NeoPy's picture
Update infer/modules/train/train.py
979717f verified
import os
import sys
import logging
logger = logging.getLogger(__name__)
now_dir = os.getcwd()
sys.path.append(os.path.join(now_dir))
import datetime
from tqdm import tqdm # Added import
from infer.lib.train import utils
hps = utils.get_hparams()
os.environ["CUDA_VISIBLE_DEVICES"] = hps.gpus.replace("-", ",")
n_gpus = len(hps.gpus.split("-"))
from random import randint, shuffle
import torch
try:
import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import
if torch.xpu.is_available():
from infer.modules.ipex import ipex_init
from infer.modules.ipex.gradscaler import gradscaler_init
from torch.xpu.amp import autocast
GradScaler = gradscaler_init()
ipex_init()
else:
from torch.cuda.amp import GradScaler, autocast
except Exception:
from torch.cuda.amp import GradScaler, autocast
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = False
from time import sleep
from time import time as ttime
import torch.distributed as dist
import torch.multiprocessing as mp
from torch.nn import functional as F
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from infer.lib.infer_pack import commons
from infer.lib.train.data_utils import (
DistributedBucketSampler,
TextAudioCollate,
TextAudioCollateMultiNSFsid,
TextAudioLoader,
TextAudioLoaderMultiNSFsid,
)
if hps.version == "v1":
from infer.lib.infer_pack.models import MultiPeriodDiscriminator
from infer.lib.infer_pack.models import SynthesizerTrnMs256NSFsid as RVC_Model_f0
from infer.lib.infer_pack.models import (
SynthesizerTrnMs256NSFsid_nono as RVC_Model_nof0,
)
else:
from infer.lib.infer_pack.models import (
SynthesizerTrnMs768NSFsid as RVC_Model_f0,
SynthesizerTrnMs768NSFsid_nono as RVC_Model_nof0,
MultiPeriodDiscriminatorV2 as MultiPeriodDiscriminator,
)
from infer.lib.train.losses import (
discriminator_loss,
feature_loss,
generator_loss,
kl_loss,
)
from infer.lib.train.mel_processing import mel_spectrogram_torch, spec_to_mel_torch
from infer.lib.train.process_ckpt import savee
global_step = 0
class EpochRecorder:
def __init__(self):
self.last_time = ttime()
def record(self):
now_time = ttime()
elapsed_time = now_time - self.last_time
self.last_time = now_time
elapsed_time_str = str(datetime.timedelta(seconds=elapsed_time))
current_time = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
return f"[{current_time}] | ({elapsed_time_str})"
def main():
n_gpus = torch.cuda.device_count()
if torch.cuda.is_available() == False and torch.backends.mps.is_available() == True:
n_gpus = 1
if n_gpus < 1:
# patch to unblock people without gpus. there is probably a better way.
print("NO GPU DETECTED: falling back to CPU - this may take a while")
n_gpus = 1
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = str(randint(20000, 55555))
children = []
logger = utils.get_logger(hps.model_dir)
logger.info(f"Starting training with {n_gpus} GPU(s)")
for i in range(n_gpus):
subproc = mp.Process(
target=run,
args=(i, n_gpus, hps, logger),
)
children.append(subproc)
subproc.start()
for i in range(n_gpus):
children[i].join()
def run(rank, n_gpus, hps, logger: logging.Logger):
global global_step
if rank == 0:
logger.info(f"Process {rank}/{n_gpus-1} started")
logger.info(hps)
writer = SummaryWriter(log_dir=hps.model_dir)
writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval"))
dist.init_process_group(
backend="gloo", init_method="env://", world_size=n_gpus, rank=rank
)
torch.manual_seed(hps.train.seed)
if torch.cuda.is_available():
torch.cuda.set_device(rank)
if hps.if_f0 == 1:
train_dataset = TextAudioLoaderMultiNSFsid(hps.data.training_files, hps.data)
else:
train_dataset = TextAudioLoader(hps.data.training_files, hps.data)
train_sampler = DistributedBucketSampler(
train_dataset,
hps.train.batch_size * n_gpus,
[100, 200, 300, 400, 500, 600, 700, 800, 900],
num_replicas=n_gpus,
rank=rank,
shuffle=True,
)
if hps.if_f0 == 1:
collate_fn = TextAudioCollateMultiNSFsid()
else:
collate_fn = TextAudioCollate()
train_loader = DataLoader(
train_dataset,
num_workers=4,
shuffle=False,
pin_memory=True,
collate_fn=collate_fn,
batch_sampler=train_sampler,
persistent_workers=True,
prefetch_factor=8,
)
if rank == 0:
logger.info(f"Training dataset size: {len(train_dataset)}")
logger.info(f"Number of batches per epoch: {len(train_loader)}")
if hps.if_f0 == 1:
net_g = RVC_Model_f0(
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
**hps.model,
is_half=hps.train.fp16_run,
sr=hps.sample_rate,
)
else:
net_g = RVC_Model_nof0(
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
**hps.model,
is_half=hps.train.fp16_run,
)
if torch.cuda.is_available():
net_g = net_g.cuda(rank)
net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm)
if torch.cuda.is_available():
net_d = net_d.cuda(rank)
optim_g = torch.optim.AdamW(
net_g.parameters(),
hps.train.learning_rate,
betas=hps.train.betas,
eps=hps.train.eps,
)
optim_d = torch.optim.AdamW(
net_d.parameters(),
hps.train.learning_rate,
betas=hps.train.betas,
eps=hps.train.eps,
)
if hasattr(torch, "xpu") and torch.xpu.is_available():
pass
elif torch.cuda.is_available():
net_g = DDP(net_g, device_ids=[rank])
net_d = DDP(net_d, device_ids=[rank])
else:
net_g = DDP(net_g)
net_d = DDP(net_d)
try:
_, _, _, epoch_str = utils.load_checkpoint(
utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"), net_d, optim_d
)
if rank == 0:
logger.info("Loaded discriminator checkpoint")
_, _, _, epoch_str = utils.load_checkpoint(
utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g, optim_g
)
global_step = (epoch_str - 1) * len(train_loader)
if rank == 0:
logger.info(f"Resuming from epoch {epoch_str}, global step {global_step}")
except:
epoch_str = 1
global_step = 0
if hps.pretrainG != "":
if rank == 0:
logger.info(f"Loading pretrained generator from {hps.pretrainG}")
if hasattr(net_g, "module"):
net_g.module.load_state_dict(
torch.load(hps.pretrainG, map_location="cpu")["model"]
)
else:
net_g.load_state_dict(
torch.load(hps.pretrainG, map_location="cpu")["model"]
)
if hps.pretrainD != "":
if rank == 0:
logger.info(f"Loading pretrained discriminator from {hps.pretrainD}")
if hasattr(net_d, "module"):
net_d.module.load_state_dict(
torch.load(hps.pretrainD, map_location="cpu")["model"]
)
else:
net_d.load_state_dict(
torch.load(hps.pretrainD, map_location="cpu")["model"]
)
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(
optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2
)
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(
optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2
)
scaler = GradScaler(enabled=hps.train.fp16_run)
cache = []
if rank == 0:
logger.info(f"Starting training from epoch {epoch_str} to {hps.train.epochs}")
logger.info(f"Total epochs to train: {hps.train.epochs - epoch_str + 1}")
for epoch in range(epoch_str, hps.train.epochs + 1):
if rank == 0:
train_and_evaluate(
rank,
epoch,
hps,
[net_g, net_d],
[optim_g, optim_d],
[scheduler_g, scheduler_d],
scaler,
[train_loader, None],
logger,
[writer, writer_eval],
cache,
)
else:
train_and_evaluate(
rank,
epoch,
hps,
[net_g, net_d],
[optim_g, optim_d],
[scheduler_g, scheduler_d],
scaler,
[train_loader, None],
None,
None,
cache,
)
scheduler_g.step()
scheduler_d.step()
def train_and_evaluate(
rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers, cache
):
net_g, net_d = nets
optim_g, optim_d = optims
train_loader, eval_loader = loaders
if writers is not None:
writer, writer_eval = writers
train_loader.batch_sampler.set_epoch(epoch)
global global_step
net_g.train()
net_d.train()
# Prepare data iterator
if hps.if_cache_data_in_gpu == True:
if cache == []:
if rank == 0:
logger.info("Caching data in GPU...")
cache_progress = tqdm(total=len(train_loader),
desc="Caching",
position=0,
leave=True,
disable=(rank != 0))
for batch_idx, info in enumerate(train_loader):
if hps.if_f0 == 1:
(
phone,
phone_lengths,
pitch,
pitchf,
spec,
spec_lengths,
wave,
wave_lengths,
sid,
) = info
else:
(
phone,
phone_lengths,
spec,
spec_lengths,
wave,
wave_lengths,
sid,
) = info
if torch.cuda.is_available():
phone = phone.cuda(rank, non_blocking=True)
phone_lengths = phone_lengths.cuda(rank, non_blocking=True)
if hps.if_f0 == 1:
pitch = pitch.cuda(rank, non_blocking=True)
pitchf = pitchf.cuda(rank, non_blocking=True)
sid = sid.cuda(rank, non_blocking=True)
spec = spec.cuda(rank, non_blocking=True)
spec_lengths = spec_lengths.cuda(rank, non_blocking=True)
wave = wave.cuda(rank, non_blocking=True)
if hps.if_f0 == 1:
cache.append(
(
batch_idx,
(
phone,
phone_lengths,
pitch,
pitchf,
spec,
spec_lengths,
wave,
wave_lengths,
sid,
),
)
)
else:
cache.append(
(
batch_idx,
(
phone,
phone_lengths,
spec,
spec_lengths,
wave,
wave_lengths,
sid,
),
)
)
if rank == 0:
cache_progress.update(1)
if rank == 0:
cache_progress.close()
logger.info(f"Cached {len(cache)} batches in GPU")
shuffle(cache)
data_iterator = cache
else:
data_iterator = enumerate(train_loader)
# Initialize tqdm progress bar for training
if rank == 0:
epoch_progress = tqdm(total=len(train_loader),
desc=f"Epoch {epoch}/{hps.train.epochs}",
position=0,
leave=True,
bar_format='{l_bar}{bar:20}{r_bar}{bar:-20b}')
epoch_recorder = EpochRecorder()
for batch_idx, info in data_iterator:
# Unpack data
if hps.if_f0 == 1:
(
phone,
phone_lengths,
pitch,
pitchf,
spec,
spec_lengths,
wave,
wave_lengths,
sid,
) = info
else:
phone, phone_lengths, spec, spec_lengths, wave, wave_lengths, sid = info
if (hps.if_cache_data_in_gpu == False) and torch.cuda.is_available():
phone = phone.cuda(rank, non_blocking=True)
phone_lengths = phone_lengths.cuda(rank, non_blocking=True)
if hps.if_f0 == 1:
pitch = pitch.cuda(rank, non_blocking=True)
pitchf = pitchf.cuda(rank, non_blocking=True)
sid = sid.cuda(rank, non_blocking=True)
spec = spec.cuda(rank, non_blocking=True)
spec_lengths = spec_lengths.cuda(rank, non_blocking=True)
wave = wave.cuda(rank, non_blocking=True)
# Forward pass
with autocast(enabled=hps.train.fp16_run):
if hps.if_f0 == 1:
(
y_hat,
ids_slice,
x_mask,
z_mask,
(z, z_p, m_p, logs_p, m_q, logs_q),
) = net_g(phone, phone_lengths, pitch, pitchf, spec, spec_lengths, sid)
else:
(
y_hat,
ids_slice,
x_mask,
z_mask,
(z, z_p, m_p, logs_p, m_q, logs_q),
) = net_g(phone, phone_lengths, spec, spec_lengths, sid)
mel = spec_to_mel_torch(
spec,
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.mel_fmin,
hps.data.mel_fmax,
)
y_mel = commons.slice_segments(
mel, ids_slice, hps.train.segment_size // hps.data.hop_length
)
with autocast(enabled=False):
y_hat_mel = mel_spectrogram_torch(
y_hat.float().squeeze(1),
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.hop_length,
hps.data.win_length,
hps.data.mel_fmin,
hps.data.mel_fmax,
)
if hps.train.fp16_run == True:
y_hat_mel = y_hat_mel.half()
wave = commons.slice_segments(
wave, ids_slice * hps.data.hop_length, hps.train.segment_size
)
# Discriminator forward
y_d_hat_r, y_d_hat_g, _, _ = net_d(wave, y_hat.detach())
with autocast(enabled=False):
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(
y_d_hat_r, y_d_hat_g
)
# Discriminator backward
optim_d.zero_grad()
scaler.scale(loss_disc).backward()
scaler.unscale_(optim_d)
grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
scaler.step(optim_d)
# Generator forward
with autocast(enabled=hps.train.fp16_run):
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(wave, y_hat)
with autocast(enabled=False):
loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
loss_fm = feature_loss(fmap_r, fmap_g)
loss_gen, losses_gen = generator_loss(y_d_hat_g)
loss_gen_all = loss_gen + loss_fm + loss_mel + loss_kl
# Generator backward
optim_g.zero_grad()
scaler.scale(loss_gen_all).backward()
scaler.unscale_(optim_g)
grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
scaler.step(optim_g)
scaler.update()
# Update progress bar and logging
if rank == 0:
if epoch_progress is not None:
epoch_progress.update(1)
# Update progress bar description with current losses
if batch_idx % hps.train.log_interval == 0:
postfix_dict = {
'G': f'{loss_gen_all:.3f}',
'D': f'{loss_disc:.3f}',
'Mel': f'{loss_mel:.3f}',
'KL': f'{loss_kl:.3f}',
'Step': global_step
}
epoch_progress.set_postfix(postfix_dict)
if global_step % hps.train.log_interval == 0:
lr = optim_g.param_groups[0]["lr"]
logger.info(f"\nEpoch: {epoch} [{batch_idx}/{len(train_loader)}]")
logger.info(f"Global Step: {global_step}")
logger.info(f"Learning Rate: {lr:.6f}")
logger.info(f"Generator Loss: {loss_gen_all:.3f} (FM: {loss_fm:.3f}, Mel: {loss_mel:.3f}, KL: {loss_kl:.3f})")
logger.info(f"Discriminator Loss: {loss_disc:.3f}")
logger.info(f"Grad Norm - G: {grad_norm_g:.3f}, D: {grad_norm_d:.3f}")
# Tensorboard logging
scalar_dict = {
"loss/g/total": loss_gen_all,
"loss/d/total": loss_disc,
"learning_rate": lr,
"grad_norm_d": grad_norm_d,
"grad_norm_g": grad_norm_g,
"loss/g/fm": loss_fm,
"loss/g/mel": loss_mel,
"loss/g/kl": loss_kl,
}
scalar_dict.update(
{"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)}
)
scalar_dict.update(
{"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)}
)
scalar_dict.update(
{"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)}
)
image_dict = {
"slice/mel_org": utils.plot_spectrogram_to_numpy(
y_mel[0].data.cpu().numpy()
),
"slice/mel_gen": utils.plot_spectrogram_to_numpy(
y_hat_mel[0].data.cpu().numpy()
),
"all/mel": utils.plot_spectrogram_to_numpy(
mel[0].data.cpu().numpy()
),
}
utils.summarize(
writer=writer,
global_step=global_step,
images=image_dict,
scalars=scalar_dict,
)
global_step += 1
# Close progress bar
if rank == 0 and epoch_progress is not None:
epoch_progress.close()
# Save checkpoints
if epoch % hps.save_every_epoch == 0 and rank == 0:
if hps.if_latest == 0:
save_path_g = os.path.join(hps.model_dir, f"G_{global_step}.pth")
save_path_d = os.path.join(hps.model_dir, f"D_{global_step}.pth")
utils.save_checkpoint(
net_g,
optim_g,
hps.train.learning_rate,
epoch,
save_path_g,
)
utils.save_checkpoint(
net_d,
optim_d,
hps.train.learning_rate,
epoch,
save_path_d,
)
logger.info(f"Saved checkpoints: {save_path_g}, {save_path_d}")
else:
save_path_g = os.path.join(hps.model_dir, "G_2333333.pth")
save_path_d = os.path.join(hps.model_dir, "D_2333333.pth")
utils.save_checkpoint(
net_g,
optim_g,
hps.train.learning_rate,
epoch,
save_path_g,
)
utils.save_checkpoint(
net_d,
optim_d,
hps.train.learning_rate,
epoch,
save_path_d,
)
logger.info(f"Saved latest checkpoints: {save_path_g}, {save_path_d}")
if rank == 0 and hps.save_every_weights == "1":
if hasattr(net_g, "module"):
ckpt = net_g.module.state_dict()
else:
ckpt = net_g.state_dict()
model_name = hps.name + f"_e{epoch}_s{global_step}"
save_result = savee(
ckpt,
hps.sample_rate,
hps.if_f0,
model_name,
epoch,
hps.version,
hps,
)
logger.info(f"Saved weights checkpoint: {model_name}: {save_result}")
# Log epoch completion
if rank == 0:
logger.info(f"Completed Epoch {epoch} {epoch_recorder.record()}")
logger.info(f"Global Step: {global_step}")
# End training if completed
if epoch >= hps.total_epoch and rank == 0:
logger.info("Training completed!")
if hasattr(net_g, "module"):
ckpt = net_g.module.state_dict()
else:
ckpt = net_g.state_dict()
final_save = savee(
ckpt, hps.sample_rate, hps.if_f0, hps.name, epoch, hps.version, hps
)
logger.info(f"Saved final model: {final_save}")
sleep(2) # Give time for final logging
os._exit(0)
if __name__ == "__main__":
torch.multiprocessing.set_start_method("spawn")
main()