File size: 5,217 Bytes
ecbef7b
 
 
 
 
 
 
07d63bc
ecbef7b
1406d0e
ecbef7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29465a4
 
ecbef7b
f960301
 
29465a4
c7484ec
29465a4
 
b5c1e1f
ecbef7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
976e4f5
ecbef7b
 
bf5f34f
 
816dd37
bf5f34f
 
816dd37
bf5f34f
816dd37
 
 
 
 
ecbef7b
816dd37
 
 
 
 
 
 
ecbef7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07d63bc
ecbef7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
---
license: fair-noncommercial-research-license
language:
- en
- pt
metrics:
      - type: { HumanEval zero-shot pass@1}         # Required. Example: wer. Use metric id from https://hf.co/metrics
        value: {86.99}       # Required. Example: 20.90
base_model:
- Qwen/Qwen2.5-Coder-7B-Instruct
pipeline_tag: text-generation
tags:
- code
---


<!-- Provide a quick summary of what the model is/does. -->

#### Model Details
<p class="justified-text">
<b>Nerdsking-python-coder-7B-i</b> is a 7B parameter partially uncensored model focused in <b> Python</b>, with <b>English</b> as main language. It was massively trained in python, therefore despite the fact it can code in other languages as well, the performance will be not in the same level as the one achieved while using python.
</p>
<i>Key Characteristics:</i>

- Parameter count: 7B
- Primary domain: Python programming
- Secondary capabilities: General coding, technical English
- Training focus: Python logic, standard library usage, algorithmic reasoning
- Alignment: Partially uncensored (developer-oriented)
<br>
<p>

#### Nerdsking Python Coder Family

🧠 <a href="https://huggingface.co/Nerdsking/nerdsking-python-coder-3B-i"> Nerdsking Python Coder 3B-i </a><br>
🧠 <a href="https://huggingface.co/Nerdsking/Nerdsking-python-coder-7B-i"> Nerdsking Python Coder 7B-i </a>
<br>
<p>
  
#### Benchmark
<p class="justified-text">
After intense refining, <b>Nerdsking-python-coder-7B-i</b> has achieved <b>86.99 in HumanEval (bf16)</b>, ranking it amongst the highest-performing Python-focused 7B models ever reported on HumanEval. Surpassing even much bigger models in that area. 
</p>
<i>Benchmark details (164 tasks):</i>

- official HumanEval execution protocol - test suites executed via `exec()`
- zero-shot pass@1
- dtype == "bfloat16"
- temperature = 0.1
- do_sample = False
- evaluated on fully merged weights
- Prompting: Chat-formatted with a fixed system prompt (“You are an expert Python coding assistant.”)
- Quantization: None (unquantized weights - bf16)
<p class="justified-text">
<i>The configuration above is fully disclosed to support reproducibility and fair comparison.</i>
</p>
<p class="justified-text">
<i> Note: Quantized variants (INT4/INT6) may exhibit lower HumanEval scores due to reduced numerical precision.</i>
</p>


#### Comparison Table

<table>
  <thead>
    <tr>
      <th>Model name</th>
      <th>Approx. HumanEval Pass@1 (%)</th>
      <th>Notes / Source</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td><strong>Nerdsking-python-coder-7B-i</strong></td>
      <td><strong>86.99</strong></td>
      <td>Evaluated score (zero-shot, strict HumanEval pass@1, using unquantized weigths bf16)</td>
    </tr>
    <tr>
      <td>Qwen2.5-Coder-7B</td>
      <td>~74–76</td>
      <td>Community evaluation (OpenCompass run); figures vary by harness/settings</td>
    </tr>
    <tr>
      <td>DeepSeek-Coder-6.7B</td>
      <td>~72–73</td>
      <td>Official DeepSeek report and independent replications; close to strict HumanEval protocol</td>
    </tr>
    <tr>
      <td>CodeLlama-7B</td>
      <td>~33–35</td>
      <td>Meta technical report</td>
    </tr>
    <tr>
      <td>Wizard Coder 7B*</td>
      <td>~57–59</td>
      <td>Community benchmarks; strong instruction-following but less consistent zero-shot behavior</td>
    </tr>
  </tbody>
</table>
<p class="justified-text">
  
</p>

<hr>


#### Benchmark tool used

https://github.com/nerdskingcom/gguf-humaneval-benchmark

Install it using:

<code>
 pip install gguf-humaneval-benchmark
</code>

Instructions after install:

<code>
 gguf-humaneval-benchmark --help
</code>

<hr>


#### S.o.n.n.
<p class="justified-text">
The model was treated under <b>"s.o.n.n."</b> (<i>single omni neural network</i>), a concept created by IPMN at Nerdsking.com that is both a precise way of fine tunning/altering existing models, as well a foundational concept for a broader AI architecture standard currently under active research and development.
</p>
<i>When applied to pre-existing models, allows:</i>

- parameter-preserving refinement methodology
- focused global behavioral shaping, instead of task-local adapters
- avoidance of fragmentation, common in multi-adapter or task-siloed approaches



#### Quick Start (Inference)

<code>
from transformers import AutoModelForCausalLM, AutoTokenizer

model_id = "Nerdsking/Nerdsking-python-coder-7B-i"

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    torch_dtype="bfloat16",
    device_map="auto"
)

prompt = "Write a Python function that checks if a number is prime."
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=200)

print(tokenizer.decode(outputs[0], skip_special_tokens=True))
</code>

#### Ethical & Safety Notes
<p class="justified-text">
This model is intended for technical and research use.
Due to relaxed alignment constraints, outputs should be reviewed before deployment in production or public-facing systems.
</p>

#### Citation

If you use this model in research or benchmarking, please cite:

Nerdsking-python-coder-3B-i,
IPMN / Nerdsking.com