File size: 94,197 Bytes
ef31dc4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
---
library_name: transformers
license: apache-2.0
license_link: https://huggingface.co/Qwen/Qwen3.5-397B-A17B/blob/main/LICENSE
pipeline_tag: image-text-to-text
---

# Qwen3.5-397B-A17B

<img width="400px" src="https://qianwen-res.oss-accelerate.aliyuncs.com/logo_qwen3.5.png">

[![Qwen Chat](https://img.shields.io/badge/%F0%9F%92%9C%EF%B8%8F%20Qwen%20Chat%20-536af5)](https://chat.qwen.ai)

> [!Note]
> This repository contains model weights and configuration files for the post-trained model in the Hugging Face Transformers format. 
>
> These artifacts are compatible with Hugging Face Transformers, vLLM, SGLang, etc.

> [!Tip]
> For users seeking managed, scalable inference without infrastructure maintenance, the official Qwen API service is provided by [Alibaba Cloud Model Studio](https://modelstudio.alibabacloud.com/).
>
> In particular, **Qwen3.5-Plus** is the hosted version corresponding to Qwen3.5-397B-A17B with more production features, e.g., 1M context length by default, official built-in tools, and adaptive tool use.
> For more information, please refer to the [User Guide](https://www.alibabacloud.com/help/en/model-studio/text-generation).

Over recent months, we have intensified our focus on developing foundation models that deliver exceptional utility and performance. Qwen3.5 represents a significant leap forward, integrating breakthroughs in multimodal learning, architectural efficiency, reinforcement learning scale, and global accessibility to empower developers and enterprises with unprecedented capability and efficiency.

## Qwen3.5 Highlights

Qwen3.5 features the following enhancement:

- **Unified Vision-Language Foundation**: Early fusion training on multimodal tokens achieves cross-generational parity with Qwen3 and outperforms Qwen3-VL models across reasoning, coding, agents, and visual understanding benchmarks.

- **Efficient Hybrid Architecture**: Gated Delta Networks combined with sparse Mixture-of-Experts deliver high-throughput inference with minimal latency and cost overhead.

- **Scalable RL Generalization**: Reinforcement learning scaled across million-agent environments with progressively complex task distributions for robust real-world adaptability.

- **Global Linguistic Coverage**: Expanded support to 201 languages and dialects, enabling inclusive, worldwide deployment with nuanced cultural and regional understanding.

- **Next-Generation Training Infrastructure**: Near-100% multimodal training efficiency compared to text-only training and asynchronous RL frameworks supporting massive-scale agent scaffolds and environment orchestration.


![Benchmark Results](https://qianwen-res.oss-accelerate.aliyuncs.com/Qwen3.5/Figures/qwen3.5_397b_a17b_score.png)

For more details, please refer to our blog post [Qwen3.5](https://qwen.ai/blog?id=qwen3.5).


## Model Overview

- Type: Causal Language Model with Vision Encoder
- Training Stage: Pre-training & Post-training
- Language Model
    - Number of Parameters: 397B in total and 17B activated
    - Hidden Dimension: 4096
    - Token Embedding: 248320 (Padded)
    - Number of Layers: 60
        - Hidden Layout: 15 \* (3 \* (Gated DeltaNet -> MoE) -> 1 \* (Gated Attention -> MoE))
    - Gated DeltaNet:
        - Number of Linear Attention Heads: 64 for V and 16 for QK
        - Head Dimension: 128
    - Gated Attention:
        - Number of Attention Heads: 32 for Q and 2 for KV
        - Head Dimension: 256
        - Rotary Position Embedding Dimension: 64
    - Mixture Of Experts
        - Number of Experts: 512
        - Number of Activated Experts: 10 Routed + 1 Shared
        - Expert Intermediate Dimension: 1024
    - LM Output: 248320 (Padded)
    - MTP: trained with multi-steps  
- Context Length: 262,144 natively and extensible up to 1,010,000 tokens.

## Benchmark Results

### Language

<div style="font-family:-apple-system,BlinkMacSystemFont,'Segoe UI',Roboto,sans-serif;max-width:900px;margin:0 auto;padding:16px 0">
<table style="width:100%;border-collapse:collapse;font-size:13px">
<thead><tr>
<th style="padding:10px 12px;text-align:left;font-weight:600;border-bottom:2px solid #7c3aed;color:#7c3aed"></th>
<th style="padding:10px 12px;text-align:center;font-weight:500;border-bottom:2px solid #7c3aed;color:#7c3aed;font-size: 14px;">GPT5.2</th>
<th style="padding:10px 12px;text-align:center;font-weight:500;border-bottom:2px solid #7c3aed;color:#7c3aed;font-size: 14px;">Claude 4.5 Opus</th>
<th style="padding:10px 12px;text-align:center;font-weight:500;border-bottom:2px solid #7c3aed;color:#7c3aed;font-size: 14px;">Gemini-3 Pro</th>
<th style="padding:10px 12px;text-align:center;font-weight:500;border-bottom:2px solid #7c3aed;color:#7c3aed;font-size: 14px;">Qwen3-Max-Thinking</th>
<th style="padding:10px 12px;text-align:center;font-weight:500;border-bottom:2px solid #7c3aed;color:#7c3aed;font-size: 14px;">K2.5-1T-A32B</th>
<th style="padding:10px 12px;text-align:center;font-weight:500;border-bottom:2px solid #7c3aed;color:#7c3aed;font-size: 14px;">Qwen3.5-397B-A17B</th>
</tr></thead>
<tbody>
<tr><td colspan="7" style="padding:8px 12px;font-weight:600;color:#7c3aed;border-bottom:1px solid rgba(124, 58, 237, 0.2);background:rgba(124, 58, 237, 0.1)">Knowledge</td></tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">MMLU-Pro</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">87.4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">89.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">89.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">85.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">87.1</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">87.8</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">MMLU-Redux</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">95.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">95.6</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">95.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">92.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">94.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">94.9</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">SuperGPQA</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">67.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">70.6</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">74.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">67.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">69.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">70.4</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">C-Eval</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">90.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">92.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">93.4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">93.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">94.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">93.0</td>
</tr>
<tr><td colspan="7" style="padding:8px 12px;font-weight:600;color:#7c3aed;border-bottom:1px solid rgba(124, 58, 237, 0.2);background:rgba(124, 58, 237, 0.1)">Instruction Following</td></tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">IFEval</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">94.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">90.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">93.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">93.4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">93.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">92.6</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">IFBench</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">75.4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">58.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">70.4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">70.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">70.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">76.5</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">MultiChallenge</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">57.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">54.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">64.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">63.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">62.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">67.6</td>
</tr>
<tr><td colspan="7" style="padding:8px 12px;font-weight:600;color:#7c3aed;border-bottom:1px solid rgba(124, 58, 237, 0.2);background:rgba(124, 58, 237, 0.1)">Long Context</td></tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">AA-LCR</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">72.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">74.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">70.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">68.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">70.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">68.7</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">LongBench v2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">54.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">64.4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">68.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">60.6</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">61.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">63.2</td>
</tr>
<tr><td colspan="7" style="padding:8px 12px;font-weight:600;color:#7c3aed;border-bottom:1px solid rgba(124, 58, 237, 0.2);background:rgba(124, 58, 237, 0.1)">STEM</td></tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">GPQA</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">92.4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">87.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">91.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">87.4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">87.6</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">88.4</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">HLE</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">35.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">30.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">37.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">30.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">30.1</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">28.7</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">HLE-Verified¹</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">43.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">38.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">48</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">37.6</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">--</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">37.6</td>
</tr>
<tr><td colspan="7" style="padding:8px 12px;font-weight:600;color:#7c3aed;border-bottom:1px solid rgba(124, 58, 237, 0.2);background:rgba(124, 58, 237, 0.1)">Reasoning</td></tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">LiveCodeBench v6</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">87.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">84.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">90.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">85.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">85.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">83.6</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">HMMT Feb 25</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">99.4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">92.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">97.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">98.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">95.4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">94.8</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">HMMT Nov 25</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">100</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">93.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">93.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">94.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">91.1</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">92.7</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">IMOAnswerBench</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">86.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">84.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">83.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">83.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">81.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">80.9</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">AIME26</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">96.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">93.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">90.6</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">93.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">93.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">91.3</td>
</tr>
<tr><td colspan="7" style="padding:8px 12px;font-weight:600;color:#7c3aed;border-bottom:1px solid rgba(124, 58, 237, 0.2);background:rgba(124, 58, 237, 0.1)">General Agent</td></tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">BFCL-V4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">63.1</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">77.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">72.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">67.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">68.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">72.9</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">TAU2-Bench</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">87.1</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">91.6</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">85.4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">84.6</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">77.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">86.7</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">VITA-Bench</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">38.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">56.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">51.6</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">40.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">41.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">49.7</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">DeepPlanning</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">44.6</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">33.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">23.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">28.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">14.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">34.3</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">Tool Decathlon</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">43.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">43.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">36.4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">18.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">27.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">38.3</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">MCP-Mark</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">57.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">42.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">53.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">33.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">29.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">46.1</td>
</tr>
<tr><td colspan="7" style="padding:8px 12px;font-weight:600;color:#7c3aed;border-bottom:1px solid rgba(124, 58, 237, 0.2);background:rgba(124, 58, 237, 0.1)">Search Agent³</td></tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">HLE w/ tool</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">45.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">43.4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">45.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">49.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">50.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">48.3</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">BrowseComp</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">65.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">67.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">59.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">53.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">--/74.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">69.0/78.6</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">BrowseComp-zh</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">76.1</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">62.4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">66.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">60.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">--</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">70.3</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">WideSearch</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">76.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">76.4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">68.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">57.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">72.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">74.0</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">Seal-0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">45.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">47.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">45.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">46.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">57.4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">46.9</td>
</tr>
<tr><td colspan="7" style="padding:8px 12px;font-weight:600;color:#7c3aed;border-bottom:1px solid rgba(124, 58, 237, 0.2);background:rgba(124, 58, 237, 0.1)">Multilingualism</td></tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">MMMLU</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">89.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">90.1</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">90.6</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">84.4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">86.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">88.5</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">MMLU-ProX</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">83.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">85.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">87.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">78.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">82.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">84.7</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">NOVA-63</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">54.6</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">56.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">56.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">54.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">56.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">59.1</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">INCLUDE</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">87.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">86.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">90.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">82.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">83.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">85.6</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">Global PIQA</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">90.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">91.6</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">93.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">86.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">89.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">89.8</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">PolyMATH</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">62.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">79.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">81.6</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">64.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">43.1</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">73.3</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">WMT24++</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">78.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">79.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">80.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">77.6</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">77.6</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">78.9</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">MAXIFE</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">88.4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">79.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">87.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">84.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">72.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">88.2</td>
</tr>
<tr><td colspan="7" style="padding:8px 12px;font-weight:600;color:#7c3aed;border-bottom:1px solid rgba(124, 58, 237, 0.2);background:rgba(124, 58, 237, 0.1)">Coding Agent</td></tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">SWE-bench Verified</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">80.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">80.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">76.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">75.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">76.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">76.4</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">SWE-bench Multilingual</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">72.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">77.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">65.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">66.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">73.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">69.3</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">SecCodeBench</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">68.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">68.6</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">62.4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">57.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">61.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">68.3</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">Terminal Bench 2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">54.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">59.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">54.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">22.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">50.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">52.5</td>
</tr>
</tbody>
</table>

<p style="margin-top:12px;font-size:11px;opacity:0.7">
* HLE-Verified: a verified and revised version of Humanity’s Last Exam (HLE), accompanied by a transparent, component-wise verification protocol and a fine-grained error taxonomy. We open-source the dataset at https://huggingface.co/datasets/skylenage/HLE-Verified.<br>
* TAU2-Bench: we follow the official setup except for the airline domain, where all models are evaluated by applying the fixes proposed in the Claude Opus 4.5 system card.<br>
* MCPMark: GitHub MCP server uses v0.30.3 from api.githubcopilot.com; Playwright tool responses are truncated at 32k tokens.<br>
* Search Agent: most search agents built on our model adopt a simple context-folding strategy(256k): once the cumulative Tool Response length reaches a preset threshold, earlier Tool Responses are pruned from the history to keep the context within limits.<br>
* BrowseComp: we tested two strategies, simple context-folding achieved a score of 69.0, while using the same discard-all strategy as DeepSeek-V3.2 and Kimi K2.5 achieved 78.6.<br>
* WideSearch: we use a 256k context window without any context management.<br>
* MMLU-ProX: we report the averaged accuracy on 29 languages.<br>
* WMT24++: a harder subset of WMT24 after difficulty labeling and rebalancing; we report the averaged scores on 55 languages using XCOMET-XXL.<br>
* MAXIFE: we report the accuracy on English + multilingual original prompts (totally 23 settings).<br>
* Empty cells (--) indicate scores not yet available or not applicable.<br>
</p>

</div>

### Vision Language

<div style="font-family:-apple-system,BlinkMacSystemFont,'Segoe UI',Roboto,sans-serif;max-width:900px;margin:0 auto;padding:16px 0">
<table style="width:100%;border-collapse:collapse;font-size:13px">
<thead><tr>
<th style="padding:10px 12px;text-align:left;font-weight:600;border-bottom:2px solid #7c3aed;color:#7c3aed"></th>
<th style="padding:10px 12px;text-align:center;font-weight:500;border-bottom:2px solid #7c3aed;color:#7c3aed;font-size: 14px;">GPT5.2</th>
<th style="padding:10px 12px;text-align:center;font-weight:500;border-bottom:2px solid #7c3aed;color:#7c3aed;font-size: 14px;">Claude 4.5 Opus</th>
<th style="padding:10px 12px;text-align:center;font-weight:500;border-bottom:2px solid #7c3aed;color:#7c3aed;font-size: 14px;">Gemini-3 Pro</th>
<th style="padding:10px 12px;text-align:center;font-weight:500;border-bottom:2px solid #7c3aed;color:#7c3aed;font-size: 14px;">Qwen3-VL-235B-A22B</th>
<th style="padding:10px 12px;text-align:center;font-weight:500;border-bottom:2px solid #7c3aed;color:#7c3aed;font-size: 14px;">K2.5-1T-A32B</th>
<th style="padding:10px 12px;text-align:center;font-weight:500;border-bottom:2px solid #7c3aed;color:#7c3aed;font-size: 14px;">Qwen3.5-397B-A17B</th>
</tr></thead>
<tbody>
<tr><td colspan="7" style="padding:8px 12px;font-weight:600;color:#7c3aed;border-bottom:1px solid rgba(124, 58, 237, 0.2);background:rgba(124, 58, 237, 0.1)">STEM and Puzzle</td></tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">MMMU</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">86.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">80.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">87.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">80.6</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">84.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">85.0</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">MMMU-Pro</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">79.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">70.6</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">81.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">69.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">78.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">79.0</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">MathVision</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">83.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">74.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">86.6</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">74.6</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">84.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">88.6</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">Mathvista(mini)</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">83.1</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">80.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">87.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">85.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">90.1</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">90.3</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">We-Math</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">79.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">70.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">86.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">74.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">84.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">87.9</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">DynaMath</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">86.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">79.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">85.1</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">82.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">84.4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">86.3</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">ZEROBench</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">10</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">12</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">ZEROBench_sub</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">33.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">28.4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">39.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">28.4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">33.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">41.0</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">BabyVision</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">34.4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">14.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">49.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">22.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">36.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">52.3/43.3</td>
</tr>
<tr><td colspan="7" style="padding:8px 12px;font-weight:600;color:#7c3aed;border-bottom:1px solid rgba(124, 58, 237, 0.2);background:rgba(124, 58, 237, 0.1)">General VQA</td></tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">RealWorldQA</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">83.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">77.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">83.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">81.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">81.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">83.9</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">MMStar</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">77.1</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">73.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">83.1</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">78.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">80.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">83.8</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">HallusionBench</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">65.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">64.1</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">68.6</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">66.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">69.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">71.4</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">MMBench<sub><small>EN-DEV-v1.1</small></sub></td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">88.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">89.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">93.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">89.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">94.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">93.7</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">SimpleVQA</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">55.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">65.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">73.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">61.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">71.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">67.1</td>
</tr>
<tr><td colspan="7" style="padding:8px 12px;font-weight:600;color:#7c3aed;border-bottom:1px solid rgba(124, 58, 237, 0.2);background:rgba(124, 58, 237, 0.1)">Text Recognition and Document Understanding</td></tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">OmniDocBench1.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">85.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">87.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">88.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">84.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">88.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">90.8</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">CharXiv(RQ)</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">82.1</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">68.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">81.4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">66.1</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">77.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">80.8</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">MMLongBench-Doc</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">--</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">61.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">60.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">56.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">58.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">61.5</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">CC-OCR</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">70.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">76.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">79.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">81.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">79.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">82.0</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">AI2D_TEST</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">92.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">87.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">94.1</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">89.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">90.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">93.9</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">OCRBench</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">80.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">85.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">90.4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">87.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">92.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">93.1</td>
</tr>
<tr><td colspan="7" style="padding:8px 12px;font-weight:600;color:#7c3aed;border-bottom:1px solid rgba(124, 58, 237, 0.2);background:rgba(124, 58, 237, 0.1)">Spatial Intelligence</td></tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">ERQA</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">59.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">46.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">70.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">52.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">--</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">67.5</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">CountBench</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">91.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">90.6</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">97.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">93.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">94.1</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">97.2</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">RefCOCO(avg)</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">--</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">--</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">84.1</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">91.1</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">87.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">92.3</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">ODInW13</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">--</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">--</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">46.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">43.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">--</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">47.0</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">EmbSpatialBench</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">81.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">75.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">61.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">84.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">77.4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">84.5</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">RefSpatialBench</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">--</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">--</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">65.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">69.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">--</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">73.6</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">LingoQA</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">68.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">78.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">72.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">66.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">68.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">81.6</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">V*</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">75.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">67.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">88.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">85.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">77.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">95.8/91.1</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">Hypersim</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">--</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">--</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">--</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">11.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">--</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">12.5</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">SUNRGBD</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">--</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">--</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">--</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">34.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">--</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">38.3</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">Nuscene</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">--</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">--</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">--</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">13.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">--</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">16.0</td>
</tr>
<tr><td colspan="7" style="padding:8px 12px;font-weight:600;color:#7c3aed;border-bottom:1px solid rgba(124, 58, 237, 0.2);background:rgba(124, 58, 237, 0.1)">Video Understanding</td></tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">VideoMME<sub><small>(w sub.)</sub></small></td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">86</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">77.6</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">88.4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">83.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">87.4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">87.5</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">VideoMME<sub><small>(w/o sub.)</sub></small></td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">85.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">81.4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">87.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">79.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">83.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">83.7</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">VideoMMMU</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">85.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">84.4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">87.6</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">80.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">86.6</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">84.7</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">MLVU (M-Avg)</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">85.6</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">81.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">83.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">83.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">85.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">86.7</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">MVBench</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">78.1</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">67.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">74.1</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">75.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">73.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">77.6</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">LVBench</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">73.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">57.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">76.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">63.6</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">75.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">75.5</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">MMVU</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">80.8</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">77.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">77.5</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">71.1</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">80.4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">75.4</td>
</tr>
<tr><td colspan="7" style="padding:8px 12px;font-weight:600;color:#7c3aed;border-bottom:1px solid rgba(124, 58, 237, 0.2);background:rgba(124, 58, 237, 0.1)">Visual Agent</td></tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">ScreenSpot Pro</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">--</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">45.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">72.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">62.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">--</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">65.6</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">OSWorld-Verified</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">38.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">66.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">--</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">38.1</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">63.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">62.2</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">AndroidWorld</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">--</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">--</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">--</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">63.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">--</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">66.8</td>
</tr>
<tr><td colspan="7" style="padding:8px 12px;font-weight:600;color:#7c3aed;border-bottom:1px solid rgba(124, 58, 237, 0.2);background:rgba(124, 58, 237, 0.1)">Medical VQA</td></tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">SLAKE</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">76.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">76.4</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">81.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">54.7</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">81.6</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">79.9</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">PMC-VQA</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">58.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">59.9</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">62.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">41.2</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">63.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">64.2</td>
</tr>
<tr>
<td style="padding:7px 12px;padding-left:20px;border-bottom:1px solid rgba(128, 128, 128, 0.15);">MedXpertQA-MM</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">73.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">63.6</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">76.0</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">47.6</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">65.3</td>
<td style="padding:7px 12px;text-align:center;border-bottom:1px solid rgba(128, 128, 128, 0.15)">70.0</td>
</tr>
</tbody>
</table>

<p style="margin-top:12px;font-size:11px;opacity:0.7">
* MathVision:our model’s score is evaluated using a fixed prompt, e.g., “Please reason step by step, and put your final answer within \boxed{}.” For other models, we report the higher score between runs with and without the \boxed{} formatting.<br>
* BabyVision: our model’s score is reported with CI (Code Interpreter) enabled; without CI, the result is 43.3.<br>
* V*: our model’s score is reported with CI (Code Interpreter) enabled; without CI, the result is 91.1.<br>
* Empty cells (--) indicate scores not yet available or not applicable.<br>
</p>

</div>


## Quickstart

> [!Important]
> Qwen3.5 models operate in thinking mode by default, generating thinking content signified by `<think>\n...</think>\n\n` before producing the final responses.
> To disable thinking content and obtain direct response, refer to the examples [here](#instruct-or-non-thinking-mode).


For streamlined integration, we recommend using Qwen3.5 via APIs. Below is a guide to use Qwen3.5 via OpenAI-compatible API. 

### Serving Qwen3.5

Qwen3.5 can be served via APIs with popular inference frameworks.
In the following, we show example commands to launch OpenAI-Compatible API servers for Qwen3.5 models.


> [!Important]
> Inference efficiency and throughput vary significantly across frameworks. 
> We recommend using the latest framework versions to ensure optimal performance and compatibility.
> For production workloads or high-throughput scenarios, dedicated serving engines such as SGLang or vLLM are strongly recommended.

> [!Important]
> The model has a default context length of 262,144 tokens.
> If you encounter out-of-memory (OOM) errors, consider reducing the context window. 
> However, because Qwen3.5 leverages extended context for complex tasks, we advise maintaining a context length of at least 128K tokens to preserve thinking capabilities.

#### SGLang

[SGLang](https://github.com/sgl-project/sglang) is a fast serving framework for large language models and vision language models.
SGLang from the main branch of the open-source repository is required for Qwen3.5, which can be installed using the following command in a fresh environment:
```shell
uv pip install 'git+https://github.com/sgl-project/sglang.git#subdirectory=python&egg=sglang[all]'
```
See [its documentation](https://docs.sglang.ai/get_started/install.html) for more details.

The following will create API endpoints at `http://localhost:8000/v1`:

- **Standard Version**: The following command can be used to create an API endpoint with maximum context length 262,144 tokens using tensor parallel on 8 GPUs.
    
    ```shell
    python -m sglang.launch_server --model-path Qwen/Qwen3.5-397B-A17B --port 8000 --tp-size 8 --mem-fraction-static 0.8 --context-length 262144 --reasoning-parser qwen3
    ```

- **Tool Use**: To support tool use, you can use the following command.
    
    ```shell
    python -m sglang.launch_server --model-path Qwen/Qwen3.5-397B-A17B --port 8000 --tp-size 8 --mem-fraction-static 0.8 --context-length 262144 --reasoning-parser qwen3 --tool-call-parser qwen3_coder
    ```

- **Multi-Token Prediction (MTP)**: The following command is recommended for MTP:
    
    ```shell
    python -m sglang.launch_server --model-path Qwen/Qwen3.5-397B-A17B --port 8000 --tp-size 8 --mem-fraction-static 0.8 --context-length 262144 --reasoning-parser qwen3 --speculative-algo NEXTN --speculative-num-steps 3 --speculative-eagle-topk 1 --speculative-num-draft-tokens 4
    ```

#### vLLM

[vLLM](https://github.com/vllm-project/vllm) is a high-throughput and memory-efficient inference and serving engine for LLMs.
vLLM from the main branch of the open-source repository is required for Qwen3.5, which can be installed using the following command in a fresh environment:
```shell
uv pip install vllm --torch-backend=auto --extra-index-url https://wheels.vllm.ai/nightly
```
See [its documentation](https://docs.vllm.ai/en/stable/getting_started/installation/index.html) for more details. 

For detailed Qwen3.5 usage guide, see the [vLLM Qwen3.5 recipe](https://docs.vllm.ai/projects/recipes/en/latest/Qwen/Qwen3.5.html).

The following will create API endpoints at `http://localhost:8000/v1`:

- **Standard Version**: The following command can be used to create an API endpoint with maximum context length 262,144 tokens using tensor parallel on 8 GPUs.

    ```shell
    vllm serve Qwen/Qwen3.5-397B-A17B --port 8000 --tensor-parallel-size 8 --max-model-len 262144 --reasoning-parser qwen3 
    ```

- **Tool Call**: To support tool use, you can use the following command.
    
    ```shell
    vllm serve Qwen/Qwen3.5-397B-A17B --port 8000 --tensor-parallel-size 8 --max-model-len 262144 --reasoning-parser qwen3 --enable-auto-tool-choice --tool-call-parser qwen3_coder 
    ```

- **Multi-Token Prediction (MTP)**: The following command is recommended for MTP:

    ```shell
    vllm serve Qwen/Qwen3.5-397B-A17B --port 8000 --tensor-parallel-size 8 --max-model-len 262144 --reasoning-parser qwen3 --speculative-config '{"method":"qwen3_next_mtp","num_speculative_tokens":2}'
    ```

- **Text-Only**: The following command skips the vision encoder and multimodal profiling to free up memory for additional KV cache:
    
    ```shell
    vllm serve Qwen/Qwen3.5-397B-A17B --port 8000 --tensor-parallel-size 8 --max-model-len 262144 --reasoning-parser qwen3 --language-model-only
    ```

#### Hugging Face Transformers

Hugging Face Transformers contains a _lightweight_ server which can be used for quick testing and moderate load deployment.
The latest `transformers` is required for Qwen3.5:
```shell
pip install "transformers[serving] @ git+https://github.com/huggingface/transformers.git@main"
```
See [its documentation](https://huggingface.co/docs/transformers/main/serving) for more details.

Then, run `transformers serve` to launch a server with API endpoints at `http://localhost:8000/v1`; it will place the model on accelerators if available:
```shell
transformers serve --force-model Qwen/Qwen3.5-397B-A17B --port 8000 --continuous-batching
```

### Using Qwen3.5 via the Chat Completions API

The chat completions API is accessible via standard HTTP requests or OpenAI SDKs.
Here, we show examples using the OpenAI Python SDK.

Before starting, make sure it is installed and the API key and the API base URL is configured, e.g.:
```shell
pip install -U openai

# Set the following accordingly
export OPENAI_BASE_URL="http://localhost:8000/v1"
export OPENAI_API_KEY="EMPTY"
```

> [!Tip]
> We recommend using the following set of sampling parameters for generation
> - Thinking mode: `temperature=0.6, top_p=0.95, top_k=20, min_p=0.0, presence_penalty=0.0, repetition_penalty=1.0`
> - Instruct (or non-thinking) mode: `temperature=0.7, top_p=0.8, top_k=20, min_p=0.0, presence_penalty=1.5, repetition_penalty=1.0`

#### Text-Only Input

```python
from openai import OpenAI
# Configured by environment variables
client = OpenAI()

messages = [
    {"role": "user", "content": "Type \"I love Qwen3.5\" backwards"},
]

chat_response = client.chat.completions.create(
    model="Qwen/Qwen3.5-397B-A17B",
    messages=messages,
    max_tokens=81920,
    temperature=0.6,
    top_p=0.95,
    extra_body={
        "top_k": 20,
    }, 
)
print("Chat response:", chat_response)
```


#### Image Input

```python
from openai import OpenAI
# Configured by environment variables
client = OpenAI()

messages = [
    {
        "role": "user",
        "content": [
            {
                "type": "image_url",
                "image_url": {
                    "url": "https://qianwen-res.oss-accelerate.aliyuncs.com/Qwen3.5/demo/CI_Demo/mathv-1327.jpg"
                }
            },
            {
                "type": "text",
                "text": "The centres of the four illustrated circles are in the corners of the square. The two big circles touch each other and also the two little circles. With which factor do you have to multiply the radii of the little circles to obtain the radius of the big circles?\nChoices:\n(A) $\\frac{2}{9}$\n(B) $\\sqrt{5}$\n(C) $0.8 \\cdot \\pi$\n(D) 2.5\n(E) $1+\\sqrt{2}$"
            }
        ]
    }
]

response = client.chat.completions.create(
    model="Qwen/Qwen3.5-397B-A17B",
    messages=messages,
    max_tokens=81920,
    temperature=0.6,
    top_p=0.95,
    extra_body={
        "top_k": 20,
    }, 
)
print("Chat response:", chat_response)
```

#### Video Input

```python
from openai import OpenAI
# Configured by environment variables
client = OpenAI()

messages = [
    {
        "role": "user",
        "content": [
            {
                "type": "video_url",
                "video_url": {
                    "url": "https://qianwen-res.oss-accelerate.aliyuncs.com/Qwen3.5/demo/video/N1cdUjctpG8.mp4"
                }
            },
            {
                "type": "text",
                "text": "How many porcelain jars were discovered in the niches located in the primary chamber of the tomb?"
            }
        ]
    }
]

# When vLLM is launched with `--media-io-kwargs '{"video": {"num_frames": -1}}'`,
# video frame sampling can be configured via `extra_body` (e.g., by setting `fps`).
# This feature is currently supported only in vLLM.
#
# By default, `fps=2` and `do_sample_frames=True`.
# With `do_sample_frames=True`, you can customize the `fps` value to set your desired video sampling rate.
response = client.chat.completions.create(
    model="Qwen/Qwen3.5-397B-A17B",
    messages=messages,
    max_tokens=81920,
    temperature=0.6,
    top_p=0.95,
    extra_body={
        "top_k": 20,
        "mm_processor_kwargs": {"fps": 2, "do_sample_frames": True},
    }, 
)

print("Chat response:", chat_response)
```

#### Instruct (or Non-Thinking) Mode

> [!Important]
> Qwen3.5 does not officially support the soft switch of Qwen3, i.e., `/think` and `/nothink`.

Qwen3.5 will think by default before response.
You can obtain direct response from the model without thinking by configuring the API parameters. 
For example,
```python
from openai import OpenAI
# Configured by environment variables
client = OpenAI()

messages = [
    {
        "role": "user",
        "content": [
            {
                "type": "image_url",
                "image_url": {
                    "url": "https://qianwen-res.oss-accelerate.aliyuncs.com/Qwen3.5/demo/RealWorld/RealWorld-04.png"
                }
            },
            {
                "type": "text",
                "text": "Where is this?"
            }
        ]
    }
]

chat_response = client.chat.completions.create(
    model="Qwen/Qwen3.5-397B-A17B",
    messages=messages,
    max_tokens=32768,
    temperature=0.7,
    top_p=0.8,
    presence_penalty=1.5,
    extra_body={
        "top_k": 20,
        "chat_template_kwargs": {"enable_thinking": False},
    }, 
)
print("Chat response:", chat_response)
```

> [!Note]
> If you are using APIs from Alibaba Cloud Model Studio, in addition to changing `model`, please use `"enable_thinking": False` instead of `"chat_template_kwargs": {"enable_thinking": False}`.


## Agentic Usage

Qwen3.5 excels in tool calling capabilities.

### Qwen-Agent

We recommend using [Qwen-Agent](https://github.com/QwenLM/Qwen-Agent) to quickly build Agent applications with Qwen3.5. 

To define the available tools, you can use the MCP configuration file, use the integrated tool of Qwen-Agent, or integrate other tools by yourself.
```python
import os
from qwen_agent.agents import Assistant

# Define LLM
# Using Alibaba Cloud Model Studio
llm_cfg = {
    # Use the OpenAI-compatible model service provided by DashScope:
    'model': 'Qwen3.5-397B-A17B',
    'model_type': 'qwenvl_oai',
    'model_server': 'https://dashscope.aliyuncs.com/compatible-mode/v1',
    'api_key': os.getenv('DASHSCOPE_API_KEY'),

    'generate_cfg': {
        'use_raw_api': True,
        # When using Dash Scope OAI API, pass the parameter of whether to enable thinking mode in this way
        'extra_body': {
            'enable_thinking': True
        },
    },
}

# Using OpenAI-compatible API endpoint.
# functionality of the deployment frameworks and let Qwen-Agent automate the related operations.
#
# llm_cfg = {
#     # Use your own model service compatible with OpenAI API by vLLM/SGLang:
#     'model': 'Qwen/Qwen3.5-397B-A17B',
#     'model_type': 'qwenvl_oai',
#     'model_server': 'http://localhost:8000/v1',  # api_base
#     'api_key': 'EMPTY',
#
#     'generate_cfg': {
#         'use_raw_api': True,
#         # When using vLLM/SGLang OAI API, pass the parameter of whether to enable thinking mode in this way
#         'extra_body': {
#             'chat_template_kwargs': {'enable_thinking': True}
#         },
#     },
# }

# Define Tools
tools = [
    {'mcpServers': {  # You can specify the MCP configuration file
            "filesystem": {
                "command": "npx",
                "args": ["-y", "@modelcontextprotocol/server-filesystem", "/Users/xxxx/Desktop"]
            }
        }
    }
]

# Define Agent
bot = Assistant(llm=llm_cfg, function_list=tools)

# Streaming generation
messages = [{'role': 'user', 'content': 'Help me organize my desktop.'}]
for responses in bot.run(messages=messages):
    pass
print(responses)

# Streaming generation
messages = [{'role': 'user', 'content': 'Develop a dog website and save it on the desktop'}]
for responses in bot.run(messages=messages):
    pass
print(responses)
```

### Qwen Code


[Qwen Code](https://github.com/QwenLM/qwen-code) is an open-source AI agent for the terminal, optimized for Qwen models. It helps you understand large codebases, automate tedious work, and ship faster.

For more information, please refer to [Qwen Code](https://qwenlm.github.io/qwen-code-docs/).

## Processing Ultra-Long Texts

Qwen3.5 natively supports context lengths of up to 262,144 tokens. 
For long-horizon tasks where the total length (including both input and output) exceeds this limit, we recommend using RoPE scaling techniques to handle long texts effectively., e.g., YaRN.

YaRN is currently supported by several inference frameworks, e.g., `transformers`, `vllm` and `sglang`. 
In general, there are two approaches to enabling YaRN for supported frameworks:

- Modifying the model configuration file:
  In the `config.json` file, change the `rope_parameters` fields in `text_config` to:
    ```json
    {
        "mrope_interleaved": true,
        "mrope_section": [
            11,
            11,
            10
        ],
        "rope_type": "yarn",
        "rope_theta": 10000000,
        "partial_rotary_factor": 0.25,
        "factor": 4.0,
        "original_max_position_embeddings": 262144,
    }
    ```

- Passing command line arguments:

  For `vllm`, you can use
    ```shell
    VLLM_ALLOW_LONG_MAX_MODEL_LEN=1 vllm serve ... --hf-overrides '{"text_config": {"rope_parameters": {"mrope_interleaved": true, "mrope_section": [11, 11, 10], "rope_type": "yarn", "rope_theta": 10000000, "partial_rotary_factor": 0.25, "factor": 4.0, "original_max_position_embeddings": 262144}}}' --max-model-len 1010000  
    ```

  For `sglang`, you can use
    ```shell
    SGLANG_ALLOW_OVERWRITE_LONGER_CONTEXT_LEN=1 python -m sglang.launch_server ... --json-model-override-args '{"text_config": {"rope_parameters": {"mrope_interleaved": true, "mrope_section": [11, 11, 10], "rope_type": "yarn", "rope_theta": 10000000, "partial_rotary_factor": 0.25, "factor": 4.0, "original_max_position_embeddings": 262144}}}' --context-length 1010000
    ```

> [!NOTE]
> All the notable open-source frameworks implement static YaRN, which means the scaling factor remains constant regardless of input length, **potentially impacting performance on shorter texts.**
> We advise modifying the `rope_parameters` configuration only when processing long contexts is required. 
> It is also recommended to modify the `factor` as needed. For example, if the typical context length for your application is 524,288 tokens, it would be better to set `factor` as 2.0. 

## Best Practices

To achieve optimal performance, we recommend the following settings:

1. **Sampling Parameters**:
   - We suggest using `Temperature=0.6`, `TopP=0.95`, `TopK=20`, and `MinP=0` for thinking mode and using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0` for non-thinking mode.
   - For supported frameworks, you can adjust the `presence_penalty` parameter between 0 and 2 to reduce endless repetitions. However, using a higher value may occasionally result in language mixing and a slight decrease in model performance.

2. **Adequate Output Length**: We recommend using an output length of 32,768 tokens for most queries. For benchmarking on highly complex problems, such as those found in math and programming competitions, we suggest setting the max output length to 81,920 tokens. This provides the model with sufficient space to generate detailed and comprehensive responses, thereby enhancing its overall performance.

3. **Standardize Output Format**: We recommend using prompts to standardize model outputs when benchmarking.
   - **Math Problems**: Include "Please reason step by step, and put your final answer within \boxed{}." in the prompt.
   - **Multiple-Choice Questions**: Add the following JSON structure to the prompt to standardize responses: "Please show your choice in the `answer` field with only the choice letter, e.g., `"answer": "C"`."

4. **No Thinking Content in History**: In multi-turn conversations, the historical model output should only include the final output part and does not need to include the thinking content. It is implemented in the provided chat template in Jinja2. However, for frameworks that do not directly use the Jinja2 chat template, it is up to the developers to ensure that the best practice is followed.

5. **Long Video Understanding**: To optimize inference efficiency for plain text and images, the `size` parameter in the released `video_preprocessor_config.json` is conservatively configured. It is recommended to set the `longest_edge` parameter in the video_preprocessor_config file to 469,762,048 (corresponding to 224k video tokens) to enable higher frame-rate sampling for hour-scale videos and thereby achieve superior performance. For example,
    ```json
    {"longest_edge": 469762048, "shortest_edge": 4096}
    ```

    Alternatively, override the default values via engine startup parameters. For implementation details, refer to: [vLLM](https://github.com/vllm-project/vllm/pull/34330) / [SGLang](https://github.com/sgl-project/sglang/pull/18467).


### Citation

If you find our work helpful, feel free to give us a cite.

```bibtex
@misc{qwen3.5
    title  = {{Qwen3.5}: Towards Native Multimodal Agents},
    author = {{Qwen Team}},
    month  = {February},
    year   = {2026},
    url    = {https://qwen.ai/blog?id=qwen3.5}
}
```