File size: 12,293 Bytes
635b256
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
---
license: apache-2.0
library_name: transformers
pipeline_tag: robotics
---

# <span style="color: #7FFF7F;">RoboBrain2.0-7B GGUF Models</span>


## <span style="color: #7F7FFF;">Model Generation Details</span>

This model was generated using [llama.cpp](https://github.com/ggerganov/llama.cpp) at commit [`6adc3c3e`](https://github.com/ggerganov/llama.cpp/commit/6adc3c3ebc029af058ac950a8e2a825fdf18ecc6).





---

## <span style="color: #7FFF7F;">Quantization Beyond the IMatrix</span>

I've been experimenting with a new quantization approach that selectively elevates the precision of key layers beyond what the default IMatrix configuration provides.

In my testing, standard IMatrix quantization underperforms at lower bit depths, especially with Mixture of Experts (MoE) models. To address this, I'm using the `--tensor-type` option in `llama.cpp` to manually "bump" important layers to higher precision. You can see the implementation here:  
👉 [Layer bumping with llama.cpp](https://github.com/Mungert69/GGUFModelBuilder/blob/main/model-converter/tensor_list_builder.py)

While this does increase model file size, it significantly improves precision for a given quantization level.

### **I'd love your feedback—have you tried this? How does it perform for you?**




---

<a href="https://readyforquantum.com/huggingface_gguf_selection_guide.html" style="color: #7FFF7F;">
  Click here to get info on choosing the right GGUF model format
</a>

---



<!--Begin Original Model Card-->


<div align="center">
<img src="https://github.com/FlagOpen/RoboBrain2.0/raw/main/assets/logo2.png" width="500"/>
</div>

# RoboBrain 2.0: See Better. Think Harder. Do Smarter. 


<p align="center">
        </a>&nbsp&nbsp⭐️ <a href="https://superrobobrain.github.io/">Project</a></a>&nbsp&nbsp | &nbsp&nbsp⭐️ <a href="https://github.com/FlagOpen/RoboBrain2.0">Github</a>&nbsp&nbsp | &nbsp&nbsp🤖 <a href="https://www.modelscope.cn/models/BAAI/RoboBrain2.0-7B/files/">ModelScope</a>&nbsp&nbsp | &nbsp&nbsp📑 <a href="">Technical Report (Coming soon)</a>&nbsp&nbsp | &nbsp&nbsp💬 <a href="./assets/wechat.png">WeChat</a>
</p>
<p align="center">
        </a>&nbsp&nbsp🎯 <a href="https://github.com/FlagOpen/RoboOS">RoboOS</a>: An Efficient Open-Source Multi-Robot Coordination System for RoboBrain.
</p>
<p align="center">
</a>&nbsp&nbsp🌍 <a href="https://github.com/FlagOpen/RoboBrain">RoboBrain 1.0</a>: A Unified Brain Model for Robotic Manipulation from Abstract to Concrete.
</p>

## 🔥 Overview
We are excited to introduce **RoboBrain 2.0**, the most powerful open-source embodied brain model to date. Compared to its predecessor, RoboBrain1.0, our latest version significantly advances multi-agent task planning, spatial reasoning, and closed-loop execution. A detailed technical report will be released soon.

<div align="center">
<img src="https://github.com/FlagOpen/RoboBrain2.0/raw/main/assets/results.png" />
</div>

## 🗞️ News
- **`2025-06-07`**: 🎉 We highlight the training framework ([FlagScale](https://github.com/FlagOpen/FlagScale)) developed by *BAAI Framework R&D team*, and the evaluation framework ([FlagEvalMM](https://github.com/flageval-baai/FlagEvalMM)) by *BAAI FlagEval team*. Both are used for RoboBrain 2.0. 
- **`2025-06-06`**: 🤗 [RoboBrain 2.0-7B](https://huggingface.co/BAAI/RoboBrain2.0-7B) model checkpoint has been released in Huggingface..
- **`2025-06-06`**: 🔥 We're excited to announce the release of our more powerful [RoboBrain 2.0](https://superrobobrain.github.io/).
- **`2025-04-11`**: 🎉 [RoboBrain 1.0](https://github.com/FlagOpen/RoboBrain/) was selected for CVPR 2025's official [Embodied AI Trends Commentary](https://cvpr.thecvf.com/Conferences/2025/News/AI_Enhanced_Robotics).
- **`2025-02-27`**: 🌍 [RoboBrain 1.0](http://arxiv.org/abs/2502.21257/) was accepted to CVPR2025.


## 📆 Todo
- [x] Release model checkpoint for RoboBrain 2.0-7B
- [x] Release quick inference example for RoboBrain 2.0
- [x] Release training codes for RoboBrain 2.0
- [ ] Release model checkpoint for RoboBrain 2.0-32B

## 🚀 Features
**RoboBrain 2.0** supports ***interactive reasoning*** with long-horizon planning and closed-loop feedback, ***spatial perception*** for precise point and bbox prediction from complex instructions, ***temporal perception*** for future trajectory estimation, and ***scene reasoning*** through real-time structured memory construction and update.

<div align="center">
<img src="https://github.com/FlagOpen/RoboBrain2.0/raw/main/assets/visualization.png" />
</div>


## ⭐️ Architecture
**RoboBrain 2.0** supports ***multi-image***, ***long video***, and ***high-resolution visual inputs***, along with complex task instructions and structured ***scene graphs*** on the language side. Visual inputs are processed via a Vision Encoder and MLP Projector, while textual inputs are tokenized into a unified token stream. All inputs are fed into a ***LLM Decoder*** that performs ***long-chain-of-thought reasoning*** and outputs structured plans, spatial relations, and both ***relative*** and ***absolute coordinates***.

<div align="center">
<img src="https://github.com/FlagOpen/RoboBrain2.0/raw/main/assets/arch.png" />
</div>


## 🤗 Model Zoo


| Models               | Checkpoint                                                     | Description                                                | 
|----------------------|----------------------------------------------------------------|------------------------------------------------------------|
| RoboBrain 2.0 7B      | [🤗 BAAI/RoboBrain2.0-7B](https://huggingface.co/BAAI/RoboBrain2.0-7B)   | 7B parameter version of the RoboBrain2.0                   | 
| RoboBrain 2.0 32B      | [🤗 BAAI/RoboBrain2.0-32B](https://huggingface.co/BAAI/RoboBrain2.0-32B)   | 32B parameter version of the RoboBrain2.0 *(Coming soon)*


## 🛠️ Setup

```bash
# clone repo.
git clone https://github.com/FlagOpen/RoboBrain2.0.git
cd RoboBrain

# build conda env.
conda create -n robobrain2 python=3.10
conda activate robobrain2
pip install -r requirements.txt
```


## 🤖 Simple Inference
**Note: Please refer to [RoboBrain 2.0 Github](https://github.com/FlagOpen/RoboBrain2.0) for the usage of RoboBrain 2.0**


## 😊 More Results

**Benchmark comparison across spatial reasoning and task planning.** ***RoboBrain2.0-32B*** achieves state-of-the-art performance on four key embodied intelligence benchmarks: ***BLINK-Spatial***, ***CV-Bench***, ***EmbSpatial***, and ***RefSpatial***. It not only outperforms leading open-source models such as o4-mini and Qwen2.5-VL, but also surpasses closed-source models like Gemini 2.5 Pro and Claude Sonnet 4 — especially in the challenging ***RefSpatial*** benchmark, where ***RoboBrain2.0*** shows a >50% absolute improvement.

<div align="center">
<img src="https://github.com/FlagOpen/RoboBrain2.0/raw/main/assets/results_table.png" />
</div>


## 📑 Citation
If you find this project useful, welcome to cite us.
```bib
@article{RoboBrain 2.0 Technical Report,
    title={RoboBrain 2.0 Technical Report},
    author={BAAI RoboBrain Team},
    journal={arXiv preprint arXiv:TODO},
    year={2025}
}

@article{RoboBrain 1.0,
    title={Robobrain: A unified brain model for robotic manipulation from abstract to concrete},
    author={Ji, Yuheng and Tan, Huajie and Shi, Jiayu and Hao, Xiaoshuai and Zhang, Yuan and Zhang, Hengyuan and Wang, Pengwei and Zhao, Mengdi and Mu, Yao and An, Pengju and others},
    journal={arXiv preprint arXiv:2502.21257},
    year={2025}
}

@article{RoboOS,
    title={RoboOS: A Hierarchical Embodied Framework for Cross-Embodiment and Multi-Agent Collaboration},
    author={Tan, Huajie and Hao, Xiaoshuai and Lin, Minglan and Wang, Pengwei and Lyu, Yaoxu and Cao, Mingyu and Wang, Zhongyuan and Zhang, Shanghang},
    journal={arXiv preprint arXiv:2505.03673},
    year={2025}
}

@article{zhou2025roborefer,
    title={RoboRefer: Towards Spatial Referring with Reasoning in Vision-Language Models for Robotics},
    author={Zhou, Enshen and An, Jingkun and Chi, Cheng and Han, Yi and Rong, Shanyu and Zhang, Chi and Wang, Pengwei and Wang, Zhongyuan and Huang, Tiejun and Sheng, Lu and others},
    journal={arXiv preprint arXiv:2506.04308},
    year={2025}
}

@article{Reason-RFT,
    title={Reason-rft: Reinforcement fine-tuning for visual reasoning},
    author={Tan, Huajie and Ji, Yuheng and Hao, Xiaoshuai and Lin, Minglan and Wang, Pengwei and Wang, Zhongyuan and Zhang, Shanghang},
    journal={arXiv preprint arXiv:2503.20752},
    year={2025}
}

@article{Code-as-Monitor,
    title={Code-as-Monitor: Constraint-aware Visual Programming for Reactive and Proactive Robotic Failure Detection},
    author={Zhou, Enshen and Su, Qi and Chi, Cheng and Zhang, Zhizheng and Wang, Zhongyuan and Huang, Tiejun and Sheng, Lu and Wang, He},
    journal={arXiv preprint arXiv:2412.04455},
    year={2024}
}
```

<!--End Original Model Card-->

---

# <span id="testllm" style="color: #7F7FFF;">🚀 If you find these models useful</span>

Help me test my **AI-Powered Quantum Network Monitor Assistant** with **quantum-ready security checks**:  

👉 [Quantum Network Monitor](https://readyforquantum.com/?assistant=open&utm_source=huggingface&utm_medium=referral&utm_campaign=huggingface_repo_readme)  


The full Open Source Code for the Quantum Network Monitor Service available at my github repos ( repos with NetworkMonitor in the name) : [Source Code Quantum Network Monitor](https://github.com/Mungert69). You will also find the code I use to quantize the models if you want to do it yourself [GGUFModelBuilder](https://github.com/Mungert69/GGUFModelBuilder)

💬 **How to test**:  
 Choose an **AI assistant type**:  
   - `TurboLLM` (GPT-4.1-mini)  
   - `HugLLM` (Hugginface Open-source models)  
   - `TestLLM` (Experimental CPU-only)  

### **What I’m Testing**  
I’m pushing the limits of **small open-source models for AI network monitoring**, specifically:  
- **Function calling** against live network services  
- **How small can a model go** while still handling:  
  - Automated **Nmap security scans**  
  - **Quantum-readiness checks**  
  - **Network Monitoring tasks**  

🟡 **TestLLM** – Current experimental model (llama.cpp on 2 CPU threads on huggingface docker space):  
-**Zero-configuration setup**  
- ⏳ 30s load time (slow inference but **no API costs**) . No token limited as the cost is low.
- 🔧 **Help wanted!** If you’re into **edge-device AI**, let’s collaborate!  

### **Other Assistants**  
🟢 **TurboLLM** – Uses **gpt-4.1-mini** :
- **It performs very well but unfortunatly OpenAI charges per token. For this reason tokens usage is limited. 
- **Create custom cmd processors to run .net code on Quantum Network Monitor Agents**
- **Real-time network diagnostics and monitoring**
- **Security Audits**
- **Penetration testing** (Nmap/Metasploit)  

🔵 **HugLLM** – Latest Open-source models:  
- 🌐 Runs on Hugging Face Inference API. Performs pretty well using the lastest models hosted on Novita.

### 💡 **Example commands you could test**:  
1. `"Give me info on my websites SSL certificate"`  
2. `"Check if my server is using quantum safe encyption for communication"`  
3. `"Run a comprehensive security audit on my server"`
4. '"Create a cmd processor to .. (what ever you want)" Note you need to install a [Quantum Network Monitor Agent](https://readyforquantum.com/Download/?utm_source=huggingface&utm_medium=referral&utm_campaign=huggingface_repo_readme) to run the .net code on. This is a very flexible and powerful feature. Use with caution!

### Final Word

I fund the servers used to create these model files, run the Quantum Network Monitor service, and pay for inference from Novita and OpenAI—all out of my own pocket. All the code behind the model creation and the Quantum Network Monitor project is [open source](https://github.com/Mungert69). Feel free to use whatever you find helpful.

If you appreciate the work, please consider [buying me a coffee](https://www.buymeacoffee.com/mahadeva) ☕. Your support helps cover service costs and allows me to raise token limits for everyone.

I'm also open to job opportunities or sponsorship.

Thank you! 😊