
# Check for duplicate column names
if df.columns.duplicated().any():
raise ValueError("Duplicate column names detected in the DataFrame.")
# Remove rows where reference_id is NaN
initial_row_count = df.shape[0]
df = df.dropna(subset=[reference_id])
final_row_count = df.shape[0]
if initial_row_count != final_row_count:
print(
f"Removed {initial_row_count - final_row_count} rows with NaN in '{reference_id}'. {final_row_count} rows remain."
)
else:
print("No rows with NaN in the reference_id were found.")
# Check for duplicate values in reference_id column
if df[reference_id].duplicated().any():
print(
f"Warning: Duplicate values found in the '{reference_id}' column. This may cause issues with the transformation."
)
long_format_data = []
# Process each column except the reference_id
for col in df.columns:
if col != reference_id:
# Convert numeric columns to string
if pd.api.types.is_numeric_dtype(df[col]):
df[col] = df[col].astype(str)
# Split the values by the separator and create a new DataFrame for each column
exploded_df = df[[reference_id, col]].dropna().assign(**{col: df[col].str.split(sep)})
exploded_df = exploded_df.explode(col)
exploded_df["id_type"] = col
exploded_df = exploded_df.rename(columns={col: "id"})
long_format_data.append(exploded_df)
# Concatenate all the long format DataFrames
long_df = pd.concat(long_format_data)
# Add the reference_id as its own column
reference_id_df = df[[reference_id]].dropna()
reference_id_df["id_type"] = reference_id
reference_id_df["id"] = reference_id_df[reference_id]
long_df = pd.concat([long_df, reference_id_df], ignore_index=True)
# Rename the reference_id column to "reference_id"
long_df = long_df.rename(columns={reference_id: "reference_id"})
# Drop duplicate values
long_df.drop_duplicates(inplace=True)
if not keep_id_type:
# Drop the id_type column and remove duplicates based only on 'id' and 'reference_id'
long_df = long_df.drop(columns=["id_type"]).drop_duplicates()
# Reorder the columns
columns_order = ["id", "reference_id"] if not keep_id_type else ["id", "id_type", "reference_id"]
long_df = long_df[columns_order]
return long_df
def categorise_mapping(df, ids_from_col, ids_to_col):
# Calculate the occurrences of each id and each gene_name
id_counts = df[ids_from_col].value_counts()
gene_counts = df[ids_to_col].value_counts()
# Map the counts back to the dataframe
df["id_count"] = df[ids_from_col].map(id_counts)
df["gene_count"] = df[ids_to_col].map(gene_counts)
# Determine match type based on counts
conditions = [(df["id_count"] > 1) & (df["gene_count"] > 1), (df["id_count"] > 1), (df["gene_count"] > 1)]
choices = ["many2many", "one2many", "many2one"]
df["match_type"] = np.select(conditions, choices, default="one2one")
# Drop the temporary columns used for counts
df.drop(columns=["id_count", "gene_count"], inplace=True)
return df
def remove_whitespace(series):
# return series.astype(str).str.replace(r'^\s+|\s+$', '', regex=True)
return series.astype(str).str.strip()
def unlist(nested_list):
"""
Recursively flattens a nested list.
Args:
nested_list (list): A list that may contain nested lists.
Returns:
list: A flattened list.
"""
flattened = []
for item in nested_list:
if isinstance(item, list):
flattened.extend(unlist(item))
else:
flattened.append(item)
return flattened
def map_genes(
expr_mat,
expr_ids=None,
annot_mat=None,
annot_from="id",
annot_to="hgnc_symbol",
return_unmapped=False,
verbose=True,
error=False,
keep_prev_ids=False,
):
"""TODO: The code currently breaks when expr_mat already has a column called referene_id. This is because the mapped = pd.merge(...) does not merge the reference_id columns. Try to fix this."""
if expr_ids is not None:
expr_mat = expr_mat.rename(columns={expr_ids: "previous_ids"})
expr_ids = "previous_ids"
if expr_ids is None:
expr_ids = "previous_ids"
expr_mat[expr_ids] = expr_mat.index
with warnings.catch_warnings():
warnings.simplefilter(action="ignore", category=pd.errors.SettingWithCopyWarning)
# Remove any whitespace - trailing or otherwise
expr_mat[expr_ids] = remove_whitespace(expr_mat[expr_ids])
if verbose:
print("\n [ gene ID mapping ] \n")
print(
f"\tdataset contains : {len(expr_mat['previous_ids'])} ids, of which unique: {len(expr_mat['previous_ids'].unique())} - {round(len(expr_mat['previous_ids'].unique()) / len(expr_mat['previous_ids']) * 100, 1)}%"
)
# Remove any missing ids
missing_genes = expr_mat[expr_mat[expr_ids].isin([None, "", "nan"])]
if not missing_genes.empty:
if verbose:
print(f"\tfound {len(missing_genes)} missing ids", list(missing_genes[expr_ids].unique())[:5])
expr_mat = expr_mat[~expr_mat[expr_ids].isin([None, "", "nan"])]
# Check for ids that are already mapping
premapped = expr_mat[expr_mat["previous_ids"].isin(annot_mat[annot_to])]
premapped.loc[:, annot_to] = premapped["previous_ids"]
if verbose:
print(
f'\n\texpr_mat - of {len(expr_mat["previous_ids"].unique())} ids {len(premapped["previous_ids"].unique())} - {round(len(premapped["previous_ids"].unique()) / len(expr_mat["previous_ids"].unique()) * 100, 3)}% directly map to annot_mat${annot_to}\n'
)
# Map using exact match
unmapped_hgnc = expr_mat[~expr_mat["previous_ids"].isin(premapped["previous_ids"])]
if unmapped_hgnc.empty:
if keep_prev_ids:
return premapped.drop_duplicates()
return premapped.drop(columns=["previous_ids"], errors="ignore").drop_duplicates()
mapped = pd.merge(
expr_mat[~expr_mat["previous_ids"].isin(premapped["previous_ids"])],
annot_mat[[annot_from, annot_to]].drop_duplicates(),
left_on="previous_ids",
right_on=annot_from,
how="inner",
)
mapped = pd.concat([mapped, premapped if not premapped.empty else None])
# Map the remainder using lowercase
remap = expr_mat[~expr_mat["previous_ids"].isin(mapped["previous_ids"])]
remap.loc[:, "previous_ids"] = remap["previous_ids"].str.lower()
reannot = annot_mat[[annot_from, annot_to]].drop_duplicates()
reannot[annot_from] = reannot[annot_from].str.lower()
remap = pd.merge(remap, reannot, left_on="previous_ids", right_on=annot_from, how="inner")
mapped = pd.concat([mapped, remap]).drop_duplicates()
dups = mapped[mapped.duplicated(subset=[annot_to], keep=False)][annot_to].unique()
uniq = mapped[~mapped[annot_to].isin(dups)][annot_to].unique()
if verbose:
print(f'\tone2one: {len(uniq)}\t{", ".join(uniq[:5])}')
print(f'\tmany2one: {len(dups)}\t{", ".join(dups[:5])}')
unmapped = expr_mat["previous_ids"][
~expr_mat["previous_ids"].str.lower().isin(mapped["previous_ids"].str.lower())
].unique()
if verbose:
print(f'\n\tunmapped genes: {len(unmapped)}\t:: {", ".join(unmapped[:5])}\n')
print("\n\n")
result = mapped
if return_unmapped:
unmapped_expr_mat = expr_mat[expr_mat["previous_ids"].isin(unmapped)]
if not unmapped_expr_mat.empty:
unmapped_expr_mat.loc[:, annot_to] = ""
result = pd.concat([result, unmapped_expr_mat])
result = result.loc[:, result.columns.isin(unlist([list(expr_mat.columns.values), annot_to]))]
if keep_prev_ids:
return result.drop_duplicates()
return result.drop(columns=["previous_ids"], errors="ignore").drop_duplicates()
##========================================================================================================================
##========== Test functions ================================================================================
##========================================================================================================================
def test_transform_function():
"""
Test case for the transform_and_split_to_long_format function using a toy example.
"""
data = {
"Gene stable ID": ["ID1|ID2", "ID3", "ID4|ID5"],
"Gene stable ID version": ["ID1.1", "ID3.1", None],
"Gene Synonym": ["Syn1", None, "Syn4"],
"Gene name": ["GeneA", "GeneB", "GeneC"],
}
df = pd.DataFrame(data)
expected_data = {
"id": ["ID1", "ID2", "ID1.1", "Syn1", "GeneA", "ID3", "ID3.1", "GeneB", "ID4", "ID5", "Syn4", "GeneC"],
"id_type": [
"Gene stable ID",
"Gene stable ID",
"Gene stable ID version",
"Gene Synonym",
"Gene name",
"Gene stable ID",
"Gene stable ID version",
"Gene name",
"Gene stable ID",
"Gene stable ID",
"Gene Synonym",
"Gene name",
],
"reference_id": [
"GeneA",
"GeneA",
"GeneA",
"GeneA",
"GeneA",
"GeneB",
"GeneB",
"GeneB",
"GeneC",
"GeneC",
"GeneC",
"GeneC",
],
}
expected_df = pd.DataFrame(expected_data)
# Transform the DataFrame
long_df = transform_and_split_to_long_format(df, "Gene name") # noqa
# Sort the DataFrame for comparison
long_df = long_df.sort_values(by=["id", "id_type", "reference_id"]).reset_index(drop=True)
expected_df = expected_df.sort_values(by=["id", "id_type", "reference_id"]).reset_index(drop=True)
# Check if the transformed DataFrame matches the expected DataFrame
assert long_df.equals(expected_df), "test_transform_function\t\t- did not produce expected result"
print("test_transform_function\t\t- passed")
# Run tests
def test_categorise_function():
mapping_test_data = {
"ids": ["id1", "id2", "id3", "id4", "id1", "id5"],
"gene_names": ["gene1", "gene2", "gene3", "gene3", "gene4", "gene5"],
"expected_match_type": ["one2many", "one2one", "many2one", "many2one", "one2many", "one2one"],
}
mapping_test_data = pd.DataFrame(mapping_test_data)
test_data = {
"ids": ["id1", "id2", "id3", "id4", "id1", "id5"],
"gene_names": ["gene1", "gene2", "gene3", "gene3", "gene4", "gene5"],
}
df_test = pd.DataFrame(test_data)
print("\nRunning optimized version:")
annotated_df_optimized = categorise_mapping(df_test.copy(), "ids", "gene_names")
print(annotated_df_optimized)
# Verify the results
assert (
annotated_df_optimized["match type"].tolist() == mapping_test_data["expected_match_type"].tolist()
), "Optimized version failed"
print("\ntest_categorise_function\t\t- passed")
# Only scripts the test if this script is executed directly (not imported)
if __name__ == "__main__":
test_transform_function()
test_categorise_function()
|