Delete .ipynb_checkpoints
Browse files
.ipynb_checkpoints/__init__-checkpoint.py
DELETED
|
@@ -1 +0,0 @@
|
|
| 1 |
-
from .tokenizer import KmerTokenizer
|
|
|
|
|
|
.ipynb_checkpoints/tokenizer-checkpoint.py
DELETED
|
@@ -1,113 +0,0 @@
|
|
| 1 |
-
import itertools
|
| 2 |
-
from transformers import PreTrainedTokenizer
|
| 3 |
-
import json
|
| 4 |
-
import os
|
| 5 |
-
|
| 6 |
-
class KmerTokenizer(PreTrainedTokenizer):
|
| 7 |
-
def __init__(self, vocab_file=None, kmerlen=6, overlapping=True, maxlen=400, **kwargs):
|
| 8 |
-
self.kmerlen = kmerlen
|
| 9 |
-
self.overlapping = overlapping
|
| 10 |
-
self.maxlen = maxlen
|
| 11 |
-
|
| 12 |
-
# Initialize vocabulary
|
| 13 |
-
self.VOCAB = [''.join(i) for i in itertools.product(*(['ATCG'] * int(self.kmerlen)))]
|
| 14 |
-
self.VOCAB_SIZE = len(self.VOCAB) + 5
|
| 15 |
-
|
| 16 |
-
self.tokendict = dict(zip(self.VOCAB, range(5, self.VOCAB_SIZE)))
|
| 17 |
-
self.tokendict['[UNK]'] = 0
|
| 18 |
-
self.tokendict['[SEP]'] = 1
|
| 19 |
-
self.tokendict['[CLS]'] = 2
|
| 20 |
-
self.tokendict['[MASK]'] = 3
|
| 21 |
-
self.tokendict['[PAD]'] = 4
|
| 22 |
-
|
| 23 |
-
super().__init__(**kwargs)
|
| 24 |
-
|
| 25 |
-
def _tokenize(self, text):
|
| 26 |
-
tokens = []
|
| 27 |
-
stoprange = len(text) - (self.kmerlen - 1)
|
| 28 |
-
if self.overlapping:
|
| 29 |
-
for k in range(0, stoprange):
|
| 30 |
-
kmer = text[k:k + self.kmerlen]
|
| 31 |
-
if set(kmer).issubset('ATCG'):
|
| 32 |
-
tokens.append(kmer)
|
| 33 |
-
else:
|
| 34 |
-
for k in range(0, stoprange, self.kmerlen):
|
| 35 |
-
kmer = text[k:k + self.kmerlen]
|
| 36 |
-
if set(kmer).issubset('ATCG'):
|
| 37 |
-
tokens.append(kmer)
|
| 38 |
-
return tokens
|
| 39 |
-
|
| 40 |
-
def _convert_token_to_id(self, token):
|
| 41 |
-
return self.tokendict.get(token, self.tokendict['[UNK]'])
|
| 42 |
-
|
| 43 |
-
def _convert_id_to_token(self, index):
|
| 44 |
-
inv_tokendict = {v: k for k, v in self.tokendict.items()}
|
| 45 |
-
return inv_tokendict.get(index, '[UNK]')
|
| 46 |
-
|
| 47 |
-
def convert_tokens_to_string(self, tokens):
|
| 48 |
-
return ' '.join(tokens)
|
| 49 |
-
|
| 50 |
-
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
| 51 |
-
if token_ids_1 is None:
|
| 52 |
-
return [self.tokendict['[CLS]']] + token_ids_0 + [self.tokendict['[SEP]']]
|
| 53 |
-
return [self.tokendict['[CLS]']] + token_ids_0 + [self.tokendict['[SEP]']] + token_ids_1 + [self.tokendict['[SEP]']]
|
| 54 |
-
|
| 55 |
-
def get_vocab(self):
|
| 56 |
-
return self.tokendict
|
| 57 |
-
|
| 58 |
-
def kmer_tokenize(self, seq_list):
|
| 59 |
-
seq_ind_list = []
|
| 60 |
-
for seq in seq_list:
|
| 61 |
-
tokens = self._tokenize(seq)
|
| 62 |
-
token_ids = [self._convert_token_to_id(token) for token in tokens]
|
| 63 |
-
if len(token_ids) < self.maxlen:
|
| 64 |
-
token_ids.extend([self.tokendict['[PAD]']] * (self.maxlen - len(token_ids)))
|
| 65 |
-
else:
|
| 66 |
-
token_ids = token_ids[:self.maxlen]
|
| 67 |
-
seq_ind_list.append(token_ids)
|
| 68 |
-
return seq_ind_list
|
| 69 |
-
|
| 70 |
-
def save_vocabulary(self, save_directory, filename_prefix=None):
|
| 71 |
-
if not os.path.isdir(save_directory):
|
| 72 |
-
os.makedirs(save_directory)
|
| 73 |
-
|
| 74 |
-
vocab_file = os.path.join(save_directory, (filename_prefix + '-' if filename_prefix else '') + 'vocab.json')
|
| 75 |
-
|
| 76 |
-
with open(vocab_file, 'w') as f:
|
| 77 |
-
json.dump(self.tokendict, f)
|
| 78 |
-
|
| 79 |
-
return (vocab_file,)
|
| 80 |
-
|
| 81 |
-
def save_pretrained(self, save_directory, **kwargs):
|
| 82 |
-
special_tokens_map_file = os.path.join(save_directory, "special_tokens_map.json")
|
| 83 |
-
with open(special_tokens_map_file, "w") as f:
|
| 84 |
-
json.dump({
|
| 85 |
-
"kmerlen": self.kmerlen,
|
| 86 |
-
"overlapping": self.overlapping,
|
| 87 |
-
"maxlen": self.maxlen
|
| 88 |
-
}, f)
|
| 89 |
-
vocab_files = self.save_vocabulary(save_directory)
|
| 90 |
-
return (special_tokens_map_file,) + vocab_files
|
| 91 |
-
|
| 92 |
-
@classmethod
|
| 93 |
-
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
|
| 94 |
-
# Load tokenizer using the parent class method
|
| 95 |
-
tokenizer = super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
|
| 96 |
-
|
| 97 |
-
# Load special tokens map
|
| 98 |
-
special_tokens_map_file = os.path.join(pretrained_model_name_or_path, "special_tokens_map.json")
|
| 99 |
-
if os.path.isfile(special_tokens_map_file):
|
| 100 |
-
with open(special_tokens_map_file, "r") as f:
|
| 101 |
-
special_tokens_map = json.load(f)
|
| 102 |
-
tokenizer.kmerlen = special_tokens_map.get("kmerlen", 6)
|
| 103 |
-
tokenizer.overlapping = special_tokens_map.get("overlapping", True)
|
| 104 |
-
tokenizer.maxlen = special_tokens_map.get("maxlen", 400)
|
| 105 |
-
|
| 106 |
-
# Load vocabulary
|
| 107 |
-
vocab_file = os.path.join(pretrained_model_name_or_path, "vocab.json")
|
| 108 |
-
if os.path.isfile(vocab_file):
|
| 109 |
-
with open(vocab_file, "r") as f:
|
| 110 |
-
tokendict = json.load(f)
|
| 111 |
-
tokenizer.tokendict = tokendict
|
| 112 |
-
|
| 113 |
-
return tokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|