--- language: - en license: apache-2.0 library_name: transformers tags: - code-generation - python - programming - fine-tuned pipeline_tag: text-generation widget: - text: |- ### Instruction: Write a Python function to reverse a string ### Input: ### Response: example_title: Reverse String - text: |- ### Instruction: how are you? ### Input: ### Response: example_title: Non-Code Request - text: |- ### Instruction: Implement quicksort algorithm in Python ### Input: Use recursion and list comprehensions ### Response: example_title: Quicksort Algorithm base_model: Mercy-62/python-code-only-Qwen-lora datasets: - sahil2801/CodeAlpaca-20k - google-research-datasets/mbpp - openai/openai_humaneval --- # 🐍 Python Code-Only Qwen **A fine-tuned model that generates ONLY executable Python code, with no explanations or conversations.** ## 🚀 Quick Inference Example ```python from transformers import AutoModelForCausalLM, AutoTokenizer # Load model model = AutoModelForCausalLM.from_pretrained("Mercy-62/python-code-only-Qwen-lora") tokenizer = AutoTokenizer.from_pretrained("Mercy-62/python-code-only-Qwen-lora") # Use exact same prompt format from training alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: {} ### Input: {} ### Response: {}""" # Enable faster inference (if using Unsloth) # FastLanguageModel.for_inference(model) # Test 1: Simple code generation inputs = tokenizer( [ alpaca_prompt.format( "Write a Python function to reverse a string", # instruction "", # input (leave empty if no context) "", # output - leave blank for generation ) ], return_tensors="pt" ).to("cuda") outputs = model.generate(**inputs, max_new_tokens=128, use_cache=True) print("Test 1 - Reverse string function:") print(tokenizer.batch_decode(outputs)[0])