--- tags: - ecg - multi-label-classification - medical - cardiology library_name: tensorflow --- # ECG Multi-Label Classification Model This model performs multi-label classification on ECG signals to detect: - Myocarditis - Cardiomyopathy - Kawasaki Disease - Congenital Heart Disease (CHD) - Healthy ## Model Architecture - 1D CNN with 4 convolutional blocks - Input: 12-lead ECG (5000 samples × 12 leads) - Output: 5 sigmoid outputs (multi-label) ## Training - Framework: TensorFlow/Keras - Optimizer: Adam - Loss: Binary Crossentropy - Dataset: Pediatric ECG database ## Usage ```python import tensorflow as tf from huggingface_hub import hf_hub_download # Download model model_path = hf_hub_download( repo_id="Neural-Network-Project/ECG-models", filename="checkpoint_final.keras" ) # Load model model = tf.keras.models.load_model(model_path) # Predict (input shape: [batch_size, 5000, 12]) predictions = model.predict(ecg_data) ``` ## Classes 0. Myocarditis 1. Cardiomyopathy 2. Kawasaki Disease 3. CHD 4. Healthy ## Citation Please cite this model if you use it in your research.