File size: 94,197 Bytes
ef31dc4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 |
---
library_name: transformers
license: apache-2.0
license_link: https://huggingface.co/Qwen/Qwen3.5-397B-A17B/blob/main/LICENSE
pipeline_tag: image-text-to-text
---
# Qwen3.5-397B-A17B
<img width="400px" src="https://qianwen-res.oss-accelerate.aliyuncs.com/logo_qwen3.5.png">
[](https://chat.qwen.ai)
> [!Note]
> This repository contains model weights and configuration files for the post-trained model in the Hugging Face Transformers format.
>
> These artifacts are compatible with Hugging Face Transformers, vLLM, SGLang, etc.
> [!Tip]
> For users seeking managed, scalable inference without infrastructure maintenance, the official Qwen API service is provided by [Alibaba Cloud Model Studio](https://modelstudio.alibabacloud.com/).
>
> In particular, **Qwen3.5-Plus** is the hosted version corresponding to Qwen3.5-397B-A17B with more production features, e.g., 1M context length by default, official built-in tools, and adaptive tool use.
> For more information, please refer to the [User Guide](https://www.alibabacloud.com/help/en/model-studio/text-generation).
Over recent months, we have intensified our focus on developing foundation models that deliver exceptional utility and performance. Qwen3.5 represents a significant leap forward, integrating breakthroughs in multimodal learning, architectural efficiency, reinforcement learning scale, and global accessibility to empower developers and enterprises with unprecedented capability and efficiency.
## Qwen3.5 Highlights
Qwen3.5 features the following enhancement:
- **Unified Vision-Language Foundation**: Early fusion training on multimodal tokens achieves cross-generational parity with Qwen3 and outperforms Qwen3-VL models across reasoning, coding, agents, and visual understanding benchmarks.
- **Efficient Hybrid Architecture**: Gated Delta Networks combined with sparse Mixture-of-Experts deliver high-throughput inference with minimal latency and cost overhead.
- **Scalable RL Generalization**: Reinforcement learning scaled across million-agent environments with progressively complex task distributions for robust real-world adaptability.
- **Global Linguistic Coverage**: Expanded support to 201 languages and dialects, enabling inclusive, worldwide deployment with nuanced cultural and regional understanding.
- **Next-Generation Training Infrastructure**: Near-100% multimodal training efficiency compared to text-only training and asynchronous RL frameworks supporting massive-scale agent scaffolds and environment orchestration.

For more details, please refer to our blog post [Qwen3.5](https://qwen.ai/blog?id=qwen3.5).
## Model Overview
- Type: Causal Language Model with Vision Encoder
- Training Stage: Pre-training & Post-training
- Language Model
- Number of Parameters: 397B in total and 17B activated
- Hidden Dimension: 4096
- Token Embedding: 248320 (Padded)
- Number of Layers: 60
- Hidden Layout: 15 \* (3 \* (Gated DeltaNet -> MoE) -> 1 \* (Gated Attention -> MoE))
- Gated DeltaNet:
- Number of Linear Attention Heads: 64 for V and 16 for QK
- Head Dimension: 128
- Gated Attention:
- Number of Attention Heads: 32 for Q and 2 for KV
- Head Dimension: 256
- Rotary Position Embedding Dimension: 64
- Mixture Of Experts
- Number of Experts: 512
- Number of Activated Experts: 10 Routed + 1 Shared
- Expert Intermediate Dimension: 1024
- LM Output: 248320 (Padded)
- MTP: trained with multi-steps
- Context Length: 262,144 natively and extensible up to 1,010,000 tokens.
## Benchmark Results
### Language
<div style="font-family:-apple-system,BlinkMacSystemFont,'Segoe UI',Roboto,sans-serif;max-width:900px;margin:0 auto;padding:16px 0">
<table style="width:100%;border-collapse:collapse;font-size:13px">
<thead><tr>
<th style="padding:10px 12px;text-align:left;font-weight:600;border-bottom:2px solid #7c3aed;color:#7c3aed"></th>
<th style="padding:10px 12px;text-align:center;font-weight:500;border-bottom:2px solid #7c3aed;color:#7c3aed;font-size: 14px;">GPT5.2</th>
<th style="padding:10px 12px;text-align:center;font-weight:500;border-bottom:2px solid #7c3aed;color:#7c3aed;font-size: 14px;">Claude 4.5 Opus</th>
<th style="padding:10px 12px;text-align:center;font-weight:500;border-bottom:2px solid #7c3aed;color:#7c3aed;font-size: 14px;">Gemini-3 Pro</th>
<th style="padding:10px 12px;text-align:center;font-weight:500;border-bottom:2px solid #7c3aed;color:#7c3aed;font-size: 14px;">Qwen3-Max-Thinking</th>
<th style="padding:10px 12px;text-align:center;font-weight:500;border-bottom:2px solid #7c3aed;color:#7c3aed;font-size: 14px;">K2.5-1T-A32B</th>
<th style="padding:10px 12px;text-align:center;font-weight:500;border-bottom:2px solid #7c3aed;color:#7c3aed;font-size: 14px;">Qwen3.5-397B-A17B</th>
</tr></thead>
<tbody>
<tr><td colspan="7" style="padding:8px 12px;font-weight:600;color:#7c3aed;border-bottom:1px solid rgba(124, 58, 237, 0.2);background:rgba(124, 58, 237, 0.1)">Knowledge</td></tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">MMLU-Pro</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">87.4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">89.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">89.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">85.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">87.1</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">87.8</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">MMLU-Redux</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">95.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">95.6</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">95.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">92.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">94.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">94.9</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">SuperGPQA</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">67.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">70.6</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">74.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">67.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">69.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">70.4</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">C-Eval</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">90.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">92.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">93.4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">93.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">94.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">93.0</td>
</tr>
<tr><td colspan="7" style="padding:8px 12px;font-weight:600;color:#7c3aed;border-bottom:1px solid rgba(124, 58, 237, 0.2);background:rgba(124, 58, 237, 0.1)">Instruction Following</td></tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">IFEval</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">94.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">90.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">93.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">93.4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">93.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">92.6</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">IFBench</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">75.4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">58.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">70.4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">70.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">70.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">76.5</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">MultiChallenge</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">57.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">54.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">64.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">63.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">62.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">67.6</td>
</tr>
<tr><td colspan="7" style="padding:8px 12px;font-weight:600;color:#7c3aed;border-bottom:1px solid rgba(124, 58, 237, 0.2);background:rgba(124, 58, 237, 0.1)">Long Context</td></tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">AA-LCR</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">72.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">74.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">70.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">68.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">70.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">68.7</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">LongBench v2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">54.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">64.4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">68.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">60.6</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">61.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">63.2</td>
</tr>
<tr><td colspan="7" style="padding:8px 12px;font-weight:600;color:#7c3aed;border-bottom:1px solid rgba(124, 58, 237, 0.2);background:rgba(124, 58, 237, 0.1)">STEM</td></tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">GPQA</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">92.4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">87.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">91.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">87.4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">87.6</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">88.4</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">HLE</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">35.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">30.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">37.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">30.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">30.1</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">28.7</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">HLE-Verified¹</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">43.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">38.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">48</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">37.6</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">--</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">37.6</td>
</tr>
<tr><td colspan="7" style="padding:8px 12px;font-weight:600;color:#7c3aed;border-bottom:1px solid rgba(124, 58, 237, 0.2);background:rgba(124, 58, 237, 0.1)">Reasoning</td></tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">LiveCodeBench v6</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">87.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">84.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">90.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">85.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">85.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">83.6</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">HMMT Feb 25</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">99.4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">92.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">97.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">98.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">95.4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">94.8</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">HMMT Nov 25</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">100</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">93.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">93.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">94.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">91.1</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">92.7</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">IMOAnswerBench</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">86.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">84.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">83.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">83.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">81.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">80.9</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">AIME26</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">96.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">93.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">90.6</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">93.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">93.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">91.3</td>
</tr>
<tr><td colspan="7" style="padding:8px 12px;font-weight:600;color:#7c3aed;border-bottom:1px solid rgba(124, 58, 237, 0.2);background:rgba(124, 58, 237, 0.1)">General Agent</td></tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">BFCL-V4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">63.1</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">77.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">72.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">67.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">68.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">72.9</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">TAU2-Bench</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">87.1</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">91.6</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">85.4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">84.6</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">77.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">86.7</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">VITA-Bench</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">38.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">56.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">51.6</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">40.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">41.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">49.7</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">DeepPlanning</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">44.6</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">33.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">23.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">28.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">14.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">34.3</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">Tool Decathlon</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">43.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">43.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">36.4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">18.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">27.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">38.3</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">MCP-Mark</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">57.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">42.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">53.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">33.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">29.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">46.1</td>
</tr>
<tr><td colspan="7" style="padding:8px 12px;font-weight:600;color:#7c3aed;border-bottom:1px solid rgba(124, 58, 237, 0.2);background:rgba(124, 58, 237, 0.1)">Search Agent³</td></tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">HLE w/ tool</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">45.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">43.4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">45.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">49.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">50.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">48.3</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">BrowseComp</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">65.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">67.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">59.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">53.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">--/74.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">69.0/78.6</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">BrowseComp-zh</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">76.1</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">62.4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">66.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">60.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">--</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">70.3</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">WideSearch</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">76.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">76.4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">68.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">57.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">72.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">74.0</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">Seal-0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">45.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">47.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">45.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">46.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">57.4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">46.9</td>
</tr>
<tr><td colspan="7" style="padding:8px 12px;font-weight:600;color:#7c3aed;border-bottom:1px solid rgba(124, 58, 237, 0.2);background:rgba(124, 58, 237, 0.1)">Multilingualism</td></tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">MMMLU</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">89.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">90.1</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">90.6</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">84.4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">86.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">88.5</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">MMLU-ProX</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">83.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">85.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">87.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">78.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">82.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">84.7</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">NOVA-63</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">54.6</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">56.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">56.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">54.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">56.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">59.1</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">INCLUDE</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">87.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">86.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">90.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">82.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">83.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">85.6</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">Global PIQA</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">90.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">91.6</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">93.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">86.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">89.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">89.8</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">PolyMATH</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">62.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">79.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">81.6</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">64.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">43.1</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">73.3</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">WMT24++</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">78.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">79.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">80.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">77.6</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">77.6</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">78.9</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">MAXIFE</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">88.4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">79.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">87.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">84.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">72.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">88.2</td>
</tr>
<tr><td colspan="7" style="padding:8px 12px;font-weight:600;color:#7c3aed;border-bottom:1px solid rgba(124, 58, 237, 0.2);background:rgba(124, 58, 237, 0.1)">Coding Agent</td></tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">SWE-bench Verified</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">80.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">80.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">76.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">75.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">76.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">76.4</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">SWE-bench Multilingual</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">72.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">77.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">65.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">66.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">73.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">69.3</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">SecCodeBench</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">68.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">68.6</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">62.4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">57.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">61.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">68.3</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">Terminal Bench 2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">54.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">59.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">54.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">22.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">50.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">52.5</td>
</tr>
</tbody>
</table>
<p style="margin-top:12px;font-size:11px;opacity:0.7">
* HLE-Verified: a verified and revised version of Humanity’s Last Exam (HLE), accompanied by a transparent, component-wise verification protocol and a fine-grained error taxonomy. We open-source the dataset at https://huggingface.co/datasets/skylenage/HLE-Verified.<br>
* TAU2-Bench: we follow the official setup except for the airline domain, where all models are evaluated by applying the fixes proposed in the Claude Opus 4.5 system card.<br>
* MCPMark: GitHub MCP server uses v0.30.3 from api.githubcopilot.com; Playwright tool responses are truncated at 32k tokens.<br>
* Search Agent: most search agents built on our model adopt a simple context-folding strategy(256k): once the cumulative Tool Response length reaches a preset threshold, earlier Tool Responses are pruned from the history to keep the context within limits.<br>
* BrowseComp: we tested two strategies, simple context-folding achieved a score of 69.0, while using the same discard-all strategy as DeepSeek-V3.2 and Kimi K2.5 achieved 78.6.<br>
* WideSearch: we use a 256k context window without any context management.<br>
* MMLU-ProX: we report the averaged accuracy on 29 languages.<br>
* WMT24++: a harder subset of WMT24 after difficulty labeling and rebalancing; we report the averaged scores on 55 languages using XCOMET-XXL.<br>
* MAXIFE: we report the accuracy on English + multilingual original prompts (totally 23 settings).<br>
* Empty cells (--) indicate scores not yet available or not applicable.<br>
</p>
</div>
### Vision Language
<div style="font-family:-apple-system,BlinkMacSystemFont,'Segoe UI',Roboto,sans-serif;max-width:900px;margin:0 auto;padding:16px 0">
<table style="width:100%;border-collapse:collapse;font-size:13px">
<thead><tr>
<th style="padding:10px 12px;text-align:left;font-weight:600;border-bottom:2px solid #7c3aed;color:#7c3aed"></th>
<th style="padding:10px 12px;text-align:center;font-weight:500;border-bottom:2px solid #7c3aed;color:#7c3aed;font-size: 14px;">GPT5.2</th>
<th style="padding:10px 12px;text-align:center;font-weight:500;border-bottom:2px solid #7c3aed;color:#7c3aed;font-size: 14px;">Claude 4.5 Opus</th>
<th style="padding:10px 12px;text-align:center;font-weight:500;border-bottom:2px solid #7c3aed;color:#7c3aed;font-size: 14px;">Gemini-3 Pro</th>
<th style="padding:10px 12px;text-align:center;font-weight:500;border-bottom:2px solid #7c3aed;color:#7c3aed;font-size: 14px;">Qwen3-VL-235B-A22B</th>
<th style="padding:10px 12px;text-align:center;font-weight:500;border-bottom:2px solid #7c3aed;color:#7c3aed;font-size: 14px;">K2.5-1T-A32B</th>
<th style="padding:10px 12px;text-align:center;font-weight:500;border-bottom:2px solid #7c3aed;color:#7c3aed;font-size: 14px;">Qwen3.5-397B-A17B</th>
</tr></thead>
<tbody>
<tr><td colspan="7" style="padding:8px 12px;font-weight:600;color:#7c3aed;border-bottom:1px solid rgba(124, 58, 237, 0.2);background:rgba(124, 58, 237, 0.1)">STEM and Puzzle</td></tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">MMMU</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">86.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">80.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">87.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">80.6</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">84.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">85.0</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">MMMU-Pro</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">79.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">70.6</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">81.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">69.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">78.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">79.0</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">MathVision</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">83.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">74.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">86.6</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">74.6</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">84.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">88.6</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">Mathvista(mini)</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">83.1</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">80.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">87.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">85.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">90.1</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">90.3</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">We-Math</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">79.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">70.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">86.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">74.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">84.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">87.9</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">DynaMath</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">86.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">79.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">85.1</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">82.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">84.4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">86.3</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">ZEROBench</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">10</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">12</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">ZEROBench_sub</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">33.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">28.4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">39.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">28.4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">33.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">41.0</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">BabyVision</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">34.4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">14.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">49.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">22.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">36.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">52.3/43.3</td>
</tr>
<tr><td colspan="7" style="padding:8px 12px;font-weight:600;color:#7c3aed;border-bottom:1px solid rgba(124, 58, 237, 0.2);background:rgba(124, 58, 237, 0.1)">General VQA</td></tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">RealWorldQA</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">83.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">77.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">83.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">81.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">81.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">83.9</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">MMStar</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">77.1</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">73.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">83.1</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">78.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">80.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">83.8</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">HallusionBench</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">65.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">64.1</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">68.6</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">66.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">69.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">71.4</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">MMBench<sub><small>EN-DEV-v1.1</small></sub></td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">88.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">89.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">93.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">89.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">94.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">93.7</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">SimpleVQA</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">55.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">65.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">73.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">61.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">71.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">67.1</td>
</tr>
<tr><td colspan="7" style="padding:8px 12px;font-weight:600;color:#7c3aed;border-bottom:1px solid rgba(124, 58, 237, 0.2);background:rgba(124, 58, 237, 0.1)">Text Recognition and Document Understanding</td></tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">OmniDocBench1.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">85.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">87.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">88.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">84.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">88.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">90.8</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">CharXiv(RQ)</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">82.1</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">68.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">81.4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">66.1</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">77.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">80.8</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">MMLongBench-Doc</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">--</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">61.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">60.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">56.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">58.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">61.5</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">CC-OCR</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">70.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">76.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">79.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">81.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">79.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">82.0</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">AI2D_TEST</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">92.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">87.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">94.1</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">89.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">90.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">93.9</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">OCRBench</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">80.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">85.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">90.4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">87.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">92.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">93.1</td>
</tr>
<tr><td colspan="7" style="padding:8px 12px;font-weight:600;color:#7c3aed;border-bottom:1px solid rgba(124, 58, 237, 0.2);background:rgba(124, 58, 237, 0.1)">Spatial Intelligence</td></tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">ERQA</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">59.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">46.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">70.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">52.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">--</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">67.5</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">CountBench</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">91.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">90.6</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">97.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">93.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">94.1</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">97.2</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">RefCOCO(avg)</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">--</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">--</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">84.1</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">91.1</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">87.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">92.3</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">ODInW13</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">--</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">--</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">46.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">43.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">--</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">47.0</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">EmbSpatialBench</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">81.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">75.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">61.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">84.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">77.4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">84.5</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">RefSpatialBench</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">--</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">--</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">65.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">69.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">--</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">73.6</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">LingoQA</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">68.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">78.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">72.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">66.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">68.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">81.6</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">V*</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">75.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">67.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">88.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">85.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">77.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">95.8/91.1</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">Hypersim</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">--</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">--</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">--</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">11.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">--</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">12.5</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">SUNRGBD</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">--</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">--</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">--</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">34.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">--</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">38.3</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">Nuscene</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">--</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">--</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">--</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">13.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">--</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">16.0</td>
</tr>
<tr><td colspan="7" style="padding:8px 12px;font-weight:600;color:#7c3aed;border-bottom:1px solid rgba(124, 58, 237, 0.2);background:rgba(124, 58, 237, 0.1)">Video Understanding</td></tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">VideoMME<sub><small>(w sub.)</sub></small></td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">86</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">77.6</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">88.4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">83.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">87.4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">87.5</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">VideoMME<sub><small>(w/o sub.)</sub></small></td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">85.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">81.4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">87.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">79.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">83.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">83.7</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">VideoMMMU</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">85.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">84.4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">87.6</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">80.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">86.6</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">84.7</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">MLVU (M-Avg)</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">85.6</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">81.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">83.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">83.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">85.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">86.7</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">MVBench</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">78.1</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">67.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">74.1</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">75.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">73.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">77.6</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">LVBench</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">73.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">57.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">76.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">63.6</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">75.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">75.5</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">MMVU</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">80.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">77.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">77.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">71.1</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">80.4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">75.4</td>
</tr>
<tr><td colspan="7" style="padding:8px 12px;font-weight:600;color:#7c3aed;border-bottom:1px solid rgba(124, 58, 237, 0.2);background:rgba(124, 58, 237, 0.1)">Visual Agent</td></tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">ScreenSpot Pro</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">--</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">45.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">72.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">62.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">--</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">65.6</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">OSWorld-Verified</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">38.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">66.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">--</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">38.1</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">63.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">62.2</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">AndroidWorld</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">--</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">--</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">--</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">63.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">--</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">66.8</td>
</tr>
<tr><td colspan="7" style="padding:8px 12px;font-weight:600;color:#7c3aed;border-bottom:1px solid rgba(124, 58, 237, 0.2);background:rgba(124, 58, 237, 0.1)">Medical VQA</td></tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">SLAKE</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">76.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">76.4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">81.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">54.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">81.6</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">79.9</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">PMC-VQA</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">58.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">59.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">62.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">41.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">63.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">64.2</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">MedXpertQA-MM</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">73.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">63.6</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">76.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">47.6</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">65.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">70.0</td>
</tr>
</tbody>
</table>
<p style="margin-top:12px;font-size:11px;opacity:0.7">
* MathVision:our model’s score is evaluated using a fixed prompt, e.g., “Please reason step by step, and put your final answer within \boxed{}.” For other models, we report the higher score between runs with and without the \boxed{} formatting.<br>
* BabyVision: our model’s score is reported with CI (Code Interpreter) enabled; without CI, the result is 43.3.<br>
* V*: our model’s score is reported with CI (Code Interpreter) enabled; without CI, the result is 91.1.<br>
* Empty cells (--) indicate scores not yet available or not applicable.<br>
</p>
</div>
## Quickstart
> [!Important]
> Qwen3.5 models operate in thinking mode by default, generating thinking content signified by `<think>\n...</think>\n\n` before producing the final responses.
> To disable thinking content and obtain direct response, refer to the examples [here](#instruct-or-non-thinking-mode).
For streamlined integration, we recommend using Qwen3.5 via APIs. Below is a guide to use Qwen3.5 via OpenAI-compatible API.
### Serving Qwen3.5
Qwen3.5 can be served via APIs with popular inference frameworks.
In the following, we show example commands to launch OpenAI-Compatible API servers for Qwen3.5 models.
> [!Important]
> Inference efficiency and throughput vary significantly across frameworks.
> We recommend using the latest framework versions to ensure optimal performance and compatibility.
> For production workloads or high-throughput scenarios, dedicated serving engines such as SGLang or vLLM are strongly recommended.
> [!Important]
> The model has a default context length of 262,144 tokens.
> If you encounter out-of-memory (OOM) errors, consider reducing the context window.
> However, because Qwen3.5 leverages extended context for complex tasks, we advise maintaining a context length of at least 128K tokens to preserve thinking capabilities.
#### SGLang
[SGLang](https://github.com/sgl-project/sglang) is a fast serving framework for large language models and vision language models.
SGLang from the main branch of the open-source repository is required for Qwen3.5, which can be installed using the following command in a fresh environment:
```shell
uv pip install 'git+https://github.com/sgl-project/sglang.git#subdirectory=python&egg=sglang[all]'
```
See [its documentation](https://docs.sglang.ai/get_started/install.html) for more details.
The following will create API endpoints at `http://localhost:8000/v1`:
- **Standard Version**: The following command can be used to create an API endpoint with maximum context length 262,144 tokens using tensor parallel on 8 GPUs.
```shell
python -m sglang.launch_server --model-path Qwen/Qwen3.5-397B-A17B --port 8000 --tp-size 8 --mem-fraction-static 0.8 --context-length 262144 --reasoning-parser qwen3
```
- **Tool Use**: To support tool use, you can use the following command.
```shell
python -m sglang.launch_server --model-path Qwen/Qwen3.5-397B-A17B --port 8000 --tp-size 8 --mem-fraction-static 0.8 --context-length 262144 --reasoning-parser qwen3 --tool-call-parser qwen3_coder
```
- **Multi-Token Prediction (MTP)**: The following command is recommended for MTP:
```shell
python -m sglang.launch_server --model-path Qwen/Qwen3.5-397B-A17B --port 8000 --tp-size 8 --mem-fraction-static 0.8 --context-length 262144 --reasoning-parser qwen3 --speculative-algo NEXTN --speculative-num-steps 3 --speculative-eagle-topk 1 --speculative-num-draft-tokens 4
```
#### vLLM
[vLLM](https://github.com/vllm-project/vllm) is a high-throughput and memory-efficient inference and serving engine for LLMs.
vLLM from the main branch of the open-source repository is required for Qwen3.5, which can be installed using the following command in a fresh environment:
```shell
uv pip install vllm --torch-backend=auto --extra-index-url https://wheels.vllm.ai/nightly
```
See [its documentation](https://docs.vllm.ai/en/stable/getting_started/installation/index.html) for more details.
For detailed Qwen3.5 usage guide, see the [vLLM Qwen3.5 recipe](https://docs.vllm.ai/projects/recipes/en/latest/Qwen/Qwen3.5.html).
The following will create API endpoints at `http://localhost:8000/v1`:
- **Standard Version**: The following command can be used to create an API endpoint with maximum context length 262,144 tokens using tensor parallel on 8 GPUs.
```shell
vllm serve Qwen/Qwen3.5-397B-A17B --port 8000 --tensor-parallel-size 8 --max-model-len 262144 --reasoning-parser qwen3
```
- **Tool Call**: To support tool use, you can use the following command.
```shell
vllm serve Qwen/Qwen3.5-397B-A17B --port 8000 --tensor-parallel-size 8 --max-model-len 262144 --reasoning-parser qwen3 --enable-auto-tool-choice --tool-call-parser qwen3_coder
```
- **Multi-Token Prediction (MTP)**: The following command is recommended for MTP:
```shell
vllm serve Qwen/Qwen3.5-397B-A17B --port 8000 --tensor-parallel-size 8 --max-model-len 262144 --reasoning-parser qwen3 --speculative-config '{"method":"qwen3_next_mtp","num_speculative_tokens":2}'
```
- **Text-Only**: The following command skips the vision encoder and multimodal profiling to free up memory for additional KV cache:
```shell
vllm serve Qwen/Qwen3.5-397B-A17B --port 8000 --tensor-parallel-size 8 --max-model-len 262144 --reasoning-parser qwen3 --language-model-only
```
#### Hugging Face Transformers
Hugging Face Transformers contains a _lightweight_ server which can be used for quick testing and moderate load deployment.
The latest `transformers` is required for Qwen3.5:
```shell
pip install "transformers[serving] @ git+https://github.com/huggingface/transformers.git@main"
```
See [its documentation](https://huggingface.co/docs/transformers/main/serving) for more details.
Then, run `transformers serve` to launch a server with API endpoints at `http://localhost:8000/v1`; it will place the model on accelerators if available:
```shell
transformers serve --force-model Qwen/Qwen3.5-397B-A17B --port 8000 --continuous-batching
```
### Using Qwen3.5 via the Chat Completions API
The chat completions API is accessible via standard HTTP requests or OpenAI SDKs.
Here, we show examples using the OpenAI Python SDK.
Before starting, make sure it is installed and the API key and the API base URL is configured, e.g.:
```shell
pip install -U openai
# Set the following accordingly
export OPENAI_BASE_URL="http://localhost:8000/v1"
export OPENAI_API_KEY="EMPTY"
```
> [!Tip]
> We recommend using the following set of sampling parameters for generation
> - Thinking mode: `temperature=0.6, top_p=0.95, top_k=20, min_p=0.0, presence_penalty=0.0, repetition_penalty=1.0`
> - Instruct (or non-thinking) mode: `temperature=0.7, top_p=0.8, top_k=20, min_p=0.0, presence_penalty=1.5, repetition_penalty=1.0`
#### Text-Only Input
```python
from openai import OpenAI
# Configured by environment variables
client = OpenAI()
messages = [
{"role": "user", "content": "Type \"I love Qwen3.5\" backwards"},
]
chat_response = client.chat.completions.create(
model="Qwen/Qwen3.5-397B-A17B",
messages=messages,
max_tokens=81920,
temperature=0.6,
top_p=0.95,
extra_body={
"top_k": 20,
},
)
print("Chat response:", chat_response)
```
#### Image Input
```python
from openai import OpenAI
# Configured by environment variables
client = OpenAI()
messages = [
{
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {
"url": "https://qianwen-res.oss-accelerate.aliyuncs.com/Qwen3.5/demo/CI_Demo/mathv-1327.jpg"
}
},
{
"type": "text",
"text": "The centres of the four illustrated circles are in the corners of the square. The two big circles touch each other and also the two little circles. With which factor do you have to multiply the radii of the little circles to obtain the radius of the big circles?\nChoices:\n(A) $\\frac{2}{9}$\n(B) $\\sqrt{5}$\n(C) $0.8 \\cdot \\pi$\n(D) 2.5\n(E) $1+\\sqrt{2}$"
}
]
}
]
response = client.chat.completions.create(
model="Qwen/Qwen3.5-397B-A17B",
messages=messages,
max_tokens=81920,
temperature=0.6,
top_p=0.95,
extra_body={
"top_k": 20,
},
)
print("Chat response:", chat_response)
```
#### Video Input
```python
from openai import OpenAI
# Configured by environment variables
client = OpenAI()
messages = [
{
"role": "user",
"content": [
{
"type": "video_url",
"video_url": {
"url": "https://qianwen-res.oss-accelerate.aliyuncs.com/Qwen3.5/demo/video/N1cdUjctpG8.mp4"
}
},
{
"type": "text",
"text": "How many porcelain jars were discovered in the niches located in the primary chamber of the tomb?"
}
]
}
]
# When vLLM is launched with `--media-io-kwargs '{"video": {"num_frames": -1}}'`,
# video frame sampling can be configured via `extra_body` (e.g., by setting `fps`).
# This feature is currently supported only in vLLM.
#
# By default, `fps=2` and `do_sample_frames=True`.
# With `do_sample_frames=True`, you can customize the `fps` value to set your desired video sampling rate.
response = client.chat.completions.create(
model="Qwen/Qwen3.5-397B-A17B",
messages=messages,
max_tokens=81920,
temperature=0.6,
top_p=0.95,
extra_body={
"top_k": 20,
"mm_processor_kwargs": {"fps": 2, "do_sample_frames": True},
},
)
print("Chat response:", chat_response)
```
#### Instruct (or Non-Thinking) Mode
> [!Important]
> Qwen3.5 does not officially support the soft switch of Qwen3, i.e., `/think` and `/nothink`.
Qwen3.5 will think by default before response.
You can obtain direct response from the model without thinking by configuring the API parameters.
For example,
```python
from openai import OpenAI
# Configured by environment variables
client = OpenAI()
messages = [
{
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {
"url": "https://qianwen-res.oss-accelerate.aliyuncs.com/Qwen3.5/demo/RealWorld/RealWorld-04.png"
}
},
{
"type": "text",
"text": "Where is this?"
}
]
}
]
chat_response = client.chat.completions.create(
model="Qwen/Qwen3.5-397B-A17B",
messages=messages,
max_tokens=32768,
temperature=0.7,
top_p=0.8,
presence_penalty=1.5,
extra_body={
"top_k": 20,
"chat_template_kwargs": {"enable_thinking": False},
},
)
print("Chat response:", chat_response)
```
> [!Note]
> If you are using APIs from Alibaba Cloud Model Studio, in addition to changing `model`, please use `"enable_thinking": False` instead of `"chat_template_kwargs": {"enable_thinking": False}`.
## Agentic Usage
Qwen3.5 excels in tool calling capabilities.
### Qwen-Agent
We recommend using [Qwen-Agent](https://github.com/QwenLM/Qwen-Agent) to quickly build Agent applications with Qwen3.5.
To define the available tools, you can use the MCP configuration file, use the integrated tool of Qwen-Agent, or integrate other tools by yourself.
```python
import os
from qwen_agent.agents import Assistant
# Define LLM
# Using Alibaba Cloud Model Studio
llm_cfg = {
# Use the OpenAI-compatible model service provided by DashScope:
'model': 'Qwen3.5-397B-A17B',
'model_type': 'qwenvl_oai',
'model_server': 'https://dashscope.aliyuncs.com/compatible-mode/v1',
'api_key': os.getenv('DASHSCOPE_API_KEY'),
'generate_cfg': {
'use_raw_api': True,
# When using Dash Scope OAI API, pass the parameter of whether to enable thinking mode in this way
'extra_body': {
'enable_thinking': True
},
},
}
# Using OpenAI-compatible API endpoint.
# functionality of the deployment frameworks and let Qwen-Agent automate the related operations.
#
# llm_cfg = {
# # Use your own model service compatible with OpenAI API by vLLM/SGLang:
# 'model': 'Qwen/Qwen3.5-397B-A17B',
# 'model_type': 'qwenvl_oai',
# 'model_server': 'http://localhost:8000/v1', # api_base
# 'api_key': 'EMPTY',
#
# 'generate_cfg': {
# 'use_raw_api': True,
# # When using vLLM/SGLang OAI API, pass the parameter of whether to enable thinking mode in this way
# 'extra_body': {
# 'chat_template_kwargs': {'enable_thinking': True}
# },
# },
# }
# Define Tools
tools = [
{'mcpServers': { # You can specify the MCP configuration file
"filesystem": {
"command": "npx",
"args": ["-y", "@modelcontextprotocol/server-filesystem", "/Users/xxxx/Desktop"]
}
}
}
]
# Define Agent
bot = Assistant(llm=llm_cfg, function_list=tools)
# Streaming generation
messages = [{'role': 'user', 'content': 'Help me organize my desktop.'}]
for responses in bot.run(messages=messages):
pass
print(responses)
# Streaming generation
messages = [{'role': 'user', 'content': 'Develop a dog website and save it on the desktop'}]
for responses in bot.run(messages=messages):
pass
print(responses)
```
### Qwen Code
[Qwen Code](https://github.com/QwenLM/qwen-code) is an open-source AI agent for the terminal, optimized for Qwen models. It helps you understand large codebases, automate tedious work, and ship faster.
For more information, please refer to [Qwen Code](https://qwenlm.github.io/qwen-code-docs/).
## Processing Ultra-Long Texts
Qwen3.5 natively supports context lengths of up to 262,144 tokens.
For long-horizon tasks where the total length (including both input and output) exceeds this limit, we recommend using RoPE scaling techniques to handle long texts effectively., e.g., YaRN.
YaRN is currently supported by several inference frameworks, e.g., `transformers`, `vllm` and `sglang`.
In general, there are two approaches to enabling YaRN for supported frameworks:
- Modifying the model configuration file:
In the `config.json` file, change the `rope_parameters` fields in `text_config` to:
```json
{
"mrope_interleaved": true,
"mrope_section": [
11,
11,
10
],
"rope_type": "yarn",
"rope_theta": 10000000,
"partial_rotary_factor": 0.25,
"factor": 4.0,
"original_max_position_embeddings": 262144,
}
```
- Passing command line arguments:
For `vllm`, you can use
```shell
VLLM_ALLOW_LONG_MAX_MODEL_LEN=1 vllm serve ... --hf-overrides '{"text_config": {"rope_parameters": {"mrope_interleaved": true, "mrope_section": [11, 11, 10], "rope_type": "yarn", "rope_theta": 10000000, "partial_rotary_factor": 0.25, "factor": 4.0, "original_max_position_embeddings": 262144}}}' --max-model-len 1010000
```
For `sglang`, you can use
```shell
SGLANG_ALLOW_OVERWRITE_LONGER_CONTEXT_LEN=1 python -m sglang.launch_server ... --json-model-override-args '{"text_config": {"rope_parameters": {"mrope_interleaved": true, "mrope_section": [11, 11, 10], "rope_type": "yarn", "rope_theta": 10000000, "partial_rotary_factor": 0.25, "factor": 4.0, "original_max_position_embeddings": 262144}}}' --context-length 1010000
```
> [!NOTE]
> All the notable open-source frameworks implement static YaRN, which means the scaling factor remains constant regardless of input length, **potentially impacting performance on shorter texts.**
> We advise modifying the `rope_parameters` configuration only when processing long contexts is required.
> It is also recommended to modify the `factor` as needed. For example, if the typical context length for your application is 524,288 tokens, it would be better to set `factor` as 2.0.
## Best Practices
To achieve optimal performance, we recommend the following settings:
1. **Sampling Parameters**:
- We suggest using `Temperature=0.6`, `TopP=0.95`, `TopK=20`, and `MinP=0` for thinking mode and using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0` for non-thinking mode.
- For supported frameworks, you can adjust the `presence_penalty` parameter between 0 and 2 to reduce endless repetitions. However, using a higher value may occasionally result in language mixing and a slight decrease in model performance.
2. **Adequate Output Length**: We recommend using an output length of 32,768 tokens for most queries. For benchmarking on highly complex problems, such as those found in math and programming competitions, we suggest setting the max output length to 81,920 tokens. This provides the model with sufficient space to generate detailed and comprehensive responses, thereby enhancing its overall performance.
3. **Standardize Output Format**: We recommend using prompts to standardize model outputs when benchmarking.
- **Math Problems**: Include "Please reason step by step, and put your final answer within \boxed{}." in the prompt.
- **Multiple-Choice Questions**: Add the following JSON structure to the prompt to standardize responses: "Please show your choice in the `answer` field with only the choice letter, e.g., `"answer": "C"`."
4. **No Thinking Content in History**: In multi-turn conversations, the historical model output should only include the final output part and does not need to include the thinking content. It is implemented in the provided chat template in Jinja2. However, for frameworks that do not directly use the Jinja2 chat template, it is up to the developers to ensure that the best practice is followed.
5. **Long Video Understanding**: To optimize inference efficiency for plain text and images, the `size` parameter in the released `video_preprocessor_config.json` is conservatively configured. It is recommended to set the `longest_edge` parameter in the video_preprocessor_config file to 469,762,048 (corresponding to 224k video tokens) to enable higher frame-rate sampling for hour-scale videos and thereby achieve superior performance. For example,
```json
{"longest_edge": 469762048, "shortest_edge": 4096}
```
Alternatively, override the default values via engine startup parameters. For implementation details, refer to: [vLLM](https://github.com/vllm-project/vllm/pull/34330) / [SGLang](https://github.com/sgl-project/sglang/pull/18467).
### Citation
If you find our work helpful, feel free to give us a cite.
```bibtex
@misc{qwen3.5
title = {{Qwen3.5}: Towards Native Multimodal Agents},
author = {{Qwen Team}},
month = {February},
year = {2026},
url = {https://qwen.ai/blog?id=qwen3.5}
}
``` |