Update README.md
Browse files
README.md
CHANGED
|
@@ -7,40 +7,34 @@ tags:
|
|
| 7 |
metrics:
|
| 8 |
- accuracy
|
| 9 |
model-index:
|
| 10 |
-
- name: ModernBERT-large-zeroshot-v2.0
|
| 11 |
results: []
|
| 12 |
---
|
| 13 |
|
| 14 |
-
|
| 15 |
-
should probably proofread and complete it, then remove this comment. -->
|
| 16 |
-
|
| 17 |
-
# ModernBERT-large-zeroshot-v2.0-2024-12-28-00-13
|
| 18 |
-
|
| 19 |
-
This model is a fine-tuned version of [answerdotai/ModernBERT-large](https://huggingface.co/answerdotai/ModernBERT-large) on an unknown dataset.
|
| 20 |
-
It achieves the following results on the evaluation set:
|
| 21 |
-
- Loss: 0.1803
|
| 22 |
-
- F1 Macro: 0.6624
|
| 23 |
-
- F1 Micro: 0.7304
|
| 24 |
-
- Accuracy Balanced: 0.6979
|
| 25 |
-
- Accuracy: 0.7304
|
| 26 |
-
- Precision Macro: 0.6899
|
| 27 |
-
- Recall Macro: 0.6979
|
| 28 |
-
- Precision Micro: 0.7304
|
| 29 |
-
- Recall Micro: 0.7304
|
| 30 |
|
| 31 |
## Model description
|
| 32 |
|
| 33 |
-
|
|
|
|
| 34 |
|
| 35 |
-
## Intended uses & limitations
|
| 36 |
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
-
## Training and evaluation data
|
| 40 |
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
-
## Training procedure
|
| 44 |
|
| 45 |
### Training hyperparameters
|
| 46 |
|
|
@@ -56,23 +50,6 @@ The following hyperparameters were used during training:
|
|
| 56 |
- lr_scheduler_warmup_ratio: 0.06
|
| 57 |
- num_epochs: 2
|
| 58 |
|
| 59 |
-
### Training results
|
| 60 |
-
|
| 61 |
-
| Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Micro | Accuracy Balanced | Accuracy | Precision Macro | Recall Macro | Precision Micro | Recall Micro |
|
| 62 |
-
|:-------------:|:------:|:-----:|:---------------:|:--------:|:--------:|:-----------------:|:--------:|:---------------:|:------------:|:---------------:|:------------:|
|
| 63 |
-
| 0.3865 | 1.0 | 33915 | 0.3321 | 0.8584 | 0.8704 | 0.8600 | 0.8704 | 0.8569 | 0.8600 | 0.8704 | 0.8704 |
|
| 64 |
-
| 0.2456 | 2.0000 | 67828 | 0.4069 | 0.8600 | 0.8728 | 0.8590 | 0.8728 | 0.8610 | 0.8590 | 0.8728 | 0.8728 |
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
Breakdown by dataset
|
| 68 |
-
|
| 69 |
-
|Datasets|Mean|Mean w/o NLI|mnli_m|mnli_mm|fevernli|anli_r1|anli_r2|anli_r3|wanli|lingnli|wellformedquery|rottentomatoes|amazonpolarity|imdb|yelpreviews|hatexplain|massive|banking77|emotiondair|emocontext|empathetic|agnews|yahootopics|biasframes_sex|biasframes_offensive|biasframes_intent|financialphrasebank|appreviews|hateoffensive|trueteacher|spam|wikitoxic_toxicaggregated|wikitoxic_obscene|wikitoxic_identityhate|wikitoxic_threat|wikitoxic_insult|manifesto|capsotu|
|
| 70 |
-
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|
| 71 |
-
|Accuracy|0.85|0.851|0.942|0.944|0.894|0.812|0.717|0.716|0.836|0.909|0.815|0.899|0.964|0.951|0.984|0.814|0.8|0.744|0.752|0.802|0.544|0.899|0.735|0.934|0.864|0.877|0.913|0.953|0.921|0.821|0.989|0.901|0.927|0.931|0.959|0.911|0.497|0.73|
|
| 72 |
-
|F1 macro|0.834|0.835|0.935|0.938|0.882|0.795|0.688|0.676|0.823|0.898|0.814|0.899|0.964|0.951|0.984|0.77|0.753|0.763|0.69|0.805|0.533|0.899|0.729|0.925|0.864|0.877|0.901|0.953|0.855|0.821|0.983|0.901|0.927|0.931|0.952|0.911|0.362|0.662|
|
| 73 |
-
|Inference text/sec (GPU, batch=32)|1116.0|1104.0|1039.0|1241.0|1138.0|1102.0|1124.0|1133.0|1251.0|1240.0|1263.0|1231.0|1054.0|559.0|795.0|1238.0|1312.0|1285.0|1273.0|1268.0|992.0|1222.0|894.0|1176.0|1194.0|1197.0|1206.0|1166.0|1227.0|541.0|1199.0|1045.0|1054.0|1020.0|1005.0|1063.0|1214.0|1220.0|
|
| 74 |
-
|
| 75 |
-
|
| 76 |
|
| 77 |
### Framework versions
|
| 78 |
|
|
|
|
| 7 |
metrics:
|
| 8 |
- accuracy
|
| 9 |
model-index:
|
| 10 |
+
- name: ModernBERT-large-zeroshot-v2.0
|
| 11 |
results: []
|
| 12 |
---
|
| 13 |
|
| 14 |
+
# ModernBERT-base-zeroshot-v2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
## Model description
|
| 17 |
|
| 18 |
+
This model is [answerdotai/ModernBERT-large](https://huggingface.co/answerdotai/ModernBERT-large)
|
| 19 |
+
fine-tuned on the same dataset mix as the `zeroshot-v2.0` models in the [Zeroshot Classifiers Collection](https://huggingface.co/collections/MoritzLaurer/zeroshot-classifiers-6548b4ff407bb19ff5c3ad6f).
|
| 20 |
|
|
|
|
| 21 |
|
| 22 |
+
## General takeaways:
|
| 23 |
+
- The model is very fast and memory efficient. It's multiple times faster and consumes multiple times less memory than DeBERTav3.
|
| 24 |
+
The memory efficiency enables larger batch sizes. I got a ~2x speed increase by enabling bf16 (instead of fp16).
|
| 25 |
+
- It performs slightly worse then DeBERTav3 on average on the tasks tested below.
|
| 26 |
+
- I'm in the process of preparing a newer version trained on better synthetic data to make full use of the 8k context window
|
| 27 |
+
and to update the training mix of the older `zeroshot-v2.0` models.
|
| 28 |
|
|
|
|
| 29 |
|
| 30 |
+
### Training results
|
| 31 |
+
|
| 32 |
+
|Datasets|Mean|Mean w/o NLI|mnli_m|mnli_mm|fevernli|anli_r1|anli_r2|anli_r3|wanli|lingnli|wellformedquery|rottentomatoes|amazonpolarity|imdb|yelpreviews|hatexplain|massive|banking77|emotiondair|emocontext|empathetic|agnews|yahootopics|biasframes_sex|biasframes_offensive|biasframes_intent|financialphrasebank|appreviews|hateoffensive|trueteacher|spam|wikitoxic_toxicaggregated|wikitoxic_obscene|wikitoxic_identityhate|wikitoxic_threat|wikitoxic_insult|manifesto|capsotu|
|
| 33 |
+
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|
| 34 |
+
|Accuracy|0.85|0.851|0.942|0.944|0.894|0.812|0.717|0.716|0.836|0.909|0.815|0.899|0.964|0.951|0.984|0.814|0.8|0.744|0.752|0.802|0.544|0.899|0.735|0.934|0.864|0.877|0.913|0.953|0.921|0.821|0.989|0.901|0.927|0.931|0.959|0.911|0.497|0.73|
|
| 35 |
+
|F1 macro|0.834|0.835|0.935|0.938|0.882|0.795|0.688|0.676|0.823|0.898|0.814|0.899|0.964|0.951|0.984|0.77|0.753|0.763|0.69|0.805|0.533|0.899|0.729|0.925|0.864|0.877|0.901|0.953|0.855|0.821|0.983|0.901|0.927|0.931|0.952|0.911|0.362|0.662|
|
| 36 |
+
|Inference text/sec (A100 40GB GPU, batch=32)|1116.0|1104.0|1039.0|1241.0|1138.0|1102.0|1124.0|1133.0|1251.0|1240.0|1263.0|1231.0|1054.0|559.0|795.0|1238.0|1312.0|1285.0|1273.0|1268.0|992.0|1222.0|894.0|1176.0|1194.0|1197.0|1206.0|1166.0|1227.0|541.0|1199.0|1045.0|1054.0|1020.0|1005.0|1063.0|1214.0|1220.0|
|
| 37 |
|
|
|
|
| 38 |
|
| 39 |
### Training hyperparameters
|
| 40 |
|
|
|
|
| 50 |
- lr_scheduler_warmup_ratio: 0.06
|
| 51 |
- num_epochs: 2
|
| 52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
### Framework versions
|
| 55 |
|