import math import torch import torch.nn as nn import torch.nn.functional as F from transformers import PreTrainedModel, PretrainedConfig from transformers.modeling_outputs import CausalLMOutput # ========================= # Config # ========================= class TinyWayConfig(PretrainedConfig): model_type = "tinyway" def __init__( self, vocab_size=50257, n_positions=256, n_embd=512, n_layer=10, n_head=8, dropout=0.1, **kwargs ): super().__init__(**kwargs) self.vocab_size = vocab_size self.n_positions = n_positions self.n_embd = n_embd self.n_layer = n_layer self.n_head = n_head self.dropout = dropout # 🔥 HuggingFace-required aliases self.hidden_size = n_embd self.num_hidden_layers = n_layer self.num_attention_heads = n_head self.max_position_embeddings = n_positions # ========================= # Causal Self-Attention # ========================= class CausalSelfAttention(nn.Module): def __init__(self, config): super().__init__() assert config.n_embd % config.n_head == 0 self.n_head = config.n_head self.head_dim = config.n_embd // config.n_head self.qkv = nn.Linear(config.n_embd, 3 * config.n_embd) self.proj = nn.Linear(config.n_embd, config.n_embd) self.attn_dropout = nn.Dropout(config.dropout) self.proj_dropout = nn.Dropout(config.dropout) self.register_buffer( "mask", torch.tril( torch.ones( config.n_positions, config.n_positions, dtype=torch.bool ) ) ) self.last_attn = None def forward(self, x): B, T, C = x.shape qkv = self.qkv(x) q, k, v = qkv.chunk(3, dim=-1) q = q.view(B, T, self.n_head, self.head_dim).transpose(1, 2) k = k.view(B, T, self.n_head, self.head_dim).transpose(1, 2) v = v.view(B, T, self.n_head, self.head_dim).transpose(1, 2) att = (q @ k.transpose(-2, -1)) / math.sqrt(self.head_dim) att = att.masked_fill( ~self.mask[:T, :T], torch.finfo(att.dtype).min ) att = F.softmax(att, dim=-1) self.last_attn = att.detach() att = self.attn_dropout(att) out = att @ v out = out.transpose(1, 2).contiguous().view(B, T, C) out = self.proj(out) out = self.proj_dropout(out) return out # ========================= # Transformer Block # ========================= class Block(nn.Module): def __init__(self, config): super().__init__() self.ln1 = nn.LayerNorm(config.n_embd) self.attn = CausalSelfAttention(config) self.ln2 = nn.LayerNorm(config.n_embd) # 🔥 FFN EXACTLY MATCHES TRAINING self.ffn = nn.Sequential( nn.Linear(config.n_embd, 4 * config.n_embd), nn.GELU(), nn.Linear(4 * config.n_embd, config.n_embd), nn.Dropout(config.dropout), ) def forward(self, x): x = x + self.attn(self.ln1(x)) x = x + self.ffn(self.ln2(x)) return x # ========================= # TinyWay Language Model # ========================= class TinyWayForCausalLM(PreTrainedModel): config_class = TinyWayConfig def __init__(self, config): super().__init__(config) self.token_emb = nn.Embedding(config.vocab_size, config.n_embd) self.pos_emb = nn.Embedding(config.n_positions, config.n_embd) self.blocks = nn.ModuleList([ Block(config) for _ in range(config.n_layer) ]) self.ln = nn.LayerNorm(config.n_embd) self.head = nn.Linear( config.n_embd, config.vocab_size, bias=False ) # weight tying self.head.weight = self.token_emb.weight self.dropout = nn.Dropout(config.dropout) self.post_init() def forward( self, input_ids, labels=None, attention_mask=None, # intentionally unused (causal LM) **kwargs # 🔥 accept return_dict, use_cache, etc. ): B, T = input_ids.shape pos = torch.arange(T, device=input_ids.device) x = self.token_emb(input_ids) + self.pos_emb(pos) x = self.dropout(x) for block in self.blocks: x = block(x) x = self.ln(x) logits = self.head(x) loss = None if labels is not None: loss = F.cross_entropy( logits.view(-1, logits.size(-1)), labels.view(-1) ) return CausalLMOutput( loss=loss, logits=logits ) def prepare_inputs_for_generation(self, input_ids, **kwargs): return {"input_ids": input_ids}