Upload 2 files
Browse files- giga_App.py +140 -0
- giga_requirements.txt +7 -0
giga_App.py
ADDED
|
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import numpy as np
|
| 4 |
+
from aura_sr import AuraSR
|
| 5 |
+
import torch
|
| 6 |
+
import os
|
| 7 |
+
import time
|
| 8 |
+
from pathlib import Path
|
| 9 |
+
import argparse
|
| 10 |
+
|
| 11 |
+
# Force CPU usage
|
| 12 |
+
torch.set_default_tensor_type(torch.FloatTensor)
|
| 13 |
+
|
| 14 |
+
# Override torch.load to always use CPU
|
| 15 |
+
original_load = torch.load
|
| 16 |
+
torch.load = lambda *args, **kwargs: original_load(*args, **kwargs, map_location=torch.device('cpu'))
|
| 17 |
+
|
| 18 |
+
# Initialize the AuraSR model
|
| 19 |
+
aura_sr = AuraSR.from_pretrained("fal/AuraSR-v2")
|
| 20 |
+
|
| 21 |
+
# Restore original torch.load
|
| 22 |
+
torch.load = original_load
|
| 23 |
+
|
| 24 |
+
def process_single_image(input_image_path):
|
| 25 |
+
if input_image_path is None:
|
| 26 |
+
raise gr.Error("Please provide an image to upscale.")
|
| 27 |
+
|
| 28 |
+
# Load the image
|
| 29 |
+
pil_image = Image.open(input_image_path)
|
| 30 |
+
|
| 31 |
+
# Upscale the image using AuraSR
|
| 32 |
+
start_time = time.time()
|
| 33 |
+
upscaled_image = aura_sr.upscale_4x(pil_image)
|
| 34 |
+
processing_time = time.time() - start_time
|
| 35 |
+
|
| 36 |
+
print(f"Processing time: {processing_time:.2f} seconds")
|
| 37 |
+
|
| 38 |
+
# Save the upscaled image
|
| 39 |
+
output_folder = "outputs"
|
| 40 |
+
os.makedirs(output_folder, exist_ok=True)
|
| 41 |
+
|
| 42 |
+
input_filename = os.path.basename(input_image_path)
|
| 43 |
+
output_filename = os.path.splitext(input_filename)[0]
|
| 44 |
+
output_path = os.path.join(output_folder, output_filename + ".png")
|
| 45 |
+
|
| 46 |
+
counter = 1
|
| 47 |
+
while os.path.exists(output_path):
|
| 48 |
+
output_path = os.path.join(output_folder, f"{output_filename}_{counter:04d}.png")
|
| 49 |
+
counter += 1
|
| 50 |
+
|
| 51 |
+
upscaled_image.save(output_path)
|
| 52 |
+
|
| 53 |
+
return [input_image_path, output_path]
|
| 54 |
+
|
| 55 |
+
def process_batch(input_folder, output_folder=None):
|
| 56 |
+
if not input_folder:
|
| 57 |
+
raise gr.Error("Please provide an input folder path.")
|
| 58 |
+
|
| 59 |
+
if not output_folder:
|
| 60 |
+
output_folder = "outputs"
|
| 61 |
+
|
| 62 |
+
os.makedirs(output_folder, exist_ok=True)
|
| 63 |
+
|
| 64 |
+
input_files = [f for f in os.listdir(input_folder) if f.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.tiff'))]
|
| 65 |
+
total_files = len(input_files)
|
| 66 |
+
processed_files = 0
|
| 67 |
+
results = []
|
| 68 |
+
|
| 69 |
+
for filename in input_files:
|
| 70 |
+
input_path = os.path.join(input_folder, filename)
|
| 71 |
+
pil_image = Image.open(input_path)
|
| 72 |
+
|
| 73 |
+
start_time = time.time()
|
| 74 |
+
upscaled_image = aura_sr.upscale_4x(pil_image)
|
| 75 |
+
processing_time = time.time() - start_time
|
| 76 |
+
|
| 77 |
+
output_filename = os.path.splitext(filename)[0] + ".png"
|
| 78 |
+
output_path = os.path.join(output_folder, output_filename)
|
| 79 |
+
|
| 80 |
+
counter = 1
|
| 81 |
+
while os.path.exists(output_path):
|
| 82 |
+
output_path = os.path.join(output_folder, f"{os.path.splitext(filename)[0]}_{counter:04d}.png")
|
| 83 |
+
counter += 1
|
| 84 |
+
|
| 85 |
+
upscaled_image.save(output_path)
|
| 86 |
+
|
| 87 |
+
processed_files += 1
|
| 88 |
+
print(f"Processed {processed_files}/{total_files}: {filename} in {processing_time:.2f} seconds")
|
| 89 |
+
|
| 90 |
+
results.append(output_path)
|
| 91 |
+
|
| 92 |
+
print(f"Batch processing complete. {processed_files} images processed.")
|
| 93 |
+
return results
|
| 94 |
+
|
| 95 |
+
title = """<h1 align="center">AuraSR Giga Upscaler V1 by SECourses - Upscales to 4x</h1>
|
| 96 |
+
<p><center>AuraSR: new open source super-resolution upscaler based on GigaGAN. Works perfect on some images and fails on some images so give it a try</center></p>
|
| 97 |
+
<p><center>Works very fast and very VRAM friendly</center></p>
|
| 98 |
+
<h2 align="center">Latest version on : <a href="https://www.patreon.com/posts/110060645">https://www.patreon.com/posts/110060645</a></h1>
|
| 99 |
+
"""
|
| 100 |
+
|
| 101 |
+
def create_demo():
|
| 102 |
+
with gr.Blocks() as demo:
|
| 103 |
+
gr.HTML(title)
|
| 104 |
+
|
| 105 |
+
with gr.Tab("Single Image"):
|
| 106 |
+
with gr.Row():
|
| 107 |
+
with gr.Column(scale=1):
|
| 108 |
+
input_image = gr.Image(label="Input Image", type="filepath")
|
| 109 |
+
process_btn = gr.Button(value="Upscale Image", variant="primary")
|
| 110 |
+
with gr.Column(scale=1):
|
| 111 |
+
output_gallery = gr.Gallery(label="Before / After", columns=2)
|
| 112 |
+
|
| 113 |
+
process_btn.click(
|
| 114 |
+
fn=process_single_image,
|
| 115 |
+
inputs=[input_image],
|
| 116 |
+
outputs=output_gallery
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
+
with gr.Tab("Batch Processing"):
|
| 120 |
+
with gr.Row():
|
| 121 |
+
input_folder = gr.Textbox(label="Input Folder Path")
|
| 122 |
+
output_folder = gr.Textbox(label="Output Folder Path (Optional)")
|
| 123 |
+
batch_process_btn = gr.Button(value="Process Batch", variant="primary")
|
| 124 |
+
output_gallery = gr.Gallery(label="Processed Images")
|
| 125 |
+
|
| 126 |
+
batch_process_btn.click(
|
| 127 |
+
fn=process_batch,
|
| 128 |
+
inputs=[input_folder, output_folder],
|
| 129 |
+
outputs=output_gallery
|
| 130 |
+
)
|
| 131 |
+
|
| 132 |
+
return demo
|
| 133 |
+
|
| 134 |
+
if __name__ == "__main__":
|
| 135 |
+
parser = argparse.ArgumentParser(description="AuraSR Image Upscaling")
|
| 136 |
+
parser.add_argument("--share", action="store_true", help="Create a publicly shareable link")
|
| 137 |
+
args = parser.parse_args()
|
| 138 |
+
|
| 139 |
+
demo = create_demo()
|
| 140 |
+
demo.launch(debug=True, inbrowser=True, share=args.share)
|
giga_requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
--extra-index-url https://download.pytorch.org/whl/cu118
|
| 2 |
+
aura-sr
|
| 3 |
+
gradio-imageslider
|
| 4 |
+
gradio
|
| 5 |
+
torch==2.2.0
|
| 6 |
+
torchvision==0.17.0
|
| 7 |
+
numpy==1.26.4
|