Upload Llama-3-1-Varco-8B.ipynb (#5)
Browse files- Upload Llama-3-1-Varco-8B.ipynb (2d5e31ec7bac5dc1b3fc25f77a4cc7acd427f373)
Co-authored-by: Jooho Song <JoohoSong@users.noreply.huggingface.co>
- Llama-3-1-Varco-8B.ipynb +343 -0
Llama-3-1-Varco-8B.ipynb
ADDED
|
@@ -0,0 +1,343 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {},
|
| 6 |
+
"source": [
|
| 7 |
+
"# Deploy Llama-VARCO-8B-Instruct Model from AWS Marketplace \n"
|
| 8 |
+
]
|
| 9 |
+
},
|
| 10 |
+
{
|
| 11 |
+
"cell_type": "markdown",
|
| 12 |
+
"metadata": {},
|
| 13 |
+
"source": [
|
| 14 |
+
"\n",
|
| 15 |
+
"\n",
|
| 16 |
+
"Llama-VARCO-8B-Instruct is a generative model built with Llama, specifically designed to excel in Korean through additional training. The model uses continual pre-training with both Korean and English datasets to enhance its understanding and generation capabilites in Korean, while also maintaining its proficiency in English. It performs supervised fine-tuning (SFT) and direct preference optimization (DPO) in Korean to align with human preferences.\n",
|
| 17 |
+
"\n",
|
| 18 |
+
"This sample notebook shows you how to deploy [Llama-VARCO-8B-Instruct](https://aws.amazon.com/marketplace/pp/prodview-pynin2e23lb3e) using Amazon SageMaker.\n",
|
| 19 |
+
"\n",
|
| 20 |
+
"> **Note**: This is a reference notebook and it cannot run unless you make changes suggested in the notebook.\n",
|
| 21 |
+
"\n",
|
| 22 |
+
"## Pre-requisites:\n",
|
| 23 |
+
"1. **Note**: This notebook contains elements which render correctly in Jupyter interface. Open this notebook from an Amazon SageMaker Notebook Instance or Amazon SageMaker Studio.\n",
|
| 24 |
+
"1. Ensure that IAM role used has **AmazonSageMakerFullAccess**\n",
|
| 25 |
+
"1. To deploy this ML model successfully, ensure that:\n",
|
| 26 |
+
" 1. Either your IAM role has these three permissions and you have authority to make AWS Marketplace subscriptions in the AWS account used: \n",
|
| 27 |
+
" 1. **aws-marketplace:ViewSubscriptions**\n",
|
| 28 |
+
" 1. **aws-marketplace:Unsubscribe**\n",
|
| 29 |
+
" 1. **aws-marketplace:Subscribe** \n",
|
| 30 |
+
"\n",
|
| 31 |
+
"## Contents:\n",
|
| 32 |
+
"1. [Subscribe to the model package](#1.-Subscribe-to-the-model-package)\n",
|
| 33 |
+
"2. [Create an endpoint and perform real-time inference](#2.-Create-an-endpoint-and-perform-real-time-inference)\n",
|
| 34 |
+
"3. [Clean-up](#3.-Clean-up)\n",
|
| 35 |
+
"\n",
|
| 36 |
+
" \n",
|
| 37 |
+
"\n",
|
| 38 |
+
"## Usage instructions\n",
|
| 39 |
+
"You can run this notebook one cell at a time (By using Shift+Enter for running a cell)."
|
| 40 |
+
]
|
| 41 |
+
},
|
| 42 |
+
{
|
| 43 |
+
"cell_type": "markdown",
|
| 44 |
+
"metadata": {},
|
| 45 |
+
"source": [
|
| 46 |
+
"## 1. Subscribe to the model package"
|
| 47 |
+
]
|
| 48 |
+
},
|
| 49 |
+
{
|
| 50 |
+
"cell_type": "markdown",
|
| 51 |
+
"metadata": {
|
| 52 |
+
"tags": []
|
| 53 |
+
},
|
| 54 |
+
"source": [
|
| 55 |
+
"To subscribe to the model package:\n",
|
| 56 |
+
"1. Open the model package [listing page](https://aws.amazon.com/marketplace/pp/prodview-pynin2e23lb3e)\n",
|
| 57 |
+
"1. On the AWS Marketplace listing, click on the **Continue to subscribe** button.\n",
|
| 58 |
+
"1. On the **Subscribe to this software** page, review and click on **\"Accept Offer\"** if you and your organization agrees with EULA, pricing, and support terms. \n",
|
| 59 |
+
"1. Once you click on **Continue to configuration button** and then choose a **region**, you will see a **Product Arn** displayed. This is the model package ARN that you need to specify while creating a deployable model using Boto3. Copy the ARN corresponding to your region and specify the same in the following cell."
|
| 60 |
+
]
|
| 61 |
+
},
|
| 62 |
+
{
|
| 63 |
+
"cell_type": "code",
|
| 64 |
+
"execution_count": null,
|
| 65 |
+
"metadata": {
|
| 66 |
+
"tags": []
|
| 67 |
+
},
|
| 68 |
+
"outputs": [],
|
| 69 |
+
"source": [
|
| 70 |
+
"model_package_arn = \"arn:aws:sagemaker:us-west-2:594846645681:model-package/llama-varco-8b-ist-bedrock-37339dbb44f23f488e24f8671eaa0494\""
|
| 71 |
+
]
|
| 72 |
+
},
|
| 73 |
+
{
|
| 74 |
+
"cell_type": "code",
|
| 75 |
+
"execution_count": null,
|
| 76 |
+
"metadata": {
|
| 77 |
+
"tags": []
|
| 78 |
+
},
|
| 79 |
+
"outputs": [],
|
| 80 |
+
"source": [
|
| 81 |
+
"import base64\n",
|
| 82 |
+
"import json\n",
|
| 83 |
+
"import uuid\n",
|
| 84 |
+
"from sagemaker import ModelPackage\n",
|
| 85 |
+
"import sagemaker as sage\n",
|
| 86 |
+
"from sagemaker import get_execution_role\n",
|
| 87 |
+
"from sagemaker import ModelPackage\n",
|
| 88 |
+
"import boto3\n",
|
| 89 |
+
"from IPython.display import Image\n",
|
| 90 |
+
"from PIL import Image as ImageEdit\n",
|
| 91 |
+
"import numpy as np\n",
|
| 92 |
+
"import io"
|
| 93 |
+
]
|
| 94 |
+
},
|
| 95 |
+
{
|
| 96 |
+
"cell_type": "code",
|
| 97 |
+
"execution_count": null,
|
| 98 |
+
"metadata": {
|
| 99 |
+
"tags": []
|
| 100 |
+
},
|
| 101 |
+
"outputs": [],
|
| 102 |
+
"source": [
|
| 103 |
+
"role = get_execution_role()\n",
|
| 104 |
+
"\n",
|
| 105 |
+
"sagemaker_session = sage.Session()\n",
|
| 106 |
+
"\n",
|
| 107 |
+
"bucket = sagemaker_session.default_bucket()\n",
|
| 108 |
+
"runtime = boto3.client(\"runtime.sagemaker\")"
|
| 109 |
+
]
|
| 110 |
+
},
|
| 111 |
+
{
|
| 112 |
+
"cell_type": "markdown",
|
| 113 |
+
"metadata": {},
|
| 114 |
+
"source": [
|
| 115 |
+
"## 2. Create an endpoint and perform real-time inference"
|
| 116 |
+
]
|
| 117 |
+
},
|
| 118 |
+
{
|
| 119 |
+
"cell_type": "markdown",
|
| 120 |
+
"metadata": {},
|
| 121 |
+
"source": [
|
| 122 |
+
"If you want to understand how real-time inference with Amazon SageMaker works, see [Documentation](https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works-hosting.html)."
|
| 123 |
+
]
|
| 124 |
+
},
|
| 125 |
+
{
|
| 126 |
+
"cell_type": "code",
|
| 127 |
+
"execution_count": null,
|
| 128 |
+
"metadata": {
|
| 129 |
+
"tags": []
|
| 130 |
+
},
|
| 131 |
+
"outputs": [],
|
| 132 |
+
"source": [
|
| 133 |
+
"model_name = \"Llama-VARCO-8B-Instruct\"\n",
|
| 134 |
+
"\n",
|
| 135 |
+
"content_type = \"application/json\"\n",
|
| 136 |
+
"\n",
|
| 137 |
+
"real_time_inference_instance_type = (\n",
|
| 138 |
+
" \"ml.g5.12xlarge\"\n",
|
| 139 |
+
")\n",
|
| 140 |
+
"batch_transform_inference_instance_type = (\n",
|
| 141 |
+
" \"ml.g4dn.12xlarge\"\n",
|
| 142 |
+
")"
|
| 143 |
+
]
|
| 144 |
+
},
|
| 145 |
+
{
|
| 146 |
+
"cell_type": "markdown",
|
| 147 |
+
"metadata": {},
|
| 148 |
+
"source": [
|
| 149 |
+
"### A.Create an endpoint"
|
| 150 |
+
]
|
| 151 |
+
},
|
| 152 |
+
{
|
| 153 |
+
"cell_type": "code",
|
| 154 |
+
"execution_count": null,
|
| 155 |
+
"metadata": {
|
| 156 |
+
"tags": []
|
| 157 |
+
},
|
| 158 |
+
"outputs": [],
|
| 159 |
+
"source": [
|
| 160 |
+
"# create a deployable model from the model package.\n",
|
| 161 |
+
"model = ModelPackage(\n",
|
| 162 |
+
" role=role, model_package_arn=model_package_arn, sagemaker_session=sagemaker_session\n",
|
| 163 |
+
")\n",
|
| 164 |
+
"\n",
|
| 165 |
+
"# Deploy the model\n",
|
| 166 |
+
"predictor = model.deploy(1, real_time_inference_instance_type, endpoint_name=model_name)"
|
| 167 |
+
]
|
| 168 |
+
},
|
| 169 |
+
{
|
| 170 |
+
"cell_type": "markdown",
|
| 171 |
+
"metadata": {},
|
| 172 |
+
"source": [
|
| 173 |
+
"Once endpoint has been created, you would be able to perform real-time inference."
|
| 174 |
+
]
|
| 175 |
+
},
|
| 176 |
+
{
|
| 177 |
+
"cell_type": "markdown",
|
| 178 |
+
"metadata": {
|
| 179 |
+
"tags": []
|
| 180 |
+
},
|
| 181 |
+
"source": [
|
| 182 |
+
"### B.Create input payload"
|
| 183 |
+
]
|
| 184 |
+
},
|
| 185 |
+
{
|
| 186 |
+
"cell_type": "code",
|
| 187 |
+
"execution_count": null,
|
| 188 |
+
"metadata": {
|
| 189 |
+
"tags": []
|
| 190 |
+
},
|
| 191 |
+
"outputs": [],
|
| 192 |
+
"source": [
|
| 193 |
+
"input = {\n",
|
| 194 |
+
" \"messages\": [\n",
|
| 195 |
+
" {\n",
|
| 196 |
+
" \"role\":\"user\",\n",
|
| 197 |
+
" \"content\":\"안녕 넌 누구야?\"\n",
|
| 198 |
+
" }\n",
|
| 199 |
+
" ]\n",
|
| 200 |
+
"}"
|
| 201 |
+
]
|
| 202 |
+
},
|
| 203 |
+
{
|
| 204 |
+
"cell_type": "markdown",
|
| 205 |
+
"metadata": {},
|
| 206 |
+
"source": [
|
| 207 |
+
"### C. Perform real-time inference"
|
| 208 |
+
]
|
| 209 |
+
},
|
| 210 |
+
{
|
| 211 |
+
"cell_type": "markdown",
|
| 212 |
+
"metadata": {},
|
| 213 |
+
"source": [
|
| 214 |
+
"##### C-1. Stream Inference Example"
|
| 215 |
+
]
|
| 216 |
+
},
|
| 217 |
+
{
|
| 218 |
+
"cell_type": "code",
|
| 219 |
+
"execution_count": null,
|
| 220 |
+
"metadata": {
|
| 221 |
+
"tags": []
|
| 222 |
+
},
|
| 223 |
+
"outputs": [],
|
| 224 |
+
"source": [
|
| 225 |
+
"class VarcoInferenceStream():\n",
|
| 226 |
+
" def __init__(self, sagemaker_runtime, endpoint_name):\n",
|
| 227 |
+
" self.sagemaker_runtime = sagemaker_runtime\n",
|
| 228 |
+
" self.endpoint_name = endpoint_name\n",
|
| 229 |
+
"\n",
|
| 230 |
+
" def stream_inference(self, request_body):\n",
|
| 231 |
+
" # Gets a streaming inference response\n",
|
| 232 |
+
" # from the specified model endpoint:\n",
|
| 233 |
+
" response = self.sagemaker_runtime\\\n",
|
| 234 |
+
" .invoke_endpoint_with_response_stream(\n",
|
| 235 |
+
" EndpointName=self.endpoint_name,\n",
|
| 236 |
+
" Body=json.dumps(request_body),\n",
|
| 237 |
+
" ContentType=\"application/json\"\n",
|
| 238 |
+
" )\n",
|
| 239 |
+
" # Gets the EventStream object returned by the SDK:\n",
|
| 240 |
+
" for body in response[\"Body\"]:\n",
|
| 241 |
+
" raw = body['PayloadPart']['Bytes']\n",
|
| 242 |
+
" yield raw.decode()\n",
|
| 243 |
+
"\n",
|
| 244 |
+
"\n",
|
| 245 |
+
"sm_runtime = boto3.client(\"sagemaker-runtime\")\n",
|
| 246 |
+
"varco_inference_stream = VarcoInferenceStream(sm_runtime, model_name)\n",
|
| 247 |
+
"stream = varco_inference_stream.stream_inference(input)\n",
|
| 248 |
+
"for part in stream:\n",
|
| 249 |
+
" print(part, end='')"
|
| 250 |
+
]
|
| 251 |
+
},
|
| 252 |
+
{
|
| 253 |
+
"cell_type": "markdown",
|
| 254 |
+
"metadata": {
|
| 255 |
+
"tags": []
|
| 256 |
+
},
|
| 257 |
+
"source": [
|
| 258 |
+
"## 3. Clean-up"
|
| 259 |
+
]
|
| 260 |
+
},
|
| 261 |
+
{
|
| 262 |
+
"cell_type": "markdown",
|
| 263 |
+
"metadata": {},
|
| 264 |
+
"source": [
|
| 265 |
+
"Now that you have successfully performed a real-time inference, you do not need the endpoint any more. You can terminate the endpoint to avoid being charged."
|
| 266 |
+
]
|
| 267 |
+
},
|
| 268 |
+
{
|
| 269 |
+
"cell_type": "markdown",
|
| 270 |
+
"metadata": {},
|
| 271 |
+
"source": [
|
| 272 |
+
"### A. Delete the endpoint"
|
| 273 |
+
]
|
| 274 |
+
},
|
| 275 |
+
{
|
| 276 |
+
"cell_type": "code",
|
| 277 |
+
"execution_count": null,
|
| 278 |
+
"metadata": {},
|
| 279 |
+
"outputs": [],
|
| 280 |
+
"source": [
|
| 281 |
+
"model.sagemaker_session.delete_endpoint(model_name)\n",
|
| 282 |
+
"model.sagemaker_session.delete_endpoint_config(model_name)"
|
| 283 |
+
]
|
| 284 |
+
},
|
| 285 |
+
{
|
| 286 |
+
"cell_type": "markdown",
|
| 287 |
+
"metadata": {},
|
| 288 |
+
"source": [
|
| 289 |
+
"### B. Delete the model"
|
| 290 |
+
]
|
| 291 |
+
},
|
| 292 |
+
{
|
| 293 |
+
"cell_type": "code",
|
| 294 |
+
"execution_count": null,
|
| 295 |
+
"metadata": {},
|
| 296 |
+
"outputs": [],
|
| 297 |
+
"source": [
|
| 298 |
+
"model.delete_model()"
|
| 299 |
+
]
|
| 300 |
+
},
|
| 301 |
+
{
|
| 302 |
+
"cell_type": "markdown",
|
| 303 |
+
"metadata": {},
|
| 304 |
+
"source": [
|
| 305 |
+
"### C. Unsubscribe to the listing (optional)"
|
| 306 |
+
]
|
| 307 |
+
},
|
| 308 |
+
{
|
| 309 |
+
"cell_type": "markdown",
|
| 310 |
+
"metadata": {},
|
| 311 |
+
"source": [
|
| 312 |
+
"If you would like to unsubscribe to the model package, follow these steps. Before you cancel the subscription, ensure that you do not have any [deployable model](https://console.aws.amazon.com/sagemaker/home#/models) created from the model package or using the algorithm. Note - You can find this information by looking at the container name associated with the model. \n",
|
| 313 |
+
"\n",
|
| 314 |
+
"**Steps to unsubscribe to product from AWS Marketplace**:\n",
|
| 315 |
+
"1. Navigate to __Machine Learning__ tab on [__Your Software subscriptions page__](https://aws.amazon.com/marketplace/ai/library?productType=ml&ref_=mlmp_gitdemo_indust)\n",
|
| 316 |
+
"2. Locate the listing that you want to cancel the subscription for, and then choose __Cancel Subscription__ to cancel the subscription.\n",
|
| 317 |
+
"\n"
|
| 318 |
+
]
|
| 319 |
+
}
|
| 320 |
+
],
|
| 321 |
+
"metadata": {
|
| 322 |
+
"instance_type": "ml.t3.medium",
|
| 323 |
+
"kernelspec": {
|
| 324 |
+
"display_name": "conda_pytorch_p310",
|
| 325 |
+
"language": "python",
|
| 326 |
+
"name": "conda_pytorch_p310"
|
| 327 |
+
},
|
| 328 |
+
"language_info": {
|
| 329 |
+
"codemirror_mode": {
|
| 330 |
+
"name": "ipython",
|
| 331 |
+
"version": 3
|
| 332 |
+
},
|
| 333 |
+
"file_extension": ".py",
|
| 334 |
+
"mimetype": "text/x-python",
|
| 335 |
+
"name": "python",
|
| 336 |
+
"nbconvert_exporter": "python",
|
| 337 |
+
"pygments_lexer": "ipython3",
|
| 338 |
+
"version": "3.10.14"
|
| 339 |
+
}
|
| 340 |
+
},
|
| 341 |
+
"nbformat": 4,
|
| 342 |
+
"nbformat_minor": 4
|
| 343 |
+
}
|