E-Anlia commited on
Commit
175fb8d
·
verified ·
1 Parent(s): 7c74097

Upload converted diffusers files (skip README, no-overwrite)

Browse files
.gitattributes CHANGED
@@ -35,3 +35,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  image/newbie_image.png filter=lfs diff=lfs merge=lfs -text
37
  image/XML_prompt_image.png filter=lfs diff=lfs merge=lfs -text
 
 
 
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  image/newbie_image.png filter=lfs diff=lfs merge=lfs -text
37
  image/XML_prompt_image.png filter=lfs diff=lfs merge=lfs -text
38
+ clip_model/tokenizer.json filter=lfs diff=lfs merge=lfs -text
39
+ text_encoder/tokenizer.json filter=lfs diff=lfs merge=lfs -text
clip_model/config.json ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_projections": false,
3
+ "architectures": [
4
+ "JinaCLIPModel"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_clip.JinaCLIPConfig",
8
+ "AutoModel": "modeling_clip.JinaCLIPModel"
9
+ },
10
+ "dtype": "bfloat16",
11
+ "initializer_factor": 1.0,
12
+ "logit_scale_init_value": 2.6592,
13
+ "matryoshka_dimensions": [
14
+ 32,
15
+ 64,
16
+ 128,
17
+ 256,
18
+ 512,
19
+ 768,
20
+ 1024
21
+ ],
22
+ "model_type": "jina_clip",
23
+ "output_attentions": false,
24
+ "projection_dim": 1024,
25
+ "text_config": {
26
+ "default_instruction_task": null,
27
+ "default_lora_task": "retrieval.query",
28
+ "embed_dim": 1024,
29
+ "hf_model_config_kwargs": {
30
+ "load_trained_adapters": false,
31
+ "lora_adaptations": [
32
+ "retrieval.query"
33
+ ],
34
+ "lora_alpha": 4,
35
+ "lora_dropout_p": 0.0,
36
+ "lora_main_params_trainable": false,
37
+ "lora_rank": 4,
38
+ "task_instructions": {
39
+ "retrieval.query": "Represent the query for retrieving evidence documents: "
40
+ },
41
+ "use_flash_attn": true
42
+ },
43
+ "hf_model_name_or_path": "jinaai/jina-embeddings-v3",
44
+ "model_type": "jina_clip_text",
45
+ "pooler_type": "mean_pooler",
46
+ "proj_bias": false,
47
+ "proj_type": null
48
+ },
49
+ "transformers.js_config": {
50
+ "use_external_data_format": {
51
+ "model.onnx": true
52
+ }
53
+ },
54
+ "transformers_version": null,
55
+ "truncate_dim": null,
56
+ "use_text_flash_attn": true,
57
+ "use_vision_xformers": false,
58
+ "vision_config": {
59
+ "drop_path_rate": 0.0,
60
+ "embed_dim": 1024,
61
+ "fused_layer_norm": false,
62
+ "head_width": 64,
63
+ "image_size": 512,
64
+ "intp_freq": true,
65
+ "layers": 24,
66
+ "ls_init_value": null,
67
+ "mlp_ratio": 2.6667,
68
+ "model_type": "jina_clip_vision",
69
+ "naive_swiglu": true,
70
+ "patch_dropout": 0.1,
71
+ "patch_size": 14,
72
+ "post_norm": false,
73
+ "proj_type": null,
74
+ "pt_hw_seq_len": 16,
75
+ "qkv_bias": true,
76
+ "rope_embeddings": true,
77
+ "subln": true,
78
+ "width": 1024,
79
+ "x_attention": false
80
+ }
81
+ }
clip_model/configuration_clip.py ADDED
@@ -0,0 +1,324 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ #
3
+ # Code mainly copied from:
4
+ # https://github.com/huggingface/transformers/blob/main/src/transformers/models/clip/configuration_clip.py
5
+ # and adjusted for Jina CLIP
6
+
7
+ import os
8
+ from copy import deepcopy
9
+ from typing import Any, Dict, List, Optional, Union
10
+
11
+ import torch
12
+ from transformers import PretrainedConfig, logging
13
+
14
+ logger = logging.get_logger(__name__)
15
+
16
+
17
+ """ Jina CLIP model configuration """
18
+
19
+
20
+ class JinaCLIPTextConfig(PretrainedConfig):
21
+ model_type = 'jina_clip_text'
22
+
23
+ def __init__(
24
+ self,
25
+ embed_dim: int = 768,
26
+ hf_model_name_or_path: str = 'jinaai/jina-bert-flash-implementation',
27
+ hf_model_config_kwargs: Optional[Dict[str, Any]] = None,
28
+ default_instruction_task: Optional[str] = None,
29
+ default_lora_task: Optional[str] = None,
30
+ pooler_type: Optional[str] = None,
31
+ proj_type: Optional[str] = None,
32
+ proj_bias: bool = False,
33
+ **kwargs,
34
+ ):
35
+ super().__init__(**kwargs)
36
+
37
+ self.embed_dim = embed_dim
38
+ self.hf_model_name_or_path = hf_model_name_or_path
39
+ self.hf_model_config_kwargs = hf_model_config_kwargs or {}
40
+ self.default_instruction_task = default_instruction_task
41
+ self.default_lora_task = default_lora_task
42
+ self.pooler_type = pooler_type
43
+ self.proj_type = proj_type
44
+ self.proj_bias = proj_bias
45
+
46
+ @classmethod
47
+ def from_pretrained(
48
+ cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs
49
+ ) -> 'PretrainedConfig':
50
+ cls._set_token_in_kwargs(kwargs)
51
+
52
+ configdict, kwargs = cls.get_config_dict(
53
+ pretrained_model_name_or_path, **kwargs
54
+ )
55
+ # get the text config dict if we are loading from JinaCLIPConfig
56
+ if configdict.get('model_type') == 'jina_clip':
57
+ configdict = configdict['text_config']
58
+ if (
59
+ 'model_type' in configdict
60
+ and hasattr(cls, 'model_type')
61
+ and configdict['model_type'] != cls.model_type
62
+ ):
63
+ logger.warning(
64
+ f'You are using a model of type {configdict["model_type"]} to '
65
+ f'instantiate a model of type {cls.model_type}. This is not supported '
66
+ 'for all configurations of models and can yield errors.'
67
+ )
68
+ return cls.from_dict(configdict, **kwargs)
69
+
70
+
71
+ class JinaCLIPVisionConfig(PretrainedConfig):
72
+ model_type = 'jina_clip_vision'
73
+
74
+ def __init__(
75
+ self,
76
+ embed_dim: int = 768,
77
+ width: int = 768,
78
+ image_size: int = 224,
79
+ patch_size: int = 16,
80
+ layers: int = 12,
81
+ head_width: int = 64,
82
+ mlp_ratio: float = 4.0,
83
+ ls_init_value: Optional[float] = None,
84
+ patch_dropout: float = 0.0,
85
+ qkv_bias: bool = True,
86
+ fused_layer_norm: bool = False,
87
+ x_attention: bool = False,
88
+ post_norm: bool = False,
89
+ rope_embeddings: bool = False,
90
+ pt_hw_seq_len: int = 16,
91
+ intp_freq: bool = False,
92
+ naive_swiglu: bool = False,
93
+ subln: bool = False,
94
+ drop_path_rate: float = 0.0,
95
+ proj_type: Optional[str] = None,
96
+ **kwargs,
97
+ ):
98
+ super().__init__(**kwargs)
99
+
100
+ self.layers = layers
101
+ self.embed_dim = embed_dim
102
+ self.width = width
103
+ self.head_width = head_width
104
+ self.mlp_ratio = mlp_ratio
105
+ self.image_size = image_size
106
+ self.patch_size = patch_size
107
+ self.ls_init_value = ls_init_value
108
+ self.patch_dropout = patch_dropout
109
+ self.qkv_bias = qkv_bias
110
+ self.fused_layer_norm = fused_layer_norm
111
+ self.x_attention = x_attention
112
+ self.post_norm = post_norm
113
+ self.rope_embeddings = rope_embeddings
114
+ self.pt_hw_seq_len = pt_hw_seq_len
115
+ self.intp_freq = intp_freq
116
+ self.naive_swiglu = naive_swiglu
117
+ self.subln = subln
118
+ self.drop_path_rate = drop_path_rate
119
+ self.proj_type = proj_type
120
+
121
+ @classmethod
122
+ def from_pretrained(
123
+ cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs
124
+ ) -> 'PretrainedConfig':
125
+ cls._set_token_in_kwargs(kwargs)
126
+
127
+ configdict, kwargs = cls.get_config_dict(
128
+ pretrained_model_name_or_path, **kwargs
129
+ )
130
+ # get the vision config dict if we are loading from JinaCLIPConfig
131
+ if configdict.get('model_type') == 'jina_clip':
132
+ configdict = configdict['vision_config']
133
+ if (
134
+ 'model_type' in configdict
135
+ and hasattr(cls, 'model_type')
136
+ and configdict['model_type'] != cls.model_type
137
+ ):
138
+ logger.warning(
139
+ f'You are using a model of type {configdict["model_type"]} to '
140
+ f'instantiate a model of type {cls.model_type}. This is not supported '
141
+ 'for all configurations of models and can yield errors.'
142
+ )
143
+ return cls.from_dict(configdict, **kwargs)
144
+
145
+
146
+ class JinaCLIPConfig(PretrainedConfig):
147
+ model_type = 'jina_clip'
148
+ is_composition = True
149
+
150
+ def __init__(
151
+ self,
152
+ text_config: Optional[Dict] = None,
153
+ vision_config: Optional[Dict] = None,
154
+ add_projections: bool = False,
155
+ projection_dim: int = 768,
156
+ logit_scale_init_value: float = 2.6592,
157
+ use_text_flash_attn: Optional[bool] = None,
158
+ use_vision_xformers: Optional[bool] = None,
159
+ matryoshka_dimensions: Optional[List[int]] = None,
160
+ truncate_dim: Optional[int] = None,
161
+ torch_dtype: Optional[Union[str, torch.dtype]] = None,
162
+ **kwargs,
163
+ ):
164
+ # If `_config_dict` exist, we use them for the backward compatibility.
165
+ # We pop out these 2 attributes before calling `super().__init__` to avoid
166
+ # them being saved (which causes a lot of confusion!).
167
+
168
+ text_config_dict: Optional[Dict] = kwargs.pop('text_config_dict', None)
169
+ vision_config_dict: Optional[Dict] = kwargs.pop('vision_config_dict', None)
170
+ self.use_text_flash_attn = use_text_flash_attn
171
+ self.use_vision_xformers = use_vision_xformers
172
+ self.matryoshka_dimensions = matryoshka_dimensions
173
+ self.truncate_dim = truncate_dim
174
+
175
+ super().__init__(**kwargs)
176
+
177
+ if text_config_dict is not None:
178
+ if text_config is None:
179
+ text_config = {}
180
+
181
+ # This is the complete result when using `text_config_dict`.
182
+ _text_config_dict = JinaCLIPTextConfig(**text_config_dict).to_dict()
183
+
184
+ # Give a warning if the values exist in both `_text_config_dict` and
185
+ # `text_config` but being different.
186
+ for key, value in _text_config_dict.items():
187
+ if (
188
+ key in text_config
189
+ and value != text_config[key]
190
+ and key not in ['transformers_version']
191
+ ):
192
+ # If specified in `text_config_dict`
193
+ if key in text_config_dict:
194
+ message = (
195
+ f'`{key}` is found in both `text_config_dict` and '
196
+ f'`text_config` but with different values. '
197
+ f'The value `text_config_dict["{key}"]` will be used '
198
+ f'instead.'
199
+ )
200
+ # If inferred from default argument values (
201
+ # just to be super careful)
202
+ else:
203
+ message = (
204
+ f'`text_config_dict` is provided which will be used to '
205
+ f'initialize `JinaCLIPTextConfig`. The '
206
+ f'value `text_config["{key}"]` will be overriden.'
207
+ )
208
+ logger.info(message)
209
+
210
+ # Update all values in `text_config` with the ones in `_text_config_dict`.
211
+ text_config.update(_text_config_dict)
212
+
213
+ if vision_config_dict is not None:
214
+ if vision_config is None:
215
+ vision_config = {}
216
+
217
+ # This is the complete result when using `vision_config_dict`.
218
+ _vision_config_dict = JinaCLIPVisionConfig(**vision_config_dict).to_dict()
219
+ # convert keys to string instead of integer
220
+ if 'id2label' in _vision_config_dict:
221
+ _vision_config_dict['id2label'] = {
222
+ str(key): value
223
+ for key, value in _vision_config_dict['id2label'].items()
224
+ }
225
+
226
+ # Give a warning if the values exist in both `_vision_config_dict`
227
+ # and `vision_config` but being different.
228
+ for key, value in _vision_config_dict.items():
229
+ if (
230
+ key in vision_config
231
+ and value != vision_config[key]
232
+ and key not in ['transformers_version']
233
+ ):
234
+ # If specified in `vision_config_dict`
235
+ if key in vision_config_dict:
236
+ message = (
237
+ f'`{key}` is found in both `vision_config_dict` and '
238
+ f'`vision_config` but with different '
239
+ f'values. The value `vision_config_dict["{key}"]` will '
240
+ f'be used instead.'
241
+ )
242
+ # If inferred from default argument values
243
+ # (just to be super careful)
244
+ else:
245
+ message = (
246
+ f'`vision_config_dict` is provided which will be used to '
247
+ f'initialize `JinaCLIPVisionConfig`. '
248
+ f'The value `vision_config["{key}"]` will be overriden.'
249
+ )
250
+ logger.info(message)
251
+
252
+ # Update all values in `vision_config` with the ones in
253
+ # `_vision_config_dict`.
254
+ vision_config.update(_vision_config_dict)
255
+
256
+ if text_config is None:
257
+ text_config = {}
258
+ logger.info(
259
+ '`text_config` is `None`. Initializing the `JinaCLIPTextConfig` with '
260
+ 'default values.'
261
+ )
262
+
263
+ if vision_config is None:
264
+ vision_config = {}
265
+ logger.info(
266
+ '`vision_config` is `None`. initializing the `JinaCLIPVisionConfig` '
267
+ 'with default values.'
268
+ )
269
+
270
+ self.text_config = JinaCLIPTextConfig(**text_config)
271
+ self.vision_config = JinaCLIPVisionConfig(**vision_config)
272
+
273
+ self.add_projections = add_projections
274
+ self.projection_dim = projection_dim
275
+ self.logit_scale_init_value = logit_scale_init_value
276
+ self.initializer_factor = 1.0
277
+
278
+ if not self.add_projections:
279
+ if self.text_config.embed_dim != self.vision_config.embed_dim:
280
+ raise ValueError(
281
+ 'When projections are disabled (`add_projections=False`), text '
282
+ 'and vision towers need to have the same embedding dimensionality. '
283
+ f'Currently text embedding dim is {self.text_config.embed_dim} != '
284
+ f'{self.vision_config.embed_dim} of the vision tower. '
285
+ 'Either set the same output dim for both towers, or enable '
286
+ 'projections with `add_projections=True`.'
287
+ )
288
+
289
+ if (
290
+ torch_dtype
291
+ and hasattr(torch, torch_dtype)
292
+ and type(getattr(torch, torch_dtype)) is torch.dtype
293
+ ):
294
+ self.torch_dtype = getattr(torch, torch_dtype)
295
+ else:
296
+ self.torch_dtype = torch_dtype
297
+
298
+ use_text_flash_attn = (
299
+ self.use_text_flash_attn if self.use_text_flash_attn is not None
300
+ else self.text_config.hf_model_config_kwargs.get('use_flash_attn', False)
301
+ )
302
+ if not use_text_flash_attn or not torch.cuda.is_available():
303
+ self.torch_dtype = torch.float32
304
+
305
+ @classmethod
306
+ def from_text_vision_configs(
307
+ cls,
308
+ text_config: JinaCLIPTextConfig,
309
+ vision_config: JinaCLIPVisionConfig,
310
+ **kwargs,
311
+ ):
312
+ return cls(
313
+ text_config=text_config.to_dict(),
314
+ vision_config=vision_config.to_dict(),
315
+ projection_dim=text_config.projection_dim,
316
+ **kwargs,
317
+ )
318
+
319
+ def to_dict(self):
320
+ output = deepcopy(self.__dict__)
321
+ output['text_config'] = self.text_config.to_dict()
322
+ output['vision_config'] = self.vision_config.to_dict()
323
+ output['model_type'] = self.__class__.model_type
324
+ return output
clip_model/eva_model.py ADDED
@@ -0,0 +1,771 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # Adapted from EVA CLIP
3
+ # https://github.com/baaivision/EVA/tree/master/EVA-CLIP/rei/eva_clip
4
+ # --------------------------------------------------------
5
+
6
+ import math
7
+ import os
8
+ import warnings
9
+ from functools import partial
10
+
11
+ import torch
12
+ import torch.nn as nn
13
+ import torch.nn.functional as f
14
+
15
+ try:
16
+ warnings.filterwarnings('ignore', category=FutureWarning, module='timm')
17
+ from timm.models.layers import drop_path as timm_drop_path
18
+ from timm.models.layers import to_2tuple, trunc_normal_
19
+ except ImportError or ModuleNotFoundError:
20
+ from timm.layers import drop_path as timm_drop_path, to_2tuple, trunc_normal_
21
+
22
+ from .rope_embeddings import VisionRotaryEmbeddingFast
23
+
24
+ if os.getenv('ENV_TYPE') == 'deepspeed':
25
+ try:
26
+ from deepspeed.runtime.activation_checkpointing.checkpointing import checkpoint
27
+ except ImportError or ModuleNotFoundError:
28
+ from torch.utils.checkpoint import checkpoint
29
+ else:
30
+ from torch.utils.checkpoint import checkpoint
31
+
32
+ try:
33
+ import xformers.ops as xops
34
+ except ImportError:
35
+ xops = None
36
+
37
+
38
+ class PatchDropout(nn.Module):
39
+ """
40
+ https://arxiv.org/abs/2212.00794
41
+ """
42
+
43
+ def __init__(self, prob, exclude_first_token=True):
44
+ super().__init__()
45
+ assert 0 <= prob < 1.0
46
+ self.prob = prob
47
+ self.exclude_first_token = exclude_first_token # exclude CLS token
48
+
49
+ def forward(self, x):
50
+ if not self.training or self.prob == 0.0:
51
+ return x
52
+
53
+ if self.exclude_first_token:
54
+ cls_tokens, x = x[:, :1], x[:, 1:]
55
+ else:
56
+ cls_tokens = torch.jit.annotate(torch.Tensor, x[:, :1])
57
+
58
+ batch = x.size()[0]
59
+ num_tokens = x.size()[1]
60
+
61
+ batch_indices = torch.arange(batch)
62
+ batch_indices = batch_indices[..., None]
63
+
64
+ keep_prob = 1 - self.prob
65
+ num_patches_keep = max(1, int(num_tokens * keep_prob))
66
+
67
+ rand = torch.randn(batch, num_tokens)
68
+ patch_indices_keep = rand.topk(num_patches_keep, dim=-1).indices
69
+
70
+ x = x[batch_indices, patch_indices_keep]
71
+
72
+ if self.exclude_first_token:
73
+ x = torch.cat((cls_tokens, x), dim=1)
74
+
75
+ return x, patch_indices_keep
76
+
77
+
78
+ class DropPath(nn.Module):
79
+ """Drop paths (Stochastic Depth) per sample (when applied in main path of
80
+ residual blocks)."""
81
+
82
+ def __init__(self, drop_prob=None):
83
+ super(DropPath, self).__init__()
84
+ self.drop_prob = drop_prob
85
+
86
+ def forward(self, x):
87
+ return timm_drop_path(x, self.drop_prob, self.training)
88
+
89
+ def extra_repr(self) -> str:
90
+ return 'p={}'.format(self.drop_prob)
91
+
92
+
93
+ class Mlp(nn.Module):
94
+ def __init__(
95
+ self,
96
+ in_features,
97
+ hidden_features=None,
98
+ out_features=None,
99
+ act_layer=nn.GELU,
100
+ norm_layer=nn.LayerNorm,
101
+ drop=0.0,
102
+ subln=False,
103
+ ):
104
+ super().__init__()
105
+ out_features = out_features or in_features
106
+ hidden_features = hidden_features or in_features
107
+ self.fc1 = nn.Linear(in_features, hidden_features)
108
+ self.act = act_layer()
109
+
110
+ self.ffn_ln = norm_layer(hidden_features) if subln else nn.Identity()
111
+
112
+ self.fc2 = nn.Linear(hidden_features, out_features)
113
+ self.drop = nn.Dropout(drop)
114
+
115
+ def forward(self, x):
116
+ x = self.fc1(x)
117
+ x = self.act(x)
118
+ # x = self.drop(x)
119
+ # commit this for the orignal BERT implement
120
+ x = self.ffn_ln(x)
121
+
122
+ x = self.fc2(x)
123
+ x = self.drop(x)
124
+ return x
125
+
126
+
127
+ class SwiGLU(nn.Module):
128
+ def __init__(
129
+ self,
130
+ in_features,
131
+ hidden_features=None,
132
+ out_features=None,
133
+ act_layer=nn.SiLU,
134
+ drop=0.0,
135
+ norm_layer=nn.LayerNorm,
136
+ subln=False,
137
+ ):
138
+ super().__init__()
139
+ out_features = out_features or in_features
140
+ hidden_features = hidden_features or in_features
141
+
142
+ self.w1 = nn.Linear(in_features, hidden_features)
143
+ self.w2 = nn.Linear(in_features, hidden_features)
144
+
145
+ self.act = act_layer()
146
+ self.ffn_ln = norm_layer(hidden_features) if subln else nn.Identity()
147
+ self.w3 = nn.Linear(hidden_features, out_features)
148
+
149
+ self.drop = nn.Dropout(drop)
150
+
151
+ def forward(self, x):
152
+ x1 = self.w1(x)
153
+ x2 = self.w2(x)
154
+ hidden = self.act(x1) * x2
155
+ x = self.ffn_ln(hidden)
156
+ x = self.w3(x)
157
+ x = self.drop(x)
158
+ return x
159
+
160
+
161
+ class Attention(nn.Module):
162
+ def __init__(
163
+ self,
164
+ dim,
165
+ num_heads=8,
166
+ qkv_bias=False,
167
+ qk_scale=None,
168
+ attn_drop=0.0,
169
+ proj_drop=0.0,
170
+ window_size=None,
171
+ attn_head_dim=None,
172
+ xattn=False,
173
+ rope=None,
174
+ subln=False,
175
+ norm_layer=nn.LayerNorm,
176
+ ):
177
+ super().__init__()
178
+ self.num_heads = num_heads
179
+ head_dim = dim // num_heads
180
+ if attn_head_dim is not None:
181
+ head_dim = attn_head_dim
182
+ all_head_dim = head_dim * self.num_heads
183
+ self.scale = qk_scale or head_dim**-0.5
184
+
185
+ self.subln = subln
186
+ if self.subln:
187
+ self.q_proj = nn.Linear(dim, all_head_dim, bias=False)
188
+ self.k_proj = nn.Linear(dim, all_head_dim, bias=False)
189
+ self.v_proj = nn.Linear(dim, all_head_dim, bias=False)
190
+ else:
191
+ self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
192
+
193
+ if qkv_bias:
194
+ self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
195
+ self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
196
+ else:
197
+ self.q_bias = None
198
+ self.v_bias = None
199
+
200
+ if window_size:
201
+ self.window_size = window_size
202
+ self.num_relative_distance = (2 * window_size[0] - 1) * (
203
+ 2 * window_size[1] - 1
204
+ ) + 3
205
+ self.relative_position_bias_table = nn.Parameter(
206
+ torch.zeros(self.num_relative_distance, num_heads)
207
+ ) # 2*Wh-1 * 2*Ww-1, nH
208
+ # cls to token & token 2 cls & cls to cls
209
+
210
+ # get pair-wise relative position index for each token inside the window
211
+ coords_h = torch.arange(window_size[0])
212
+ coords_w = torch.arange(window_size[1])
213
+ coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
214
+ coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
215
+ relative_coords = (
216
+ coords_flatten[:, :, None] - coords_flatten[:, None, :]
217
+ ) # 2, Wh*Ww, Wh*Ww
218
+ relative_coords = relative_coords.permute(
219
+ 1, 2, 0
220
+ ).contiguous() # Wh*Ww, Wh*Ww, 2
221
+ relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
222
+ relative_coords[:, :, 1] += window_size[1] - 1
223
+ relative_coords[:, :, 0] *= 2 * window_size[1] - 1
224
+ relative_position_index = torch.zeros(
225
+ size=(window_size[0] * window_size[1] + 1,) * 2,
226
+ dtype=relative_coords.dtype,
227
+ )
228
+ relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
229
+ relative_position_index[0, 0:] = self.num_relative_distance - 3
230
+ relative_position_index[0:, 0] = self.num_relative_distance - 2
231
+ relative_position_index[0, 0] = self.num_relative_distance - 1
232
+
233
+ self.register_buffer('relative_position_index', relative_position_index)
234
+ else:
235
+ self.window_size = None
236
+ self.relative_position_bias_table = None
237
+ self.relative_position_index = None
238
+
239
+ self.attn_drop = nn.Dropout(attn_drop)
240
+ self.inner_attn_ln = norm_layer(all_head_dim) if subln else nn.Identity()
241
+ # self.proj = nn.Linear(all_head_dim, all_head_dim)
242
+ self.proj = nn.Linear(all_head_dim, dim)
243
+ self.proj_drop = nn.Dropout(proj_drop)
244
+ self.xattn = xattn
245
+ self.xattn_drop = attn_drop
246
+
247
+ self.rope = rope
248
+
249
+ def forward(self, x, rel_pos_bias=None, attn_mask=None):
250
+ b, n, _ = x.shape
251
+ if self.subln:
252
+ q = f.linear(input=x, weight=self.q_proj.weight, bias=self.q_bias)
253
+ k = f.linear(input=x, weight=self.k_proj.weight, bias=None)
254
+ v = f.linear(input=x, weight=self.v_proj.weight, bias=self.v_bias)
255
+
256
+ q = q.reshape(b, n, self.num_heads, -1).permute(
257
+ 0, 2, 1, 3
258
+ ) # B, num_heads, N, C
259
+ k = k.reshape(b, n, self.num_heads, -1).permute(0, 2, 1, 3)
260
+ v = v.reshape(b, n, self.num_heads, -1).permute(0, 2, 1, 3)
261
+ else:
262
+ qkv_bias = None
263
+ if self.q_bias is not None:
264
+ qkv_bias = torch.cat(
265
+ (
266
+ self.q_bias,
267
+ torch.zeros_like(self.v_bias, requires_grad=False),
268
+ self.v_bias,
269
+ )
270
+ )
271
+
272
+ qkv = f.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
273
+ qkv = qkv.reshape(b, n, 3, self.num_heads, -1).permute(
274
+ 2, 0, 3, 1, 4
275
+ ) # 3, B, num_heads, N, C
276
+ q, k, v = qkv[0], qkv[1], qkv[2]
277
+
278
+ if self.rope:
279
+ # slightly fast impl
280
+ q_t = q[:, :, 1:, :]
281
+ ro_q_t = self.rope(q_t)
282
+ q = torch.cat((q[:, :, :1, :], ro_q_t), -2).type_as(v)
283
+
284
+ k_t = k[:, :, 1:, :]
285
+ ro_k_t = self.rope(k_t)
286
+ k = torch.cat((k[:, :, :1, :], ro_k_t), -2).type_as(v)
287
+
288
+ if self.xattn:
289
+ if xops is None:
290
+ raise ValueError(
291
+ "Can't use xattn without xformers. Please 'pip install xformers'"
292
+ )
293
+ q = q.permute(0, 2, 1, 3) # B, num_heads, N, C -> B, N, num_heads, C
294
+ k = k.permute(0, 2, 1, 3)
295
+ v = v.permute(0, 2, 1, 3)
296
+
297
+ x = xops.memory_efficient_attention(
298
+ q,
299
+ k,
300
+ v,
301
+ p=self.xattn_drop,
302
+ scale=self.scale,
303
+ )
304
+ x = x.reshape(b, n, -1)
305
+ x = self.inner_attn_ln(x)
306
+ x = self.proj(x)
307
+ x = self.proj_drop(x)
308
+ else:
309
+ q = q * self.scale
310
+ attn = q @ k.transpose(-2, -1)
311
+
312
+ if self.relative_position_bias_table is not None:
313
+ relative_position_bias = self.relative_position_bias_table[
314
+ self.relative_position_index.view(-1)
315
+ ].view(
316
+ self.window_size[0] * self.window_size[1] + 1,
317
+ self.window_size[0] * self.window_size[1] + 1,
318
+ -1,
319
+ ) # Wh*Ww,Wh*Ww,nH
320
+ relative_position_bias = relative_position_bias.permute(
321
+ 2, 0, 1
322
+ ).contiguous() # nH, Wh*Ww, Wh*Ww
323
+ attn = attn + relative_position_bias.unsqueeze(0).type_as(attn)
324
+
325
+ if rel_pos_bias is not None:
326
+ attn = attn + rel_pos_bias.type_as(attn)
327
+
328
+ if attn_mask is not None:
329
+ attn_mask = attn_mask.bool()
330
+ attn = attn.masked_fill(~attn_mask[:, None, None, :], float('-inf'))
331
+
332
+ attn = attn.softmax(dim=-1)
333
+ attn = self.attn_drop(attn)
334
+
335
+ x = (attn @ v).transpose(1, 2).reshape(b, n, -1)
336
+ x = self.inner_attn_ln(x)
337
+ x = self.proj(x)
338
+ x = self.proj_drop(x)
339
+ return x
340
+
341
+
342
+ class Block(nn.Module):
343
+ def __init__(
344
+ self,
345
+ dim,
346
+ num_heads,
347
+ mlp_ratio=4.0,
348
+ qkv_bias=False,
349
+ qk_scale=None,
350
+ drop=0.0,
351
+ attn_drop=0.0,
352
+ drop_path=0.0,
353
+ init_values=None,
354
+ act_layer=nn.GELU,
355
+ norm_layer=nn.LayerNorm,
356
+ window_size=None,
357
+ attn_head_dim=None,
358
+ xattn=False,
359
+ rope=None,
360
+ postnorm=False,
361
+ subln=False,
362
+ naiveswiglu=False,
363
+ ):
364
+ super().__init__()
365
+ self.norm1 = norm_layer(dim)
366
+ self.attn = Attention(
367
+ dim,
368
+ num_heads=num_heads,
369
+ qkv_bias=qkv_bias,
370
+ qk_scale=qk_scale,
371
+ attn_drop=attn_drop,
372
+ proj_drop=drop,
373
+ window_size=window_size,
374
+ attn_head_dim=attn_head_dim,
375
+ xattn=xattn,
376
+ rope=rope,
377
+ subln=subln,
378
+ norm_layer=norm_layer,
379
+ )
380
+ # NOTE: drop path for stochastic depth, we shall see if this is better
381
+ # than dropout here
382
+ self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
383
+ self.norm2 = norm_layer(dim)
384
+ mlp_hidden_dim = int(dim * mlp_ratio)
385
+
386
+ if naiveswiglu:
387
+ self.mlp = SwiGLU(
388
+ in_features=dim,
389
+ hidden_features=mlp_hidden_dim,
390
+ subln=subln,
391
+ norm_layer=norm_layer,
392
+ )
393
+ else:
394
+ self.mlp = Mlp(
395
+ in_features=dim,
396
+ hidden_features=mlp_hidden_dim,
397
+ act_layer=act_layer,
398
+ subln=subln,
399
+ drop=drop,
400
+ )
401
+
402
+ if init_values is not None and init_values > 0:
403
+ self.gamma_1 = nn.Parameter(
404
+ init_values * torch.ones((dim,)), requires_grad=True
405
+ )
406
+ self.gamma_2 = nn.Parameter(
407
+ init_values * torch.ones((dim,)), requires_grad=True
408
+ )
409
+ else:
410
+ self.gamma_1, self.gamma_2 = None, None
411
+
412
+ self.postnorm = postnorm
413
+
414
+ def forward(self, x, rel_pos_bias=None, attn_mask=None):
415
+ if self.gamma_1 is None:
416
+ if self.postnorm:
417
+ x = x + self.drop_path(
418
+ self.norm1(
419
+ self.attn(x, rel_pos_bias=rel_pos_bias, attn_mask=attn_mask)
420
+ )
421
+ )
422
+ x = x + self.drop_path(self.norm2(self.mlp(x)))
423
+ else:
424
+ x = x + self.drop_path(
425
+ self.attn(
426
+ self.norm1(x), rel_pos_bias=rel_pos_bias, attn_mask=attn_mask
427
+ )
428
+ )
429
+ x = x + self.drop_path(self.mlp(self.norm2(x)))
430
+ else:
431
+ if self.postnorm:
432
+ x = x + self.drop_path(
433
+ self.gamma_1
434
+ * self.norm1(
435
+ self.attn(x, rel_pos_bias=rel_pos_bias, attn_mask=attn_mask)
436
+ )
437
+ )
438
+ x = x + self.drop_path(self.gamma_2 * self.norm2(self.mlp(x)))
439
+ else:
440
+ x = x + self.drop_path(
441
+ self.gamma_1
442
+ * self.attn(
443
+ self.norm1(x), rel_pos_bias=rel_pos_bias, attn_mask=attn_mask
444
+ )
445
+ )
446
+ x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
447
+ return x
448
+
449
+
450
+ class PatchEmbed(nn.Module):
451
+ """Image to Patch Embedding"""
452
+
453
+ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
454
+ super().__init__()
455
+ img_size = to_2tuple(img_size)
456
+ patch_size = to_2tuple(patch_size)
457
+ num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
458
+ self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
459
+ self.img_size = img_size
460
+ self.patch_size = patch_size
461
+ self.num_patches = num_patches
462
+
463
+ self.proj = nn.Conv2d(
464
+ in_chans, embed_dim, kernel_size=patch_size, stride=patch_size
465
+ )
466
+
467
+ def forward(self, x, **_):
468
+ target_dtype = self.proj.weight.dtype
469
+ _, __, h, w = x.shape
470
+ # FIXME look at relaxing size constraints
471
+ assert h == self.img_size[0] and w == self.img_size[1], (
472
+ f"Input image size ({h}*{w}) doesn't match model "
473
+ f'({self.img_size[0]}*{self.img_size[1]}).'
474
+ )
475
+ x = self.proj(x.to(dtype=target_dtype)).flatten(2).transpose(1, 2)
476
+ return x
477
+
478
+
479
+ class RelativePositionBias(nn.Module):
480
+ def __init__(self, window_size, num_heads):
481
+ super().__init__()
482
+ self.window_size = window_size
483
+ self.num_relative_distance = (2 * window_size[0] - 1) * (
484
+ 2 * window_size[1] - 1
485
+ ) + 3
486
+ self.relative_position_bias_table = nn.Parameter(
487
+ torch.zeros(self.num_relative_distance, num_heads)
488
+ ) # 2*Wh-1 * 2*Ww-1, nH
489
+ # cls to token & token 2 cls & cls to cls
490
+
491
+ # get pair-wise relative position index for each token inside the window
492
+ coords_h = torch.arange(window_size[0])
493
+ coords_w = torch.arange(window_size[1])
494
+ coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
495
+ coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
496
+ relative_coords = (
497
+ coords_flatten[:, :, None] - coords_flatten[:, None, :]
498
+ ) # 2, Wh*Ww, Wh*Ww
499
+ relative_coords = relative_coords.permute(
500
+ 1, 2, 0
501
+ ).contiguous() # Wh*Ww, Wh*Ww, 2
502
+ relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
503
+ relative_coords[:, :, 1] += window_size[1] - 1
504
+ relative_coords[:, :, 0] *= 2 * window_size[1] - 1
505
+ relative_position_index = torch.zeros(
506
+ size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype
507
+ )
508
+ relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
509
+ relative_position_index[0, 0:] = self.num_relative_distance - 3
510
+ relative_position_index[0:, 0] = self.num_relative_distance - 2
511
+ relative_position_index[0, 0] = self.num_relative_distance - 1
512
+
513
+ self.register_buffer('relative_position_index', relative_position_index)
514
+
515
+ def forward(self):
516
+ relative_position_bias = self.relative_position_bias_table[
517
+ self.relative_position_index.view(-1)
518
+ ].view(
519
+ self.window_size[0] * self.window_size[1] + 1,
520
+ self.window_size[0] * self.window_size[1] + 1,
521
+ -1,
522
+ ) # Wh*Ww,Wh*Ww,nH
523
+ return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
524
+
525
+
526
+ class EVAVisionTransformer(nn.Module):
527
+ """Vision Transformer with support for patch or hybrid CNN input stage"""
528
+
529
+ def __init__(
530
+ self,
531
+ img_size=224,
532
+ patch_size=16,
533
+ in_chans=3,
534
+ num_classes=0,
535
+ embed_dim=768,
536
+ depth=12,
537
+ num_heads=12,
538
+ mlp_ratio=4.0,
539
+ qkv_bias=False,
540
+ qk_scale=None,
541
+ drop_rate=0.0,
542
+ attn_drop_rate=0.0,
543
+ drop_path_rate=0.0,
544
+ norm_layer=nn.LayerNorm,
545
+ init_values=None,
546
+ patch_dropout=0.0,
547
+ use_abs_pos_emb=True,
548
+ use_rel_pos_bias=False,
549
+ use_shared_rel_pos_bias=False,
550
+ rope=False,
551
+ use_mean_pooling=True,
552
+ init_scale=0.001,
553
+ grad_checkpointing=False,
554
+ xattn=False,
555
+ postnorm=False,
556
+ pt_hw_seq_len=16,
557
+ intp_freq=False,
558
+ naiveswiglu=False,
559
+ subln=False,
560
+ proj_type=None,
561
+ ):
562
+ super().__init__()
563
+ self.image_size = img_size
564
+ self.num_classes = num_classes
565
+ # num_features for consistency with other models
566
+ self.num_features = self.embed_dim = embed_dim
567
+
568
+ self.patch_embed = PatchEmbed(
569
+ img_size=img_size,
570
+ patch_size=patch_size,
571
+ in_chans=in_chans,
572
+ embed_dim=embed_dim,
573
+ )
574
+ num_patches = self.patch_embed.num_patches
575
+
576
+ self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
577
+ # self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
578
+ if use_abs_pos_emb:
579
+ self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
580
+ else:
581
+ self.pos_embed = None
582
+ self.pos_drop = nn.Dropout(p=drop_rate)
583
+
584
+ if use_shared_rel_pos_bias:
585
+ self.rel_pos_bias = RelativePositionBias(
586
+ window_size=self.patch_embed.patch_shape, num_heads=num_heads
587
+ )
588
+ else:
589
+ self.rel_pos_bias = None
590
+
591
+ if rope:
592
+ half_head_dim = embed_dim // num_heads // 2
593
+ hw_seq_len = img_size // patch_size
594
+ self.rope = VisionRotaryEmbeddingFast(
595
+ dim=half_head_dim,
596
+ pt_seq_len=pt_hw_seq_len,
597
+ ft_seq_len=hw_seq_len if intp_freq else None,
598
+ patch_dropout=patch_dropout,
599
+ )
600
+ else:
601
+ self.rope = None
602
+
603
+ self.naiveswiglu = naiveswiglu
604
+
605
+ dpr = [
606
+ x.item() for x in torch.linspace(0, drop_path_rate, depth)
607
+ ] # stochastic depth decay rule
608
+ self.use_rel_pos_bias = use_rel_pos_bias
609
+ self.blocks = nn.ModuleList(
610
+ [
611
+ Block(
612
+ dim=embed_dim,
613
+ num_heads=num_heads,
614
+ mlp_ratio=mlp_ratio,
615
+ qkv_bias=qkv_bias,
616
+ qk_scale=qk_scale,
617
+ drop=drop_rate,
618
+ attn_drop=attn_drop_rate,
619
+ drop_path=dpr[i],
620
+ norm_layer=norm_layer,
621
+ init_values=init_values,
622
+ window_size=self.patch_embed.patch_shape
623
+ if use_rel_pos_bias
624
+ else None,
625
+ xattn=xattn,
626
+ rope=self.rope,
627
+ postnorm=postnorm,
628
+ subln=subln,
629
+ naiveswiglu=naiveswiglu,
630
+ )
631
+ for i in range(depth)
632
+ ]
633
+ )
634
+ self.norm = nn.Identity() if use_mean_pooling else norm_layer(embed_dim)
635
+ self.fc_norm = norm_layer(embed_dim) if use_mean_pooling else None
636
+ if (num_classes == embed_dim) and (proj_type is None):
637
+ self.head = nn.Identity()
638
+ elif proj_type == 'linear':
639
+ self.head = nn.Linear(embed_dim, num_classes, bias=qkv_bias)
640
+ elif proj_type == 'mlp':
641
+ hidden_size = (embed_dim + num_classes) // 2
642
+ self.proj = nn.Sequential(
643
+ nn.Linear(embed_dim, hidden_size, bias=qkv_bias),
644
+ nn.GELU(),
645
+ nn.Linear(hidden_size, num_classes, bias=qkv_bias),
646
+ )
647
+
648
+ if self.pos_embed is not None:
649
+ trunc_normal_(self.pos_embed, std=0.02)
650
+
651
+ trunc_normal_(self.cls_token, std=0.02)
652
+
653
+ self.apply(self._init_weights)
654
+ self.fix_init_weight()
655
+
656
+ if isinstance(self.head, nn.Linear):
657
+ trunc_normal_(self.head.weight, std=0.02)
658
+ self.head.weight.data.mul_(init_scale)
659
+ if qkv_bias:
660
+ self.head.bias.data.mul_(init_scale)
661
+
662
+ # setting a patch_dropout of 0. would mean it is disabled and this function
663
+ # would be the identity fn
664
+ self.patch_dropout = (
665
+ PatchDropout(patch_dropout) if patch_dropout > 0.0 else nn.Identity()
666
+ )
667
+
668
+ self.grad_checkpointing = grad_checkpointing
669
+
670
+ def fix_init_weight(self):
671
+ def rescale(param, _layer_id):
672
+ param.div_(math.sqrt(2.0 * _layer_id))
673
+
674
+ for layer_id, layer in enumerate(self.blocks):
675
+ rescale(layer.attn.proj.weight.data, layer_id + 1)
676
+ if self.naiveswiglu:
677
+ rescale(layer.mlp.w3.weight.data, layer_id + 1)
678
+ else:
679
+ rescale(layer.mlp.fc2.weight.data, layer_id + 1)
680
+
681
+ def get_cast_dtype(self) -> torch.dtype:
682
+ return self.blocks[0].mlp.fc2.weight.dtype
683
+
684
+ @staticmethod
685
+ def _init_weights(m):
686
+ if isinstance(m, nn.Linear):
687
+ trunc_normal_(m.weight, std=0.02)
688
+ if m.bias is not None:
689
+ nn.init.constant_(m.bias, 0)
690
+ elif isinstance(m, nn.LayerNorm):
691
+ nn.init.constant_(m.bias, 0)
692
+ nn.init.constant_(m.weight, 1.0)
693
+
694
+ @staticmethod
695
+ def _initialize_weights(m):
696
+ EVAVisionTransformer._init_weights(m)
697
+
698
+ def get_num_layers(self):
699
+ return len(self.blocks)
700
+
701
+ def lock(self, unlocked_groups=0, *_, **__):
702
+ assert (
703
+ unlocked_groups == 0
704
+ ), 'partial locking not currently supported for this model'
705
+ for param in self.parameters():
706
+ param.requires_grad = False
707
+
708
+ @torch.jit.ignore
709
+ def set_grad_checkpointing(self, enable=True):
710
+ self.grad_checkpointing = enable
711
+
712
+ @torch.jit.ignore
713
+ def no_weight_decay(self):
714
+ return {'pos_embed', 'cls_token'}
715
+
716
+ def get_classifier(self):
717
+ return self.head
718
+
719
+ def reset_classifier(self, num_classes, *_, **__):
720
+ self.num_classes = num_classes
721
+ self.head = (
722
+ nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
723
+ )
724
+
725
+ def forward_features(self, x, return_all_features=False):
726
+ x = self.patch_embed(x)
727
+ batch_size, seq_len, _ = x.size()
728
+
729
+ cls_tokens = self.cls_token.expand(
730
+ batch_size, -1, -1
731
+ ) # stole cls_tokens impl from Phil Wang, thanks
732
+ x = torch.cat((cls_tokens, x), dim=1)
733
+ if self.pos_embed is not None:
734
+ x = x + self.pos_embed
735
+ x = self.pos_drop(x)
736
+
737
+ # a patch_dropout of 0. would mean it is disabled and this function would do
738
+ # nothing but return what was passed in
739
+ if self.rope is not None:
740
+ if self.training and not isinstance(self.patch_dropout, nn.Identity):
741
+ x, patch_indices_keep = self.patch_dropout(x)
742
+ self.rope.forward = partial(
743
+ self.rope.forward, patch_indices_keep=patch_indices_keep
744
+ )
745
+ else:
746
+ self.rope.forward = partial(self.rope.forward, patch_indices_keep=None)
747
+ x = self.patch_dropout(x)
748
+ else:
749
+ x = self.patch_dropout(x)
750
+
751
+ rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None
752
+ for blk in self.blocks:
753
+ if self.grad_checkpointing:
754
+ x = checkpoint(blk, x, (rel_pos_bias,))
755
+ else:
756
+ x = blk(x, rel_pos_bias=rel_pos_bias)
757
+
758
+ if not return_all_features:
759
+ x = self.norm(x)
760
+ if self.fc_norm is not None:
761
+ return self.fc_norm(x.mean(1))
762
+ else:
763
+ return x[:, 0]
764
+ return x
765
+
766
+ def forward(self, x, return_all_features=False):
767
+ if return_all_features:
768
+ return self.forward_features(x, return_all_features)
769
+ x = self.forward_features(x)
770
+ x = self.head(x)
771
+ return x
clip_model/hf_model.py ADDED
@@ -0,0 +1,364 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+ import warnings
3
+ from typing import Dict, Optional, Union
4
+
5
+ import torch
6
+ import torch.nn as nn
7
+ from transformers import AutoConfig, AutoModel, PretrainedConfig
8
+ from transformers.modeling_outputs import (
9
+ BaseModelOutput,
10
+ BaseModelOutputWithPooling,
11
+ BaseModelOutputWithPoolingAndCrossAttentions,
12
+ )
13
+
14
+ _HF_ARCH_DICT = {
15
+ # https://huggingface.co/docs/transformers/model_doc/roberta#roberta
16
+ 'roberta': {
17
+ 'config_names': {
18
+ 'context_length': 'max_position_embeddings',
19
+ 'vocab_size': 'vocab_size',
20
+ 'width': 'hidden_size',
21
+ 'heads': 'num_attention_heads',
22
+ 'layers': 'num_hidden_layers',
23
+ 'layer_attr': 'layer',
24
+ 'token_embeddings_attr': 'embeddings',
25
+ },
26
+ 'pooler': 'mean_pooler',
27
+ },
28
+ # https://huggingface.co/docs/transformers/model_doc/xlm-roberta#transformers.XLMRobertaConfig
29
+ 'xlm-roberta': {
30
+ 'config_names': {
31
+ 'context_length': 'max_position_embeddings',
32
+ 'vocab_size': 'vocab_size',
33
+ 'width': 'hidden_size',
34
+ 'heads': 'num_attention_heads',
35
+ 'layers': 'num_hidden_layers',
36
+ 'layer_attr': 'layer',
37
+ 'token_embeddings_attr': 'embeddings',
38
+ },
39
+ 'pooler': 'mean_pooler',
40
+ },
41
+ # https://huggingface.co/docs/transformers/model_doc/bert
42
+ 'bert': {
43
+ 'config_names': {
44
+ 'context_length': 'max_position_embeddings',
45
+ 'vocab_size': 'vocab_size',
46
+ 'width': 'hidden_size',
47
+ 'heads': 'num_attention_heads',
48
+ 'layers': 'num_hidden_layers',
49
+ },
50
+ 'pooler': 'cls_pooler',
51
+ },
52
+ }
53
+
54
+ _POOLERS = {}
55
+
56
+
57
+ def _camel2snake(s):
58
+ return re.sub(r'(?<!^)(?=[A-Z])', '_', s).lower()
59
+
60
+
61
+ def register_pooler(cls):
62
+ """Decorator registering pooler class"""
63
+ _POOLERS[_camel2snake(cls.__name__)] = cls
64
+ return cls
65
+
66
+
67
+ @register_pooler
68
+ class MeanPooler(nn.Module):
69
+ @staticmethod
70
+ def forward(x: BaseModelOutput, attention_mask: torch.Tensor):
71
+ masked_output = x.last_hidden_state * attention_mask.unsqueeze(-1)
72
+ return masked_output.sum(dim=1) / attention_mask.sum(-1, keepdim=True)
73
+
74
+
75
+ @register_pooler
76
+ class MaxPooler(nn.Module):
77
+ @staticmethod
78
+ def forward(x: BaseModelOutput, attention_mask: torch.Tensor):
79
+ masked_output = x.last_hidden_state.masked_fill(
80
+ attention_mask.unsqueeze(-1), -torch.inf
81
+ )
82
+ return masked_output.max(1).values
83
+
84
+
85
+ @register_pooler
86
+ class ClsPooler(nn.Module):
87
+ def __init__(self, use_pooler_output: bool = True):
88
+ super().__init__()
89
+ self.cls_token_position = 0
90
+ self.use_pooler_output = use_pooler_output
91
+
92
+ def forward(self, x: BaseModelOutput, _: torch.Tensor):
93
+ if (
94
+ self.use_pooler_output
95
+ and isinstance(
96
+ x,
97
+ (
98
+ BaseModelOutputWithPooling,
99
+ BaseModelOutputWithPoolingAndCrossAttentions,
100
+ ),
101
+ )
102
+ and (x.pooler_output is not None)
103
+ ):
104
+ return x.pooler_output
105
+ return x.last_hidden_state[:, self.cls_token_position, :]
106
+
107
+
108
+ class HFTextEncoder(nn.Module):
109
+ output_tokens: torch.jit.Final[bool]
110
+
111
+ def __init__(
112
+ self,
113
+ model_name_or_path: str,
114
+ output_dim: int,
115
+ config: PretrainedConfig = None,
116
+ pooler_type: str = None,
117
+ proj_type: str = None,
118
+ proj_bias: bool = False,
119
+ pretrained: bool = True,
120
+ output_tokens: bool = False,
121
+ trust_remote_code: bool = False,
122
+ revision: Optional[str] = None,
123
+ code_revision: Optional[str] = None,
124
+ default_instruction_task: Optional[str] = None,
125
+ default_lora_task: Optional[str] = None,
126
+ model_config_kwargs: Optional[Dict] = None,
127
+ ):
128
+ super().__init__()
129
+ self.output_tokens = output_tokens
130
+ self.output_dim = output_dim
131
+
132
+ model_config_kwargs = model_config_kwargs or {}
133
+
134
+ if config is None:
135
+ if pretrained:
136
+ self.transformer = AutoModel.from_pretrained(
137
+ model_name_or_path,
138
+ trust_remote_code=trust_remote_code,
139
+ revision=revision,
140
+ add_pooling_layer=False,
141
+ code_revision=code_revision,
142
+ **model_config_kwargs,
143
+ )
144
+ self.config = self.transformer.config
145
+ else:
146
+ self.config = AutoConfig.from_pretrained(
147
+ model_name_or_path,
148
+ trust_remote_code=trust_remote_code,
149
+ code_revision=code_revision,
150
+ )
151
+ self.config.update(model_config_kwargs)
152
+ self.transformer = AutoModel.from_config(
153
+ self.config,
154
+ trust_remote_code=trust_remote_code,
155
+ add_pooling_layer=False,
156
+ code_revision=code_revision,
157
+ )
158
+ if (
159
+ hasattr(self.config, 'is_encoder_decoder')
160
+ and self.config.is_encoder_decoder
161
+ ):
162
+ self.transformer = self.transformer.encoder
163
+
164
+ else:
165
+ self.config = config
166
+ self.config.update(model_config_kwargs)
167
+ self.transformer = AutoModel.from_config(
168
+ self.config,
169
+ trust_remote_code=trust_remote_code,
170
+ revision=revision,
171
+ code_revision=code_revision,
172
+ )
173
+ self.vocab_size = getattr(self.config, 'vocab_size', 0)
174
+ self.context_length = getattr(self.config, 'max_position_embeddings', 0)
175
+
176
+ pooler_type = pooler_type or _HF_ARCH_DICT[self.config.model_type]['pooler']
177
+ self.pooler = _POOLERS[pooler_type]()
178
+
179
+ d_model = getattr(
180
+ self.config, _HF_ARCH_DICT[self.config.model_type]['config_names']['width']
181
+ )
182
+ if (d_model == output_dim) and (proj_type is None): # do we always need a proj?
183
+ self.proj = nn.Identity()
184
+ elif (d_model != output_dim) or proj_type == 'linear':
185
+ self.proj = nn.Linear(d_model, output_dim, bias=proj_bias)
186
+ elif proj_type == 'mlp':
187
+ hidden_size = (d_model + output_dim) // 2
188
+ self.proj = nn.Sequential(
189
+ nn.Linear(d_model, hidden_size, bias=proj_bias),
190
+ nn.GELU(),
191
+ nn.Linear(hidden_size, output_dim, bias=proj_bias),
192
+ )
193
+
194
+ self._task_instructions = {}
195
+ self._lora_adaptation_map = {}
196
+ self._supports_task_instructions = False
197
+ self._supports_lora = False
198
+ if (
199
+ hasattr(self.transformer, '_adaptation_map')
200
+ and len(self.transformer._adaptation_map) > 0
201
+ ):
202
+ self._lora_adaptation_map = self.transformer._adaptation_map
203
+ self._supports_lora = True
204
+ if (
205
+ hasattr(self.transformer, '_task_instructions')
206
+ and len(self.transformer._task_instructions) > 0
207
+ ):
208
+ self._task_instructions = self.transformer._task_instructions
209
+ self._supports_task_instructions = True
210
+
211
+ self._default_instruction_task = None
212
+ self._default_lora_task = None
213
+ self._default_instruction = None
214
+ self._default_loraid = None
215
+
216
+ if default_instruction_task is not None:
217
+ self._default_instruction_task = default_instruction_task
218
+ self._default_instruction = self.get_instruction_from_task(
219
+ default_instruction_task
220
+ )
221
+ if default_lora_task is not None:
222
+ self._default_lora_task = default_lora_task
223
+ self._default_loraid = self.get_loraid_from_task(default_lora_task)
224
+
225
+ @property
226
+ def supports_task_instructions(self) -> bool:
227
+ return self._supports_task_instructions
228
+
229
+ @property
230
+ def supports_lora(self) -> bool:
231
+ return self._supports_lora
232
+
233
+ @property
234
+ def task_instructions(self) -> Dict[str, str]:
235
+ return self._task_instructions
236
+
237
+ @property
238
+ def lora_adaptation_map(self) -> Dict[str, int]:
239
+ return self._lora_adaptation_map
240
+
241
+ @property
242
+ def default_instruction(self) -> Optional[str]:
243
+ return self._default_instruction
244
+
245
+ @property
246
+ def default_loraid(self) -> Optional[int]:
247
+ return self._default_loraid
248
+
249
+ def get_instruction_from_task(self, task: Optional[str]) -> Optional[str]:
250
+ if self._supports_task_instructions:
251
+ if task is None:
252
+ return self._default_instruction
253
+ if task not in self._task_instructions:
254
+ raise ValueError(
255
+ f'Unsupported task \'{task}\'. Choose one of the following: '
256
+ f'{", ".join(self._task_instructions)} or set to None to disable '
257
+ f'task instructions completely'
258
+ )
259
+ return self._task_instructions[task]
260
+ else:
261
+ if task is not None:
262
+ warnings.warn(
263
+ 'Model does not support task instructions, ignoring instruction '
264
+ f"task '{task}'"
265
+ )
266
+ return None
267
+
268
+ def get_loraid_from_task(self, task: Optional[str]) -> Optional[int]:
269
+ if self._supports_lora:
270
+ if task is None:
271
+ return self._default_loraid
272
+ if task not in self._lora_adaptation_map:
273
+ raise ValueError(
274
+ f'Unsupported task \'{task}\'. Choose one of the following: '
275
+ f'{", ".join(self._task_instructions)} or set to None to disable '
276
+ f'the LoRA adapters completely'
277
+ )
278
+ return self._lora_adaptation_map[task]
279
+ else:
280
+ if task is not None:
281
+ warnings.warn(
282
+ f"Model does not support LoRA adapters, ignoring LoRA task '{task}'"
283
+ )
284
+ return None
285
+
286
+ @staticmethod
287
+ def get_adapter_mask_from_loraid(
288
+ batch_size: int, loraid: int, device: Union[str, torch.device]
289
+ ):
290
+ return torch.full((batch_size,), loraid, dtype=torch.int32, device=device)
291
+
292
+ @torch.jit.ignore
293
+ def set_grad_checkpointing(self, _=True):
294
+ self.transformer.gradient_checkpointing_enable()
295
+
296
+ def init_parameters(self):
297
+ pass
298
+
299
+ def forward(self, x: torch.Tensor, adapter_mask: Optional[torch.Tensor] = None):
300
+ if adapter_mask is None:
301
+ default_loraid = self.default_loraid
302
+ if default_loraid is not None:
303
+ adapter_mask = self.get_adapter_mask_from_loraid(
304
+ x.shape[0], default_loraid, x.device
305
+ )
306
+ else:
307
+ if not self.supports_lora:
308
+ warnings.warn(
309
+ 'Model does not support LoRA adapters, setting adapter_mask to None'
310
+ )
311
+ adapter_mask = None
312
+
313
+ attention_mask = (x != self.config.pad_token_id).long()
314
+ lora_kwargs = {}
315
+ if adapter_mask is not None:
316
+ lora_kwargs['adapter_mask'] = adapter_mask
317
+
318
+ out = self.transformer(
319
+ input_ids=x, attention_mask=attention_mask, **lora_kwargs
320
+ )
321
+ pooled_out = self.pooler(out, attention_mask)
322
+ projected = self.proj(pooled_out)
323
+ seqlen = out.last_hidden_state.shape[1]
324
+ tokens = (
325
+ out.last_hidden_state[
326
+ :, torch.arange(seqlen) != self.pooler.cls_token_position, :
327
+ ]
328
+ if isinstance(self.pooler, ClsPooler)
329
+ else out.last_hidden_state
330
+ )
331
+ if self.output_tokens:
332
+ return projected, tokens
333
+ return projected
334
+
335
+ def lock(self, unlocked_layers: int = 0, freeze_layer_norm: bool = True):
336
+ if not unlocked_layers:
337
+ for n, p in self.transformer.named_parameters():
338
+ p.requires_grad = (
339
+ (not freeze_layer_norm) if 'LayerNorm' in n.split('.') else False
340
+ )
341
+ return
342
+
343
+ encoder = (
344
+ self.transformer.encoder
345
+ if hasattr(self.transformer, 'encoder')
346
+ else self.transformer
347
+ )
348
+ layer_list = getattr(
349
+ encoder, _HF_ARCH_DICT[self.config.model_type]['config_names']['layer_attr']
350
+ )
351
+ print(f'Unlocking {unlocked_layers}/{len(layer_list) + 1} layers of hf model')
352
+ embeddings = getattr(
353
+ self.transformer,
354
+ _HF_ARCH_DICT[self.config.model_type]['config_names'][
355
+ 'token_embeddings_attr'
356
+ ],
357
+ )
358
+ modules = [embeddings, *layer_list][:-unlocked_layers]
359
+ # freeze layers
360
+ for module in modules:
361
+ for n, p in module.named_parameters():
362
+ p.requires_grad = (
363
+ (not freeze_layer_norm) if 'LayerNorm' in n.split('.') else False
364
+ )
clip_model/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b4ff9dcfc8abed950427cd693c1143cfacc818ed327e74839da2611f9d8dc693
3
+ size 1730689642
clip_model/modeling_clip.py ADDED
@@ -0,0 +1,684 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ #
3
+ # Code mainly copied from:
4
+ # https://github.com/huggingface/transformers/blob/main/src/transformers/models/clip/modeling_clip.py
5
+ # and adjusted for Jina CLIP
6
+
7
+ import base64
8
+ import importlib.util
9
+ import warnings
10
+ from functools import partial
11
+ from io import BytesIO
12
+ from typing import List, Optional, Tuple, Union
13
+
14
+ import numpy as np
15
+ import requests
16
+ import torch
17
+ import torch.nn.functional as f
18
+ import torch.utils.checkpoint
19
+ from PIL import Image
20
+ from torch import nn
21
+ from transformers import (
22
+ AutoImageProcessor,
23
+ AutoTokenizer,
24
+ BatchEncoding,
25
+ BatchFeature,
26
+ PreTrainedModel,
27
+ logging,
28
+ )
29
+ from transformers.models.clip.modeling_clip import (
30
+ CLIPOutput,
31
+ CLIPTextModelOutput,
32
+ CLIPVisionModelOutput,
33
+ clip_loss,
34
+ )
35
+
36
+ try:
37
+ from tqdm.autonotebook import trange
38
+
39
+ has_tqdm = True
40
+ except ImportError:
41
+ trange = None
42
+ has_tqdm = False
43
+
44
+ from .configuration_clip import JinaCLIPConfig, JinaCLIPTextConfig, JinaCLIPVisionConfig
45
+ from .eva_model import EVAVisionTransformer
46
+ from .hf_model import HFTextEncoder
47
+ from .rope_embeddings import VisionRotaryEmbeddingFast # noqa: F401
48
+ from .transform import ( # noqa: F401
49
+ OPENAI_DATASET_MEAN,
50
+ OPENAI_DATASET_STD,
51
+ image_transform,
52
+ )
53
+
54
+ logger = logging.get_logger(__name__)
55
+
56
+
57
+ """ Jina CLIP model implementation """
58
+
59
+
60
+ class LayerNorm(nn.LayerNorm):
61
+ """Subclass torch's LayerNorm (with cast back to input dtype)."""
62
+
63
+ def forward(self, x: torch.Tensor):
64
+ origtype = x.dtype
65
+ x = f.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
66
+ return x.to(origtype)
67
+
68
+
69
+ def _build_text_tower(config: JinaCLIPTextConfig) -> HFTextEncoder:
70
+ return HFTextEncoder(
71
+ model_name_or_path=config.hf_model_name_or_path,
72
+ output_dim=config.embed_dim,
73
+ default_instruction_task=config.default_instruction_task,
74
+ default_lora_task=config.default_lora_task,
75
+ pooler_type=config.pooler_type,
76
+ proj_type=config.proj_type,
77
+ proj_bias=config.proj_bias,
78
+ pretrained=False,
79
+ output_tokens=False,
80
+ trust_remote_code=True,
81
+ revision=None,
82
+ model_config_kwargs=config.hf_model_config_kwargs,
83
+ )
84
+
85
+
86
+ def _build_vision_tower(config: JinaCLIPVisionConfig) -> EVAVisionTransformer:
87
+ norm_layer = partial(LayerNorm, eps=1e-6)
88
+
89
+ if config.fused_layer_norm:
90
+ try:
91
+ from apex.normalization import FusedLayerNorm
92
+
93
+ norm_layer = partial(FusedLayerNorm, eps=1e-6)
94
+ except (ModuleNotFoundError, ImportError):
95
+ logger.warning('Please install apex to use fused layer norm, ignoring')
96
+
97
+ return EVAVisionTransformer(
98
+ img_size=config.image_size,
99
+ patch_size=config.patch_size,
100
+ num_classes=config.embed_dim,
101
+ use_mean_pooling=False,
102
+ init_values=config.ls_init_value,
103
+ patch_dropout=config.patch_dropout,
104
+ embed_dim=config.width,
105
+ depth=config.layers,
106
+ num_heads=config.width // config.head_width,
107
+ mlp_ratio=config.mlp_ratio,
108
+ qkv_bias=config.qkv_bias,
109
+ drop_path_rate=config.drop_path_rate,
110
+ norm_layer=norm_layer,
111
+ xattn=config.x_attention,
112
+ rope=config.rope_embeddings,
113
+ postnorm=config.post_norm,
114
+ pt_hw_seq_len=config.pt_hw_seq_len,
115
+ intp_freq=config.intp_freq,
116
+ naiveswiglu=config.naive_swiglu,
117
+ subln=config.subln,
118
+ proj_type=config.proj_type,
119
+ )
120
+
121
+
122
+ def _resolve_attention_libs(config: JinaCLIPConfig):
123
+ use_text_flash_attn = (
124
+ config.use_text_flash_attn
125
+ if config.use_text_flash_attn is not None
126
+ else config.text_config.hf_model_config_kwargs.get('use_flash_attn', True)
127
+ )
128
+ use_vision_xformers = (
129
+ config.use_vision_xformers
130
+ if config.use_vision_xformers is not None
131
+ else config.vision_config.x_attention
132
+ )
133
+
134
+ def _resolve_use_text_flash_attn() -> bool:
135
+ if use_text_flash_attn:
136
+ if not torch.cuda.is_available():
137
+ warnings.warn('Flash attention requires CUDA, disabling')
138
+ return False
139
+ if importlib.util.find_spec('flash_attn') is None:
140
+ warnings.warn(
141
+ 'Flash attention is not installed. Check '
142
+ 'https://github.com/Dao-AILab/flash-attention?'
143
+ 'tab=readme-ov-file#installation-and-features '
144
+ 'for installation instructions, disabling'
145
+ )
146
+ return False
147
+ major, minor, *_ = torch.version.cuda.split('.')
148
+ major, minor = int(major), int(minor)
149
+ if major < 11 or (major == 11 and minor < 7):
150
+ warnings.warn(
151
+ 'Flash attention requires CUDA>=11.7. Found version '
152
+ f'{major}.{minor}, disabling'
153
+ )
154
+ return False
155
+ capability = torch.cuda.get_device_capability()
156
+ major, *_ = capability
157
+ major = int(major)
158
+ if major < 8:
159
+ device_name = torch.cuda.get_device_properties(0).name
160
+ warnings.warn(
161
+ 'Flash attention requires device capability>=8.0 (NVIDIA Ampere, '
162
+ f'Hopper or ADA). Found device {device_name} with capability '
163
+ f'{capability}, disabling'
164
+ )
165
+ return False
166
+ return True
167
+ return False
168
+
169
+ def _resolve_use_vision_xformers() -> bool:
170
+ if use_vision_xformers:
171
+ if not torch.cuda.is_available():
172
+ warnings.warn('xFormers requires CUDA, disabling')
173
+ return False
174
+ if importlib.util.find_spec('xformers') is None:
175
+ warnings.warn(
176
+ 'xFormers is not installed. Check '
177
+ 'https://github.com/facebookresearch/xformers?'
178
+ 'tab=readme-ov-file#installing-xformers for installation '
179
+ 'instructions, disabling'
180
+ )
181
+ return False
182
+ return True
183
+ return False
184
+
185
+ _use_text_flash_attn = _resolve_use_text_flash_attn()
186
+ _use_vision_xformers = _resolve_use_vision_xformers()
187
+
188
+ config.use_text_flash_attn = _use_text_flash_attn
189
+ config.use_vision_xformers = _use_vision_xformers
190
+ config.text_config.hf_model_config_kwargs['use_flash_attn'] = _use_text_flash_attn
191
+ config.vision_config.x_attention = _use_vision_xformers
192
+
193
+ return config
194
+
195
+
196
+ class JinaCLIPPreTrainedModel(PreTrainedModel):
197
+ """
198
+ An abstract class to handle weights initialization and a simple interface for
199
+ downloading and loading pretrained models.
200
+ """
201
+
202
+ config_class = JinaCLIPConfig
203
+ base_model_prefix = 'clip'
204
+ supports_gradient_checkpointing = True
205
+
206
+ def _init_weights(self, module):
207
+ """Initialize the weights"""
208
+ if isinstance(module, JinaCLIPModel):
209
+ if isinstance(module.text_projection, nn.Linear):
210
+ nn.init.normal_(
211
+ module.text_projection.weight,
212
+ std=module.text_embed_dim**-0.5 * self.config.initializer_factor,
213
+ )
214
+ if isinstance(module.text_projection, nn.Linear):
215
+ nn.init.normal_(
216
+ module.visual_projection.weight,
217
+ std=module.vision_embed_dim**-0.5 * self.config.initializer_factor,
218
+ )
219
+ if isinstance(module, nn.LayerNorm):
220
+ module.bias.data.zero_()
221
+ module.weight.data.fill_(1.0)
222
+ if isinstance(module, nn.Linear) and module.bias is not None:
223
+ module.bias.data.zero_()
224
+
225
+ @classmethod
226
+ def from_pretrained(cls, *args, **kwargs):
227
+ if 'torch_dtype' not in kwargs:
228
+ kwargs['torch_dtype'] = 'auto'
229
+ return super().from_pretrained(*args, **kwargs)
230
+
231
+
232
+ class JinaCLIPTextModel(JinaCLIPPreTrainedModel):
233
+ config_class = JinaCLIPTextConfig
234
+
235
+ def __init__(self, config: JinaCLIPTextConfig):
236
+ super().__init__(config)
237
+ self.text_model = _build_text_tower(config)
238
+ self.post_init()
239
+
240
+ def forward(
241
+ self,
242
+ input_ids: Union[None, torch.Tensor, BatchEncoding] = None,
243
+ return_dict: Optional[bool] = None,
244
+ *_,
245
+ **__,
246
+ ) -> Union[Tuple[Optional[torch.FloatTensor], ...], CLIPTextModelOutput]:
247
+ return_dict = (
248
+ return_dict if return_dict is not None else self.config.use_return_dict
249
+ )
250
+ x = input_ids.input_ids if isinstance(input_ids, BatchEncoding) else input_ids
251
+ feats = self.text_model(x=x)
252
+ out = CLIPTextModelOutput(text_embeds=feats)
253
+ return out if return_dict else out.to_tuple()
254
+
255
+
256
+ class JinaCLIPVisionModel(JinaCLIPPreTrainedModel):
257
+ config_class = JinaCLIPVisionConfig
258
+ main_input_name = 'pixel_values'
259
+
260
+ def __init__(self, config: JinaCLIPVisionConfig):
261
+ super().__init__(config)
262
+ self.vision_model = _build_vision_tower(config)
263
+ self.post_init()
264
+
265
+ def forward(
266
+ self,
267
+ pixel_values: Union[None, torch.FloatTensor, BatchFeature] = None,
268
+ return_dict: Optional[bool] = None,
269
+ *_,
270
+ **__,
271
+ ) -> Union[Tuple[Optional[torch.FloatTensor], ...], CLIPVisionModelOutput]:
272
+ return_dict = (
273
+ return_dict if return_dict is not None else self.config.use_return_dict
274
+ )
275
+ x = (
276
+ pixel_values.pixel_values
277
+ if isinstance(pixel_values, BatchFeature)
278
+ else pixel_values
279
+ )
280
+ feats = self.vision_model(x=x)
281
+ out = CLIPVisionModelOutput(image_embeds=feats)
282
+ return out if return_dict else out.to_tuple()
283
+
284
+
285
+ class JinaCLIPModel(JinaCLIPPreTrainedModel):
286
+ config_class = JinaCLIPConfig
287
+
288
+ def __init__(self, config: JinaCLIPConfig):
289
+ super().__init__(config)
290
+
291
+ if not isinstance(config.text_config, JinaCLIPTextConfig):
292
+ raise ValueError(
293
+ 'Attribute config.text_config is expected to be of type '
294
+ f'JinaCLIPTextConfig but is of type {type(config.text_config)}.'
295
+ )
296
+
297
+ if not isinstance(config.vision_config, JinaCLIPVisionConfig):
298
+ raise ValueError(
299
+ 'Attribute config.vision_config is expected to be of type '
300
+ f'JinaCLIPVisionConfig but is of type {type(config.vision_config)}.'
301
+ )
302
+
303
+ config = _resolve_attention_libs(config)
304
+ text_config = config.text_config
305
+ vision_config = config.vision_config
306
+
307
+ self.add_projections = config.add_projections
308
+ self.projection_dim = config.projection_dim
309
+ self.text_embed_dim = text_config.embed_dim
310
+ self.vision_embed_dim = vision_config.embed_dim
311
+ self.text_model = _build_text_tower(text_config)
312
+ self.vision_model = _build_vision_tower(vision_config)
313
+ self.logit_scale = nn.Parameter(
314
+ torch.tensor(self.config.logit_scale_init_value)
315
+ )
316
+ if self.add_projections:
317
+ self.visual_projection = nn.Linear(
318
+ self.vision_embed_dim, self.projection_dim, bias=False
319
+ )
320
+ self.text_projection = nn.Linear(
321
+ self.text_embed_dim, self.projection_dim, bias=False
322
+ )
323
+ else:
324
+ self.visual_projection = nn.Identity()
325
+ self.text_projection = nn.Identity()
326
+
327
+ self.tokenizer = None
328
+ self.preprocess = None
329
+ self.post_init()
330
+
331
+ def get_tokenizer(self):
332
+ if self.tokenizer is None:
333
+ self.tokenizer = AutoTokenizer.from_pretrained(
334
+ self.config._name_or_path, trust_remote_code=True
335
+ )
336
+ return self.tokenizer
337
+
338
+ def get_preprocess(self):
339
+ if not self.preprocess:
340
+ self.preprocess = AutoImageProcessor.from_pretrained(
341
+ self.config._name_or_path, trust_remote_code=True
342
+ )
343
+ return self.preprocess
344
+
345
+ def get_text_features(
346
+ self,
347
+ input_ids: Union[None, torch.Tensor, BatchEncoding] = None,
348
+ *_,
349
+ **__,
350
+ ) -> torch.FloatTensor:
351
+ x = input_ids.input_ids if isinstance(input_ids, BatchEncoding) else input_ids
352
+ return self.text_projection(self.text_model(x=x))
353
+
354
+ def get_image_features(
355
+ self,
356
+ pixel_values: Union[None, torch.FloatTensor, BatchFeature] = None,
357
+ *_,
358
+ **__,
359
+ ) -> torch.FloatTensor:
360
+ x = (
361
+ pixel_values.pixel_values
362
+ if isinstance(pixel_values, BatchFeature)
363
+ else pixel_values
364
+ )
365
+ return self.visual_projection(self.vision_model(x=x))
366
+
367
+ def _truncate_embeddings(self, embeddings: torch.Tensor, truncate_dim: int):
368
+ if not self.config.matryoshka_dimensions:
369
+ logger.warning(
370
+ 'Model is not trained using Matryoshka Representation Learning, '
371
+ 'truncating embeddings will not work optimally.'
372
+ )
373
+ return embeddings[:, :truncate_dim]
374
+
375
+ @staticmethod
376
+ def _decode_image_data(image_data_str: str) -> Image:
377
+ header, data = image_data_str.split(',', 1)
378
+ image_data = base64.b64decode(data)
379
+ return Image.open(BytesIO(image_data))
380
+
381
+ @torch.inference_mode()
382
+ def encode_image(
383
+ self,
384
+ images: Union[str, List[Union[str, 'Image.Image']]],
385
+ batch_size: int = 32,
386
+ show_progress_bar: Optional[bool] = None,
387
+ convert_to_numpy: bool = True,
388
+ convert_to_tensor: bool = False,
389
+ device: Optional[torch.device] = None,
390
+ normalize_embeddings: bool = True,
391
+ truncate_dim: Optional[int] = None,
392
+ ) -> Union[List[torch.Tensor], np.ndarray, torch.Tensor]:
393
+ """
394
+ Computes image embeddings
395
+
396
+ Args:
397
+ images(`str` or `List[Union[str, Image.Image]]`):
398
+ Image paths, URLs, PIL images, or data:image/ strings to be encoded
399
+ batch_size(`int`, *optional*, defaults to 32):
400
+ Batch size for the computation
401
+ show_progress_bar(`bool`, *optional*, defaults to None):
402
+ Show a progress bar when encoding images. If set to None, progress bar
403
+ is only shown when `logger.level == logging.INFO` or
404
+ `logger.level == logging.DEBUG`
405
+ convert_to_numpy(`bool`, *optional*, defaults to True):
406
+ If true, the output is a list of numpy vectors. Else, it is a list of
407
+ pytorch tensors
408
+ convert_to_tensor(`bool`, *optional*, defaults to False):
409
+ If true, you get one large tensor as return. Overwrites any setting
410
+ from convert_to_numpy
411
+ device(`torch.device`, *optional*, defaults to None):
412
+ Which torch.device to use for the computation
413
+ normalize_embeddings(`bool`, *optional*, defaults to True):
414
+ If set to true, returned vectors will have length 1. In that case,
415
+ the faster dot-product (util.dot_score) instead of cosine similarity
416
+ can be used
417
+ truncate_dim(`int`, *optional*, defaults to None):
418
+ The dimension to truncate sentence embeddings to. If set to `None`
419
+ no truncation is performed
420
+
421
+ Returns:
422
+ By default, a list of tensors is returned. If convert_to_tensor, a stacked
423
+ tensor is returned. If convert_to_numpy, a numpy matrix is returned
424
+ """
425
+
426
+ _is_training = self.training
427
+ self.eval()
428
+
429
+ self.preprocess = self.get_preprocess()
430
+ all_embeddings = []
431
+
432
+ if show_progress_bar is None:
433
+ show_progress_bar = (
434
+ logger.getEffectiveLevel() == logging.INFO
435
+ or logger.getEffectiveLevel() == logging.DEBUG
436
+ )
437
+ if convert_to_tensor:
438
+ convert_to_numpy = False
439
+
440
+ _input_was_single_img = False
441
+ if isinstance(images, str) or not hasattr(images, '__len__'):
442
+ images = [images]
443
+ _input_was_single_img = True
444
+
445
+ if device is not None:
446
+ self.to(device)
447
+
448
+ _permutation = np.argsort([-len(str(i)) for i in images])
449
+ _inverse_permutation = np.argsort(_permutation)
450
+ images = [images[idx] for idx in _permutation]
451
+
452
+ if has_tqdm:
453
+ range_iter = trange(
454
+ 0,
455
+ len(images),
456
+ batch_size,
457
+ desc='Encoding',
458
+ disable=not show_progress_bar,
459
+ )
460
+ else:
461
+ range_iter = range(0, len(images), batch_size)
462
+
463
+ truncate_dim = truncate_dim or self.config.truncate_dim
464
+
465
+ for i in range_iter:
466
+ _processed_images = []
467
+ for img in images[i: i + batch_size]:
468
+ if isinstance(img, str):
469
+ if img.startswith('http'):
470
+ response = requests.get(img)
471
+ image = Image.open(BytesIO(response.content)).convert('RGB')
472
+ elif img.startswith('data:image/'):
473
+ image = self._decode_image_data(img).convert('RGB')
474
+ else:
475
+ image = Image.open(img).convert('RGB')
476
+ elif isinstance(img, Image.Image):
477
+ image = img.convert('RGB')
478
+ else:
479
+ raise ValueError('Unsupported image format')
480
+ _processed_images.append(image)
481
+
482
+ pixelvals = self.preprocess(_processed_images)
483
+ pixelvals = pixelvals.to(self.device)
484
+ embeddings = self.get_image_features(pixelvals)
485
+
486
+ if truncate_dim:
487
+ embeddings = self._truncate_embeddings(embeddings, truncate_dim)
488
+ if normalize_embeddings:
489
+ embeddings = f.normalize(embeddings, p=2, dim=1)
490
+ if convert_to_numpy:
491
+ embeddings = embeddings.cpu()
492
+
493
+ all_embeddings.extend(embeddings)
494
+
495
+ all_embeddings = [all_embeddings[idx] for idx in _inverse_permutation]
496
+
497
+ if convert_to_tensor:
498
+ all_embeddings = torch.stack(all_embeddings)
499
+ elif convert_to_numpy:
500
+ all_embeddings = np.asarray(
501
+ [emb.to(torch.float32).numpy() for emb in all_embeddings]
502
+ )
503
+
504
+ if _input_was_single_img:
505
+ all_embeddings = all_embeddings[0]
506
+
507
+ self.train(_is_training)
508
+ return all_embeddings
509
+
510
+ @torch.inference_mode()
511
+ def encode_text(
512
+ self,
513
+ sentences: Union[str, List[str]],
514
+ task: Optional[str] = None,
515
+ batch_size: int = 32,
516
+ show_progress_bar: Optional[bool] = None,
517
+ convert_to_numpy: bool = True,
518
+ convert_to_tensor: bool = False,
519
+ device: Optional[torch.device] = None,
520
+ normalize_embeddings: bool = True,
521
+ truncate_dim: Optional[int] = None,
522
+ **tokenizer_kwargs,
523
+ ) -> Union[List[torch.Tensor], np.ndarray, torch.Tensor]:
524
+ """
525
+ Computes text embeddings
526
+
527
+ Args:
528
+ sentences(`str` or `List[str]`):
529
+ Sentence or sentences to be encoded
530
+ task(`str`, *optional*, defaults to `None`):
531
+ Specifies the task for which the encoding is intended. If a `task` is
532
+ provided, a task-specific instruction is added to the beginning of each
533
+ sentence. If `task` is not provided, no instructions are added.
534
+ batch_size(`int`, *optional*, defaults to 32):
535
+ Batch size for the computation
536
+ show_progress_bar(`bool`, *optional*, defaults to None):
537
+ Show a progress bar when encoding sentences. If set to None, progress
538
+ bar is only shown when `logger.level == logging.INFO` or
539
+ `logger.level == logging.DEBUG`
540
+ convert_to_numpy(`bool`, *optional*, defaults to True):
541
+ If true, the output is a list of numpy vectors. Else, it is a list of
542
+ pytorch tensors
543
+ convert_to_tensor(`bool`, *optional*, defaults to False):
544
+ If true, you get one large tensor as return. Overwrites any setting
545
+ from convert_to_numpy
546
+ device(`torch.device`, *optional*, defaults to None):
547
+ Which torch.device to use for the computation
548
+ normalize_embeddings(`bool`, *optional*, defaults to True):
549
+ If set to true, returned vectors will have length 1. In that case,
550
+ the faster dot-product (util.dot_score) instead of cosine similarity
551
+ can be used
552
+ truncate_dim(`int`, *optional*, defaults to None):
553
+ The dimension to truncate sentence embeddings to. If set to `None`
554
+ no truncation is performed
555
+ tokenizer_kwargs(`Dict[str, Any]`, *optional*, defaults to {}):
556
+ Keyword arguments for the tokenizer
557
+ Returns:
558
+ By default, a list of tensors is returned. If convert_to_tensor, a stacked
559
+ tensor is returned. If convert_to_numpy, a numpy matrix is returned.
560
+ """
561
+ _is_training = self.training
562
+ self.eval()
563
+
564
+ all_embeddings = []
565
+ self.tokenizer = self.get_tokenizer()
566
+
567
+ if show_progress_bar is None:
568
+ show_progress_bar = (
569
+ logger.getEffectiveLevel() == logging.INFO
570
+ or logger.getEffectiveLevel() == logging.DEBUG
571
+ )
572
+ if convert_to_tensor:
573
+ convert_to_numpy = False
574
+
575
+ _input_was_string = False
576
+ if isinstance(sentences, str) or not hasattr(sentences, '__len__'):
577
+ sentences = [sentences]
578
+ _input_was_string = True
579
+
580
+ if device is not None:
581
+ self.to(device)
582
+
583
+ _permutation = np.argsort([-len(i) for i in sentences])
584
+ _inverse_permutation = np.argsort(_permutation)
585
+ sentences = [sentences[idx] for idx in _permutation]
586
+
587
+ tokenizer_kwargs['padding'] = tokenizer_kwargs.get('padding', True)
588
+ tokenizer_kwargs['max_length'] = tokenizer_kwargs.get('max_length', 512)
589
+ tokenizer_kwargs['truncation'] = tokenizer_kwargs.get('truncation', True)
590
+
591
+ if has_tqdm:
592
+ range_iter = trange(
593
+ 0,
594
+ len(sentences),
595
+ batch_size,
596
+ desc='Encoding',
597
+ disable=not show_progress_bar,
598
+ )
599
+ else:
600
+ range_iter = range(0, len(sentences), batch_size)
601
+
602
+ truncate_dim = truncate_dim or self.config.truncate_dim
603
+
604
+ instruction = self.text_model.get_instruction_from_task(task)
605
+ if instruction:
606
+ sentences = [instruction + sentence for sentence in sentences]
607
+
608
+ for i in range_iter:
609
+ tokens = self.tokenizer(
610
+ sentences[i: i + batch_size],
611
+ return_tensors='pt',
612
+ **tokenizer_kwargs,
613
+ ).to(self.device)
614
+ embeddings = self.get_text_features(input_ids=tokens)
615
+ if truncate_dim:
616
+ embeddings = self._truncate_embeddings(embeddings, truncate_dim)
617
+ if normalize_embeddings:
618
+ embeddings = f.normalize(embeddings, p=2, dim=1)
619
+ if convert_to_numpy:
620
+ embeddings = embeddings.cpu()
621
+ all_embeddings.extend(embeddings)
622
+
623
+ all_embeddings = [all_embeddings[idx] for idx in _inverse_permutation]
624
+
625
+ if convert_to_tensor:
626
+ all_embeddings = torch.stack(all_embeddings)
627
+ elif convert_to_numpy:
628
+ all_embeddings = np.asarray(
629
+ [emb.to(torch.float32).numpy() for emb in all_embeddings]
630
+ )
631
+ if _input_was_string:
632
+ all_embeddings = all_embeddings[0]
633
+
634
+ self.train(_is_training)
635
+ return all_embeddings
636
+
637
+ def forward(
638
+ self,
639
+ input_ids: Union[None, torch.Tensor, BatchEncoding] = None,
640
+ pixel_values: Union[None, torch.FloatTensor, BatchFeature] = None,
641
+ return_dict: Optional[bool] = None,
642
+ return_loss: Optional[bool] = None,
643
+ *_,
644
+ **__,
645
+ ) -> Union[Tuple[Optional[torch.FloatTensor], ...], CLIPOutput]:
646
+ return_dict = (
647
+ return_dict if return_dict is not None else self.config.use_return_dict
648
+ )
649
+ image_embeds = self.get_image_features(pixel_values=pixel_values)
650
+ text_embeds = self.get_text_features(input_ids=input_ids)
651
+
652
+ # normalized features
653
+ image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True)
654
+ text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
655
+
656
+ # cosine similarity as logits
657
+ logit_scale = self.logit_scale.exp()
658
+ logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale
659
+ logits_per_image = logits_per_text.t()
660
+
661
+ loss = None
662
+ if return_loss:
663
+ loss = clip_loss(logits_per_text)
664
+
665
+ if not return_dict:
666
+ output = (
667
+ logits_per_image,
668
+ logits_per_text,
669
+ text_embeds,
670
+ image_embeds,
671
+ None,
672
+ None,
673
+ )
674
+ return ((loss,) + output) if loss is not None else output
675
+
676
+ return CLIPOutput(
677
+ loss=loss,
678
+ logits_per_image=logits_per_image,
679
+ logits_per_text=logits_per_text,
680
+ text_embeds=text_embeds,
681
+ image_embeds=image_embeds,
682
+ text_model_output=None,
683
+ vision_model_output=None,
684
+ )
clip_model/rope_embeddings.py ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # Adapted from EVA CLIP
3
+ # https://github.com/baaivision/EVA/tree/master/EVA-CLIP/rei/eva_clip
4
+ # --------------------------------------------------------
5
+
6
+ from math import pi
7
+
8
+ import torch
9
+ from einops import rearrange, repeat
10
+ from torch import nn
11
+
12
+
13
+ def broadcast(tensors, dim=-1):
14
+ num_tensors = len(tensors)
15
+ shape_lens = set(list(map(lambda t: len(t.shape), tensors)))
16
+ assert len(shape_lens) == 1, 'tensors must all have the same number of dimensions'
17
+ shape_len = list(shape_lens)[0]
18
+ dim = (dim + shape_len) if dim < 0 else dim
19
+ dims = list(zip(*map(lambda t: list(t.shape), tensors)))
20
+ expandable_dims = [(i, val) for i, val in enumerate(dims) if i != dim]
21
+ assert all(
22
+ [*map(lambda t: len(set(t[1])) <= 2, expandable_dims)]
23
+ ), 'invalid dimensions for broadcastable concatentation'
24
+ max_dims = list(map(lambda t: (t[0], max(t[1])), expandable_dims))
25
+ expanded_dims = list(map(lambda t: (t[0], (t[1],) * num_tensors), max_dims))
26
+ expanded_dims.insert(dim, (dim, dims[dim]))
27
+ expandable_shapes = list(zip(*map(lambda t: t[1], expanded_dims)))
28
+ tensors = list(map(lambda t: t[0].expand(*t[1]), zip(tensors, expandable_shapes)))
29
+ return torch.cat(tensors, dim=dim)
30
+
31
+
32
+ def rotate_half(x):
33
+ x = rearrange(x, '... (d r) -> ... d r', r=2)
34
+ x1, x2 = x.unbind(dim=-1)
35
+ x = torch.stack((-x2, x1), dim=-1)
36
+ return rearrange(x, '... d r -> ... (d r)')
37
+
38
+
39
+ class VisionRotaryEmbedding(nn.Module):
40
+ def __init__(
41
+ self,
42
+ dim,
43
+ pt_seq_len,
44
+ ft_seq_len=None,
45
+ custom_freqs=None,
46
+ freqs_for='lang',
47
+ theta=10000,
48
+ max_freq=10,
49
+ num_freqs=1,
50
+ ):
51
+ super().__init__()
52
+ if custom_freqs:
53
+ freqs = custom_freqs
54
+ elif freqs_for == 'lang':
55
+ freqs = 1.0 / (
56
+ theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)
57
+ )
58
+ elif freqs_for == 'pixel':
59
+ freqs = torch.linspace(1.0, max_freq / 2, dim // 2) * pi
60
+ elif freqs_for == 'constant':
61
+ freqs = torch.ones(num_freqs).float()
62
+ else:
63
+ raise ValueError(f'unknown modality {freqs_for}')
64
+
65
+ if ft_seq_len is None:
66
+ ft_seq_len = pt_seq_len
67
+ t = torch.arange(ft_seq_len) / ft_seq_len * pt_seq_len
68
+
69
+ freqs_h = torch.einsum('..., f -> ... f', t, freqs)
70
+ freqs_h = repeat(freqs_h, '... n -> ... (n r)', r=2)
71
+
72
+ freqs_w = torch.einsum('..., f -> ... f', t, freqs)
73
+ freqs_w = repeat(freqs_w, '... n -> ... (n r)', r=2)
74
+
75
+ freqs = broadcast((freqs_h[:, None, :], freqs_w[None, :, :]), dim=-1)
76
+
77
+ self.register_buffer('freqs_cos', freqs.cos(), persistent=False)
78
+ self.register_buffer('freqs_sin', freqs.sin(), persistent=False)
79
+
80
+ def forward(self, t, start_index=0):
81
+ rot_dim = self.freqs_cos.shape[-1]
82
+ end_index = start_index + rot_dim
83
+ assert rot_dim <= t.shape[-1], (
84
+ f'feature dimension {t.shape[-1]} is not of sufficient size to rotate in '
85
+ f'all the positions {rot_dim}'
86
+ )
87
+ t_left, t, t_right = (
88
+ t[..., :start_index],
89
+ t[..., start_index:end_index],
90
+ t[..., end_index:],
91
+ )
92
+ t = (t * self.freqs_cos) + (rotate_half(t) * self.freqs_sin)
93
+
94
+ return torch.cat((t_left, t, t_right), dim=-1)
95
+
96
+
97
+ class VisionRotaryEmbeddingFast(nn.Module):
98
+ def __init__(
99
+ self,
100
+ dim,
101
+ pt_seq_len,
102
+ ft_seq_len=None,
103
+ custom_freqs=None,
104
+ freqs_for='lang',
105
+ theta=10000,
106
+ max_freq=10,
107
+ num_freqs=1,
108
+ patch_dropout=0.0,
109
+ ):
110
+ super().__init__()
111
+ if custom_freqs:
112
+ freqs = custom_freqs
113
+ elif freqs_for == 'lang':
114
+ freqs = 1.0 / (
115
+ theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)
116
+ )
117
+ elif freqs_for == 'pixel':
118
+ freqs = torch.linspace(1.0, max_freq / 2, dim // 2) * pi
119
+ elif freqs_for == 'constant':
120
+ freqs = torch.ones(num_freqs).float()
121
+ else:
122
+ raise ValueError(f'unknown modality {freqs_for}')
123
+
124
+ if ft_seq_len is None:
125
+ ft_seq_len = pt_seq_len
126
+ t = torch.arange(ft_seq_len) / ft_seq_len * pt_seq_len
127
+
128
+ freqs = torch.einsum('..., f -> ... f', t, freqs)
129
+ freqs = repeat(freqs, '... n -> ... (n r)', r=2)
130
+ freqs = broadcast((freqs[:, None, :], freqs[None, :, :]), dim=-1)
131
+
132
+ freqs_cos = freqs.cos().view(-1, freqs.shape[-1])
133
+ freqs_sin = freqs.sin().view(-1, freqs.shape[-1])
134
+
135
+ self.patch_dropout = patch_dropout
136
+
137
+ self.register_buffer('freqs_cos', freqs_cos, persistent=False)
138
+ self.register_buffer('freqs_sin', freqs_sin, persistent=False)
139
+
140
+ def forward(self, t, patch_indices_keep=None):
141
+ if patch_indices_keep is not None:
142
+ batch = t.size()[0]
143
+ batch_indices = torch.arange(batch)
144
+ batch_indices = batch_indices[..., None]
145
+
146
+ freqs_cos = repeat(
147
+ self.freqs_cos, 'i j -> n i m j', n=t.shape[0], m=t.shape[1]
148
+ )
149
+ freqs_sin = repeat(
150
+ self.freqs_sin, 'i j -> n i m j', n=t.shape[0], m=t.shape[1]
151
+ )
152
+
153
+ freqs_cos = freqs_cos[batch_indices, patch_indices_keep]
154
+ freqs_cos = rearrange(freqs_cos, 'n i m j -> n m i j')
155
+ freqs_sin = freqs_sin[batch_indices, patch_indices_keep]
156
+ freqs_sin = rearrange(freqs_sin, 'n i m j -> n m i j')
157
+
158
+ return t * freqs_cos + rotate_half(t) * freqs_sin
159
+
160
+ return t * self.freqs_cos + rotate_half(t) * self.freqs_sin
clip_model/special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
clip_model/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6601c4120779a1a3863897ba332fe3481d548e363bec2c91eba10ef8640a5e93
3
+ size 17082997
clip_model/tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "extra_special_tokens": {},
49
+ "mask_token": "<mask>",
50
+ "max_length": 77,
51
+ "model_max_length": 8194,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "<pad>",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "</s>",
57
+ "stride": 0,
58
+ "tokenizer_class": "XLMRobertaTokenizerFast",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "<unk>"
62
+ }
clip_model/transform.py ADDED
@@ -0,0 +1,374 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import random
2
+ import warnings
3
+ from dataclasses import asdict, dataclass
4
+ from typing import Any, Dict, List, Optional, Sequence, Tuple, Union
5
+
6
+ import torch
7
+ import torchvision.transforms.functional as f
8
+ from torchvision.transforms import (
9
+ CenterCrop,
10
+ ColorJitter,
11
+ Compose,
12
+ Grayscale,
13
+ InterpolationMode,
14
+ Normalize,
15
+ RandomResizedCrop,
16
+ Resize,
17
+ ToTensor,
18
+ )
19
+ from transformers.image_utils import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
20
+
21
+ OPENAI_DATASET_MEAN = tuple(OPENAI_CLIP_MEAN)
22
+ OPENAI_DATASET_STD = tuple(OPENAI_CLIP_STD)
23
+
24
+
25
+ def _setup_size(size, error_msg):
26
+ if isinstance(size, int):
27
+ return size, size
28
+ if isinstance(size, Sequence) and len(size) == 1:
29
+ return size[0], size[0]
30
+ if len(size) != 2:
31
+ raise ValueError(error_msg)
32
+ return size
33
+
34
+
35
+ def _center_crop_or_pad(
36
+ img: torch.Tensor,
37
+ output_size: Union[int, Tuple[int, ...], List[int]],
38
+ fill: Union[int, Tuple[int]] = 0,
39
+ ) -> torch.Tensor:
40
+ """
41
+ Center crops and/or pads the given image. If the image is torch Tensor, it is
42
+ expected to have [..., H, W] shape, where ... means an arbitrary number of leading
43
+ dimensions. If image size is smaller than output size along any edge, image is
44
+ padded with 0 and then center cropped.
45
+ """
46
+ if isinstance(output_size, int):
47
+ output_size = (output_size, output_size)
48
+ elif isinstance(output_size, (tuple, list)) and len(output_size) == 1:
49
+ output_size = (output_size[0], output_size[0])
50
+
51
+ _, image_height, image_width = f.get_dimensions(img)
52
+ crop_height, crop_width = output_size
53
+
54
+ if crop_width > image_width or crop_height > image_height:
55
+ padding_ltrb = [
56
+ (crop_width - image_width) // 2 if crop_width > image_width else 0,
57
+ (crop_height - image_height) // 2 if crop_height > image_height else 0,
58
+ (crop_width - image_width + 1) // 2 if crop_width > image_width else 0,
59
+ (crop_height - image_height + 1) // 2 if crop_height > image_height else 0,
60
+ ]
61
+ img = f.pad(img, padding_ltrb, fill=fill)
62
+ _, image_height, image_width = f.get_dimensions(img)
63
+ if crop_width == image_width and crop_height == image_height:
64
+ return img
65
+
66
+ crop_top = int(round((image_height - crop_height) / 2.0))
67
+ crop_left = int(round((image_width - crop_width) / 2.0))
68
+ return f.crop(img, crop_top, crop_left, crop_height, crop_width)
69
+
70
+
71
+ class _CenterCropOrPad(torch.nn.Module):
72
+ """Crops the given image at the center.
73
+ If the image is torch Tensor, it is expected
74
+ to have [..., H, W] shape, where ... means an arbitrary number of leading
75
+ dimensions. If image size is smaller than output size along any edge, image is
76
+ padded with 0 and then center cropped.
77
+
78
+ Args:
79
+ size (sequence or int): Desired output size of the crop. If size is an
80
+ int instead of sequence like (h, w), a square crop (size, size) is
81
+ made. If provided a sequence of length 1, it will be interpreted as
82
+ (size[0], size[0]).
83
+ """
84
+
85
+ def __init__(self, size, fill=0):
86
+ super().__init__()
87
+ self.size = _setup_size(
88
+ size, error_msg='Please provide only two dimensions (h, w) for size.'
89
+ )
90
+ self.fill = fill
91
+
92
+ def forward(self, img):
93
+ """
94
+ Args:
95
+ img (PIL Image or Tensor): Image to be cropped.
96
+
97
+ Returns:
98
+ PIL Image or Tensor: Cropped image.
99
+ """
100
+ return _center_crop_or_pad(img, self.size, fill=self.fill)
101
+
102
+ def __repr__(self) -> str:
103
+ return f'{self.__class__.__name__}(size={self.size})'
104
+
105
+
106
+ def _convert_to_rgb(image):
107
+ return image.convert('RGB')
108
+
109
+
110
+ class _ResizeKeepRatio:
111
+ """Resize while keeping ratio. Copied from timm"""
112
+
113
+ def __init__(
114
+ self,
115
+ size,
116
+ longest=0.0,
117
+ interpolation=InterpolationMode.BICUBIC,
118
+ random_scale_prob=0.0,
119
+ random_scale_range=(0.85, 1.05),
120
+ random_aspect_prob=0.0,
121
+ random_aspect_range=(0.9, 1.11),
122
+ ):
123
+ if isinstance(size, (list, tuple)):
124
+ self.size = tuple(size)
125
+ else:
126
+ self.size = (size, size)
127
+ self.interpolation = interpolation
128
+ self.longest = float(longest) # [0, 1] where 0 == shortest edge, 1 == longest
129
+ self.random_scale_prob = random_scale_prob
130
+ self.random_scale_range = random_scale_range
131
+ self.random_aspect_prob = random_aspect_prob
132
+ self.random_aspect_range = random_aspect_range
133
+
134
+ @staticmethod
135
+ def get_params(
136
+ img,
137
+ target_size,
138
+ longest,
139
+ random_scale_prob=0.0,
140
+ random_scale_range=(0.85, 1.05),
141
+ random_aspect_prob=0.0,
142
+ random_aspect_range=(0.9, 1.11),
143
+ ):
144
+ """Get parameters"""
145
+ source_size = img.size[::-1] # h, w
146
+ h, w = source_size
147
+ target_h, target_w = target_size
148
+ ratio_h = h / target_h
149
+ ratio_w = w / target_w
150
+ ratio = max(ratio_h, ratio_w) * longest + min(ratio_h, ratio_w) * (
151
+ 1.0 - longest
152
+ )
153
+ if random_scale_prob > 0 and random.random() < random_scale_prob:
154
+ ratio_factor = random.uniform(random_scale_range[0], random_scale_range[1])
155
+ ratio_factor = (ratio_factor, ratio_factor)
156
+ else:
157
+ ratio_factor = (1.0, 1.0)
158
+ if random_aspect_prob > 0 and random.random() < random_aspect_prob:
159
+ aspect_factor = random.uniform(
160
+ random_aspect_range[0], random_aspect_range[1]
161
+ )
162
+ ratio_factor = (
163
+ ratio_factor[0] / aspect_factor,
164
+ ratio_factor[1] * aspect_factor,
165
+ )
166
+ return [
167
+ round(x * factor / ratio) for x, factor in zip(source_size, ratio_factor)
168
+ ]
169
+
170
+ def __call__(self, img):
171
+ """
172
+ Args:
173
+ img (PIL Image): Image to be cropped and resized.
174
+
175
+ Returns:
176
+ PIL Image: Resized, padded to at least target size, possibly
177
+ cropped to exactly target size
178
+ """
179
+ size = self.get_params(
180
+ img,
181
+ self.size,
182
+ self.longest,
183
+ self.random_scale_prob,
184
+ self.random_scale_range,
185
+ self.random_aspect_prob,
186
+ self.random_aspect_range,
187
+ )
188
+ img = f.resize(img, size, self.interpolation)
189
+ return img
190
+
191
+ def __repr__(self):
192
+ format_string = self.__class__.__name__ + '(size={0}'.format(self.size)
193
+ format_string += f', interpolation={self.interpolation})'
194
+ format_string += f', longest={self.longest:.3f})'
195
+ return format_string
196
+
197
+
198
+ class _ColorJitter(object):
199
+ """Apply color jitter to the PIL image with a specified probability"""
200
+
201
+ def __init__(self, brightness=0.0, contrast=0.0, saturation=0.0, hue=0.0, p=0.8):
202
+ assert 0.0 <= p <= 1.0
203
+ self.p = p
204
+ self.transf = ColorJitter(
205
+ brightness=brightness, contrast=contrast, saturation=saturation, hue=hue
206
+ )
207
+
208
+ def __call__(self, img):
209
+ if random.random() < self.p:
210
+ return self.transf(img)
211
+ else:
212
+ return img
213
+
214
+
215
+ class _GrayScale(object):
216
+ """Apply gray scale to the PIL image with a specified probability"""
217
+
218
+ def __init__(self, p=0.2):
219
+ assert 0.0 <= p <= 1.0
220
+ self.p = p
221
+ self.transf = Grayscale(num_output_channels=3)
222
+
223
+ def __call__(self, img):
224
+ if random.random() < self.p:
225
+ return self.transf(img)
226
+ else:
227
+ return img
228
+
229
+
230
+ @dataclass
231
+ class AugmentationCfg:
232
+ scale: Tuple[float, float] = (0.9, 1.0)
233
+ ratio: Optional[Tuple[float, float]] = None
234
+ color_jitter: Optional[
235
+ Union[float, Tuple[float, float, float], Tuple[float, float, float, float]]
236
+ ] = None
237
+ re_prob: Optional[float] = None
238
+ re_count: Optional[int] = None
239
+ use_timm: bool = False
240
+ color_jitter_prob: float = None
241
+ gray_scale_prob: float = None
242
+
243
+
244
+ def image_transform(
245
+ image_size: Union[int, Tuple[int, int]],
246
+ is_train: bool,
247
+ mean: Optional[Tuple[float, ...]] = None,
248
+ std: Optional[Tuple[float, ...]] = None,
249
+ resize_mode: Optional[str] = None,
250
+ interpolation: Optional[str] = None,
251
+ fill_color: int = 0,
252
+ aug_cfg: Optional[Union[Dict[str, Any], AugmentationCfg]] = None,
253
+ ):
254
+ mean = mean or OPENAI_DATASET_MEAN
255
+ if not isinstance(mean, (list, tuple)):
256
+ mean = (mean,) * 3
257
+
258
+ std = std or OPENAI_DATASET_STD
259
+ if not isinstance(std, (list, tuple)):
260
+ std = (std,) * 3
261
+
262
+ interpolation = interpolation or 'bicubic'
263
+ assert interpolation in ['bicubic', 'bilinear', 'random']
264
+ # NOTE random is ignored for interpolation_mode, so defaults to BICUBIC for
265
+ # inference if set
266
+ interpolation_mode = (
267
+ InterpolationMode.BILINEAR
268
+ if interpolation == 'bilinear'
269
+ else InterpolationMode.BICUBIC
270
+ )
271
+
272
+ resize_mode = resize_mode or 'shortest'
273
+ assert resize_mode in ('shortest', 'longest', 'squash')
274
+
275
+ if isinstance(aug_cfg, dict):
276
+ aug_cfg = AugmentationCfg(**aug_cfg)
277
+ else:
278
+ aug_cfg = aug_cfg or AugmentationCfg()
279
+
280
+ normalize = Normalize(mean=mean, std=std)
281
+
282
+ if is_train:
283
+ aug_cfg_dict = {k: v for k, v in asdict(aug_cfg).items() if v is not None}
284
+ use_timm = aug_cfg_dict.pop('use_timm', False)
285
+ if use_timm:
286
+ from timm.data import create_transform # timm can still be optional
287
+
288
+ if isinstance(image_size, (tuple, list)):
289
+ assert len(image_size) >= 2
290
+ input_size = (3,) + image_size[-2:]
291
+ else:
292
+ input_size = (3, image_size, image_size)
293
+
294
+ aug_cfg_dict.setdefault('color_jitter', None) # disable by default
295
+ # drop extra non-timm items
296
+ aug_cfg_dict.pop('color_jitter_prob', None)
297
+ aug_cfg_dict.pop('gray_scale_prob', None)
298
+
299
+ train_transform = create_transform(
300
+ input_size=input_size,
301
+ is_training=True,
302
+ hflip=0.0,
303
+ mean=mean,
304
+ std=std,
305
+ re_mode='pixel',
306
+ interpolation=interpolation,
307
+ **aug_cfg_dict,
308
+ )
309
+ else:
310
+ train_transform = [
311
+ RandomResizedCrop(
312
+ image_size,
313
+ scale=aug_cfg_dict.pop('scale'),
314
+ interpolation=InterpolationMode.BICUBIC,
315
+ ),
316
+ _convert_to_rgb,
317
+ ]
318
+ if aug_cfg.color_jitter_prob:
319
+ assert (
320
+ aug_cfg.color_jitter is not None and len(aug_cfg.color_jitter) == 4
321
+ )
322
+ train_transform.extend(
323
+ [_ColorJitter(*aug_cfg.color_jitter, p=aug_cfg.color_jitter_prob)]
324
+ )
325
+ if aug_cfg.gray_scale_prob:
326
+ train_transform.extend([_GrayScale(aug_cfg.gray_scale_prob)])
327
+ train_transform.extend(
328
+ [
329
+ ToTensor(),
330
+ normalize,
331
+ ]
332
+ )
333
+ train_transform = Compose(train_transform)
334
+ if aug_cfg_dict:
335
+ warnings.warn(
336
+ f'Unused augmentation cfg items, specify `use_timm` to use '
337
+ f'({list(aug_cfg_dict.keys())}).'
338
+ )
339
+ return train_transform
340
+ else:
341
+ if resize_mode == 'longest':
342
+ transforms = [
343
+ _ResizeKeepRatio(
344
+ image_size, interpolation=interpolation_mode, longest=1
345
+ ),
346
+ _CenterCropOrPad(image_size, fill=fill_color),
347
+ ]
348
+ elif resize_mode == 'squash':
349
+ if isinstance(image_size, int):
350
+ image_size = (image_size, image_size)
351
+ transforms = [
352
+ Resize(image_size, interpolation=interpolation_mode),
353
+ ]
354
+ else:
355
+ assert resize_mode == 'shortest'
356
+ if not isinstance(image_size, (tuple, list)):
357
+ image_size = (image_size, image_size)
358
+ if image_size[0] == image_size[1]:
359
+ # simple case, use torchvision built-in Resize w/ shortest edge mode
360
+ # (scalar size arg)
361
+ transforms = [Resize(image_size[0], interpolation=interpolation_mode)]
362
+ else:
363
+ # resize shortest edge to matching target dim for non-square target
364
+ transforms = [_ResizeKeepRatio(image_size)]
365
+ transforms += [CenterCrop(image_size)]
366
+
367
+ transforms.extend(
368
+ [
369
+ _convert_to_rgb,
370
+ ToTensor(),
371
+ normalize,
372
+ ]
373
+ )
374
+ return Compose(transforms)
model_index.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_class_name": "NewbiePipeline",
3
+ "_diffusers_version": "0.30.0",
4
+ "transformer": [
5
+ "transformer",
6
+ "NextDiT_3B_GQA_patch2_Adaln_Refiner_WHIT_CLIP"
7
+ ],
8
+ "text_encoder": [
9
+ "text_encoder",
10
+ "Gemma3ForConditionalGeneration"
11
+ ],
12
+ "tokenizer": [
13
+ "text_encoder",
14
+ "AutoTokenizer"
15
+ ],
16
+ "clip_model": [
17
+ "clip_model",
18
+ "JinaCLIPModel"
19
+ ],
20
+ "clip_tokenizer": [
21
+ "clip_model",
22
+ "AutoTokenizer"
23
+ ],
24
+ "vae": [
25
+ "vae",
26
+ "AutoencoderKL"
27
+ ]
28
+ }
text_encoder/added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "<image_soft_token>": 262144
3
+ }
text_encoder/chat_template.jinja ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {{ bos_token }}
2
+ {%- if messages[0]['role'] == 'system' -%}
3
+ {%- if messages[0]['content'] is string -%}
4
+ {%- set first_user_prefix = messages[0]['content'] + '
5
+
6
+ ' -%}
7
+ {%- else -%}
8
+ {%- set first_user_prefix = messages[0]['content'][0]['text'] + '
9
+
10
+ ' -%}
11
+ {%- endif -%}
12
+ {%- set loop_messages = messages[1:] -%}
13
+ {%- else -%}
14
+ {%- set first_user_prefix = "" -%}
15
+ {%- set loop_messages = messages -%}
16
+ {%- endif -%}
17
+ {%- for message in loop_messages -%}
18
+ {%- if (message['role'] == 'user') != (loop.index0 % 2 == 0) -%}
19
+ {{ raise_exception("Conversation roles must alternate user/assistant/user/assistant/...") }}
20
+ {%- endif -%}
21
+ {%- if (message['role'] == 'assistant') -%}
22
+ {%- set role = "model" -%}
23
+ {%- else -%}
24
+ {%- set role = message['role'] -%}
25
+ {%- endif -%}
26
+ {{ '<start_of_turn>' + role + '
27
+ ' + (first_user_prefix if loop.first else "") }}
28
+ {%- if message['content'] is string -%}
29
+ {{ message['content'] | trim }}
30
+ {%- elif message['content'] is iterable -%}
31
+ {%- for item in message['content'] -%}
32
+ {%- if item['type'] == 'image' -%}
33
+ {{ '<start_of_image>' }}
34
+ {%- elif item['type'] == 'text' -%}
35
+ {{ item['text'] | trim }}
36
+ {%- endif -%}
37
+ {%- endfor -%}
38
+ {%- else -%}
39
+ {{ raise_exception("Invalid content type") }}
40
+ {%- endif -%}
41
+ {{ '<end_of_turn>
42
+ ' }}
43
+ {%- endfor -%}
44
+ {%- if add_generation_prompt -%}
45
+ {{'<start_of_turn>model
46
+ '}}
47
+ {%- endif -%}
text_encoder/config.json ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Gemma3Model"
4
+ ],
5
+ "boi_token_index": 255999,
6
+ "dtype": "bfloat16",
7
+ "eoi_token_index": 256000,
8
+ "eos_token_id": [
9
+ 1,
10
+ 106
11
+ ],
12
+ "image_token_index": 262144,
13
+ "initializer_range": 0.02,
14
+ "mm_tokens_per_image": 256,
15
+ "model_type": "gemma3",
16
+ "text_config": {
17
+ "_sliding_window_pattern": 6,
18
+ "attention_bias": false,
19
+ "attention_dropout": 0.0,
20
+ "attn_logit_softcapping": null,
21
+ "dtype": "bfloat16",
22
+ "final_logit_softcapping": null,
23
+ "head_dim": 256,
24
+ "hidden_activation": "gelu_pytorch_tanh",
25
+ "hidden_size": 2560,
26
+ "initializer_range": 0.02,
27
+ "intermediate_size": 10240,
28
+ "layer_types": [
29
+ "sliding_attention",
30
+ "sliding_attention",
31
+ "sliding_attention",
32
+ "sliding_attention",
33
+ "sliding_attention",
34
+ "full_attention",
35
+ "sliding_attention",
36
+ "sliding_attention",
37
+ "sliding_attention",
38
+ "sliding_attention",
39
+ "sliding_attention",
40
+ "full_attention",
41
+ "sliding_attention",
42
+ "sliding_attention",
43
+ "sliding_attention",
44
+ "sliding_attention",
45
+ "sliding_attention",
46
+ "full_attention",
47
+ "sliding_attention",
48
+ "sliding_attention",
49
+ "sliding_attention",
50
+ "sliding_attention",
51
+ "sliding_attention",
52
+ "full_attention",
53
+ "sliding_attention",
54
+ "sliding_attention",
55
+ "sliding_attention",
56
+ "sliding_attention",
57
+ "sliding_attention",
58
+ "full_attention",
59
+ "sliding_attention",
60
+ "sliding_attention",
61
+ "sliding_attention",
62
+ "sliding_attention"
63
+ ],
64
+ "max_position_embeddings": 131072,
65
+ "model_type": "gemma3_text",
66
+ "num_attention_heads": 8,
67
+ "num_hidden_layers": 34,
68
+ "num_key_value_heads": 4,
69
+ "query_pre_attn_scalar": 256,
70
+ "rms_norm_eps": 1e-06,
71
+ "rope_local_base_freq": 10000.0,
72
+ "rope_scaling": {
73
+ "factor": 8.0,
74
+ "rope_type": "linear"
75
+ },
76
+ "rope_theta": 1000000.0,
77
+ "sliding_window": 1024,
78
+ "use_bidirectional_attention": false,
79
+ "use_cache": true,
80
+ "vocab_size": 262208
81
+ },
82
+ "transformers_version": "4.57.3",
83
+ "vision_config": {
84
+ "attention_dropout": 0.0,
85
+ "dtype": "bfloat16",
86
+ "hidden_act": "gelu_pytorch_tanh",
87
+ "hidden_size": 1152,
88
+ "image_size": 896,
89
+ "intermediate_size": 4304,
90
+ "layer_norm_eps": 1e-06,
91
+ "model_type": "siglip_vision_model",
92
+ "num_attention_heads": 16,
93
+ "num_channels": 3,
94
+ "num_hidden_layers": 27,
95
+ "patch_size": 14,
96
+ "vision_use_head": false
97
+ }
98
+ }
text_encoder/model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eb5fd5e97ddd07b56778733e9653c07312529cb00980a318fc3e1c4e3b5a8f1f
3
+ size 4961251752
text_encoder/model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fdde0e5aa5ced0fa203b3d50f4ab78168b7e3a3e08c6349f5cc9326666e1bb13
3
+ size 3639026128
text_encoder/model.safetensors.index.json ADDED
@@ -0,0 +1,891 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_parameters": 4300079472,
4
+ "total_size": 8600158944
5
+ },
6
+ "weight_map": {
7
+ "language_model.model.embed_tokens.weight": "model-00001-of-00002.safetensors",
8
+ "language_model.model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
9
+ "language_model.model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
10
+ "language_model.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
11
+ "language_model.model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
12
+ "language_model.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
13
+ "language_model.model.layers.0.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
14
+ "language_model.model.layers.0.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
15
+ "language_model.model.layers.0.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
16
+ "language_model.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
17
+ "language_model.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
18
+ "language_model.model.layers.0.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
19
+ "language_model.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
20
+ "language_model.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
21
+ "language_model.model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
22
+ "language_model.model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
23
+ "language_model.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
24
+ "language_model.model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
25
+ "language_model.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
26
+ "language_model.model.layers.1.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
27
+ "language_model.model.layers.1.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
28
+ "language_model.model.layers.1.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
29
+ "language_model.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
30
+ "language_model.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
31
+ "language_model.model.layers.1.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
32
+ "language_model.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
33
+ "language_model.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
34
+ "language_model.model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
35
+ "language_model.model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
36
+ "language_model.model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
37
+ "language_model.model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
38
+ "language_model.model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
39
+ "language_model.model.layers.10.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
40
+ "language_model.model.layers.10.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
41
+ "language_model.model.layers.10.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
42
+ "language_model.model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
43
+ "language_model.model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
44
+ "language_model.model.layers.10.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
45
+ "language_model.model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
46
+ "language_model.model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
47
+ "language_model.model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
48
+ "language_model.model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
49
+ "language_model.model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
50
+ "language_model.model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
51
+ "language_model.model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
52
+ "language_model.model.layers.11.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
53
+ "language_model.model.layers.11.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
54
+ "language_model.model.layers.11.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
55
+ "language_model.model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
56
+ "language_model.model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
57
+ "language_model.model.layers.11.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
58
+ "language_model.model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
59
+ "language_model.model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
60
+ "language_model.model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
61
+ "language_model.model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
62
+ "language_model.model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
63
+ "language_model.model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
64
+ "language_model.model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
65
+ "language_model.model.layers.12.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
66
+ "language_model.model.layers.12.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
67
+ "language_model.model.layers.12.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
68
+ "language_model.model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
69
+ "language_model.model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
70
+ "language_model.model.layers.12.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
71
+ "language_model.model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
72
+ "language_model.model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
73
+ "language_model.model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
74
+ "language_model.model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
75
+ "language_model.model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
76
+ "language_model.model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
77
+ "language_model.model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
78
+ "language_model.model.layers.13.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
79
+ "language_model.model.layers.13.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
80
+ "language_model.model.layers.13.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
81
+ "language_model.model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
82
+ "language_model.model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
83
+ "language_model.model.layers.13.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
84
+ "language_model.model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
85
+ "language_model.model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
86
+ "language_model.model.layers.14.input_layernorm.weight": "model-00002-of-00002.safetensors",
87
+ "language_model.model.layers.14.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
88
+ "language_model.model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
89
+ "language_model.model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
90
+ "language_model.model.layers.14.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
91
+ "language_model.model.layers.14.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
92
+ "language_model.model.layers.14.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
93
+ "language_model.model.layers.14.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
94
+ "language_model.model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
95
+ "language_model.model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
96
+ "language_model.model.layers.14.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
97
+ "language_model.model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
98
+ "language_model.model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
99
+ "language_model.model.layers.15.input_layernorm.weight": "model-00002-of-00002.safetensors",
100
+ "language_model.model.layers.15.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
101
+ "language_model.model.layers.15.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
102
+ "language_model.model.layers.15.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
103
+ "language_model.model.layers.15.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
104
+ "language_model.model.layers.15.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
105
+ "language_model.model.layers.15.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
106
+ "language_model.model.layers.15.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
107
+ "language_model.model.layers.15.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
108
+ "language_model.model.layers.15.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
109
+ "language_model.model.layers.15.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
110
+ "language_model.model.layers.15.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
111
+ "language_model.model.layers.15.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
112
+ "language_model.model.layers.16.input_layernorm.weight": "model-00002-of-00002.safetensors",
113
+ "language_model.model.layers.16.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
114
+ "language_model.model.layers.16.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
115
+ "language_model.model.layers.16.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
116
+ "language_model.model.layers.16.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
117
+ "language_model.model.layers.16.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
118
+ "language_model.model.layers.16.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
119
+ "language_model.model.layers.16.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
120
+ "language_model.model.layers.16.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
121
+ "language_model.model.layers.16.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
122
+ "language_model.model.layers.16.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
123
+ "language_model.model.layers.16.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
124
+ "language_model.model.layers.16.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
125
+ "language_model.model.layers.17.input_layernorm.weight": "model-00002-of-00002.safetensors",
126
+ "language_model.model.layers.17.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
127
+ "language_model.model.layers.17.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
128
+ "language_model.model.layers.17.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
129
+ "language_model.model.layers.17.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
130
+ "language_model.model.layers.17.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
131
+ "language_model.model.layers.17.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
132
+ "language_model.model.layers.17.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
133
+ "language_model.model.layers.17.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
134
+ "language_model.model.layers.17.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
135
+ "language_model.model.layers.17.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
136
+ "language_model.model.layers.17.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
137
+ "language_model.model.layers.17.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
138
+ "language_model.model.layers.18.input_layernorm.weight": "model-00002-of-00002.safetensors",
139
+ "language_model.model.layers.18.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
140
+ "language_model.model.layers.18.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
141
+ "language_model.model.layers.18.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
142
+ "language_model.model.layers.18.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
143
+ "language_model.model.layers.18.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
144
+ "language_model.model.layers.18.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
145
+ "language_model.model.layers.18.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
146
+ "language_model.model.layers.18.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
147
+ "language_model.model.layers.18.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
148
+ "language_model.model.layers.18.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
149
+ "language_model.model.layers.18.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
150
+ "language_model.model.layers.18.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
151
+ "language_model.model.layers.19.input_layernorm.weight": "model-00002-of-00002.safetensors",
152
+ "language_model.model.layers.19.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
153
+ "language_model.model.layers.19.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
154
+ "language_model.model.layers.19.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
155
+ "language_model.model.layers.19.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
156
+ "language_model.model.layers.19.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
157
+ "language_model.model.layers.19.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
158
+ "language_model.model.layers.19.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
159
+ "language_model.model.layers.19.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
160
+ "language_model.model.layers.19.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
161
+ "language_model.model.layers.19.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
162
+ "language_model.model.layers.19.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
163
+ "language_model.model.layers.19.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
164
+ "language_model.model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
165
+ "language_model.model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
166
+ "language_model.model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
167
+ "language_model.model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
168
+ "language_model.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
169
+ "language_model.model.layers.2.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
170
+ "language_model.model.layers.2.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
171
+ "language_model.model.layers.2.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
172
+ "language_model.model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
173
+ "language_model.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
174
+ "language_model.model.layers.2.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
175
+ "language_model.model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
176
+ "language_model.model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
177
+ "language_model.model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors",
178
+ "language_model.model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
179
+ "language_model.model.layers.20.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
180
+ "language_model.model.layers.20.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
181
+ "language_model.model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
182
+ "language_model.model.layers.20.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
183
+ "language_model.model.layers.20.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
184
+ "language_model.model.layers.20.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
185
+ "language_model.model.layers.20.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
186
+ "language_model.model.layers.20.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
187
+ "language_model.model.layers.20.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
188
+ "language_model.model.layers.20.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
189
+ "language_model.model.layers.20.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
190
+ "language_model.model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
191
+ "language_model.model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
192
+ "language_model.model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
193
+ "language_model.model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
194
+ "language_model.model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
195
+ "language_model.model.layers.21.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
196
+ "language_model.model.layers.21.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
197
+ "language_model.model.layers.21.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
198
+ "language_model.model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
199
+ "language_model.model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
200
+ "language_model.model.layers.21.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
201
+ "language_model.model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
202
+ "language_model.model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
203
+ "language_model.model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
204
+ "language_model.model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
205
+ "language_model.model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
206
+ "language_model.model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
207
+ "language_model.model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
208
+ "language_model.model.layers.22.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
209
+ "language_model.model.layers.22.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
210
+ "language_model.model.layers.22.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
211
+ "language_model.model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
212
+ "language_model.model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
213
+ "language_model.model.layers.22.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
214
+ "language_model.model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
215
+ "language_model.model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
216
+ "language_model.model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
217
+ "language_model.model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
218
+ "language_model.model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
219
+ "language_model.model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
220
+ "language_model.model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
221
+ "language_model.model.layers.23.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
222
+ "language_model.model.layers.23.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
223
+ "language_model.model.layers.23.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
224
+ "language_model.model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
225
+ "language_model.model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
226
+ "language_model.model.layers.23.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
227
+ "language_model.model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
228
+ "language_model.model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
229
+ "language_model.model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
230
+ "language_model.model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
231
+ "language_model.model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
232
+ "language_model.model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
233
+ "language_model.model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
234
+ "language_model.model.layers.24.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
235
+ "language_model.model.layers.24.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
236
+ "language_model.model.layers.24.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
237
+ "language_model.model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
238
+ "language_model.model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
239
+ "language_model.model.layers.24.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
240
+ "language_model.model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
241
+ "language_model.model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
242
+ "language_model.model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
243
+ "language_model.model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
244
+ "language_model.model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
245
+ "language_model.model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
246
+ "language_model.model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
247
+ "language_model.model.layers.25.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
248
+ "language_model.model.layers.25.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
249
+ "language_model.model.layers.25.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
250
+ "language_model.model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
251
+ "language_model.model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
252
+ "language_model.model.layers.25.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
253
+ "language_model.model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
254
+ "language_model.model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
255
+ "language_model.model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
256
+ "language_model.model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
257
+ "language_model.model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
258
+ "language_model.model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
259
+ "language_model.model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
260
+ "language_model.model.layers.26.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
261
+ "language_model.model.layers.26.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
262
+ "language_model.model.layers.26.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
263
+ "language_model.model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
264
+ "language_model.model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
265
+ "language_model.model.layers.26.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
266
+ "language_model.model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
267
+ "language_model.model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
268
+ "language_model.model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
269
+ "language_model.model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
270
+ "language_model.model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
271
+ "language_model.model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
272
+ "language_model.model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
273
+ "language_model.model.layers.27.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
274
+ "language_model.model.layers.27.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
275
+ "language_model.model.layers.27.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
276
+ "language_model.model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
277
+ "language_model.model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
278
+ "language_model.model.layers.27.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
279
+ "language_model.model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
280
+ "language_model.model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
281
+ "language_model.model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
282
+ "language_model.model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
283
+ "language_model.model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
284
+ "language_model.model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
285
+ "language_model.model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
286
+ "language_model.model.layers.28.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
287
+ "language_model.model.layers.28.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
288
+ "language_model.model.layers.28.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
289
+ "language_model.model.layers.28.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
290
+ "language_model.model.layers.28.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
291
+ "language_model.model.layers.28.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
292
+ "language_model.model.layers.28.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
293
+ "language_model.model.layers.28.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
294
+ "language_model.model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
295
+ "language_model.model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
296
+ "language_model.model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
297
+ "language_model.model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
298
+ "language_model.model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
299
+ "language_model.model.layers.29.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
300
+ "language_model.model.layers.29.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
301
+ "language_model.model.layers.29.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
302
+ "language_model.model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
303
+ "language_model.model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
304
+ "language_model.model.layers.29.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
305
+ "language_model.model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
306
+ "language_model.model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
307
+ "language_model.model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
308
+ "language_model.model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
309
+ "language_model.model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
310
+ "language_model.model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
311
+ "language_model.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
312
+ "language_model.model.layers.3.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
313
+ "language_model.model.layers.3.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
314
+ "language_model.model.layers.3.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
315
+ "language_model.model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
316
+ "language_model.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
317
+ "language_model.model.layers.3.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
318
+ "language_model.model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
319
+ "language_model.model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
320
+ "language_model.model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
321
+ "language_model.model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
322
+ "language_model.model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
323
+ "language_model.model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
324
+ "language_model.model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
325
+ "language_model.model.layers.30.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
326
+ "language_model.model.layers.30.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
327
+ "language_model.model.layers.30.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
328
+ "language_model.model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
329
+ "language_model.model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
330
+ "language_model.model.layers.30.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
331
+ "language_model.model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
332
+ "language_model.model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
333
+ "language_model.model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
334
+ "language_model.model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
335
+ "language_model.model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
336
+ "language_model.model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
337
+ "language_model.model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
338
+ "language_model.model.layers.31.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
339
+ "language_model.model.layers.31.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
340
+ "language_model.model.layers.31.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
341
+ "language_model.model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
342
+ "language_model.model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
343
+ "language_model.model.layers.31.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
344
+ "language_model.model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
345
+ "language_model.model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
346
+ "language_model.model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
347
+ "language_model.model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
348
+ "language_model.model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
349
+ "language_model.model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
350
+ "language_model.model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
351
+ "language_model.model.layers.32.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
352
+ "language_model.model.layers.32.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
353
+ "language_model.model.layers.32.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
354
+ "language_model.model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
355
+ "language_model.model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
356
+ "language_model.model.layers.32.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
357
+ "language_model.model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
358
+ "language_model.model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
359
+ "language_model.model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
360
+ "language_model.model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
361
+ "language_model.model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
362
+ "language_model.model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
363
+ "language_model.model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
364
+ "language_model.model.layers.33.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
365
+ "language_model.model.layers.33.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
366
+ "language_model.model.layers.33.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
367
+ "language_model.model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
368
+ "language_model.model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
369
+ "language_model.model.layers.33.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
370
+ "language_model.model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
371
+ "language_model.model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
372
+ "language_model.model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
373
+ "language_model.model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
374
+ "language_model.model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
375
+ "language_model.model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
376
+ "language_model.model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
377
+ "language_model.model.layers.4.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
378
+ "language_model.model.layers.4.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
379
+ "language_model.model.layers.4.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
380
+ "language_model.model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
381
+ "language_model.model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
382
+ "language_model.model.layers.4.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
383
+ "language_model.model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
384
+ "language_model.model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
385
+ "language_model.model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
386
+ "language_model.model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
387
+ "language_model.model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
388
+ "language_model.model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
389
+ "language_model.model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
390
+ "language_model.model.layers.5.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
391
+ "language_model.model.layers.5.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
392
+ "language_model.model.layers.5.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
393
+ "language_model.model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
394
+ "language_model.model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
395
+ "language_model.model.layers.5.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
396
+ "language_model.model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
397
+ "language_model.model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
398
+ "language_model.model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
399
+ "language_model.model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
400
+ "language_model.model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
401
+ "language_model.model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
402
+ "language_model.model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
403
+ "language_model.model.layers.6.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
404
+ "language_model.model.layers.6.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
405
+ "language_model.model.layers.6.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
406
+ "language_model.model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
407
+ "language_model.model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
408
+ "language_model.model.layers.6.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
409
+ "language_model.model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
410
+ "language_model.model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
411
+ "language_model.model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
412
+ "language_model.model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
413
+ "language_model.model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
414
+ "language_model.model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
415
+ "language_model.model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
416
+ "language_model.model.layers.7.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
417
+ "language_model.model.layers.7.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
418
+ "language_model.model.layers.7.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
419
+ "language_model.model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
420
+ "language_model.model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
421
+ "language_model.model.layers.7.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
422
+ "language_model.model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
423
+ "language_model.model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
424
+ "language_model.model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
425
+ "language_model.model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
426
+ "language_model.model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
427
+ "language_model.model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
428
+ "language_model.model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
429
+ "language_model.model.layers.8.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
430
+ "language_model.model.layers.8.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
431
+ "language_model.model.layers.8.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
432
+ "language_model.model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
433
+ "language_model.model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
434
+ "language_model.model.layers.8.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
435
+ "language_model.model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
436
+ "language_model.model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
437
+ "language_model.model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
438
+ "language_model.model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
439
+ "language_model.model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
440
+ "language_model.model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
441
+ "language_model.model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
442
+ "language_model.model.layers.9.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
443
+ "language_model.model.layers.9.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
444
+ "language_model.model.layers.9.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
445
+ "language_model.model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
446
+ "language_model.model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
447
+ "language_model.model.layers.9.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
448
+ "language_model.model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
449
+ "language_model.model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
450
+ "language_model.model.norm.weight": "model-00002-of-00002.safetensors",
451
+ "multi_modal_projector.mm_input_projection_weight": "model-00001-of-00002.safetensors",
452
+ "multi_modal_projector.mm_soft_emb_norm.weight": "model-00001-of-00002.safetensors",
453
+ "vision_tower.vision_model.embeddings.patch_embedding.bias": "model-00001-of-00002.safetensors",
454
+ "vision_tower.vision_model.embeddings.patch_embedding.weight": "model-00001-of-00002.safetensors",
455
+ "vision_tower.vision_model.embeddings.position_embedding.weight": "model-00001-of-00002.safetensors",
456
+ "vision_tower.vision_model.encoder.layers.0.layer_norm1.bias": "model-00001-of-00002.safetensors",
457
+ "vision_tower.vision_model.encoder.layers.0.layer_norm1.weight": "model-00001-of-00002.safetensors",
458
+ "vision_tower.vision_model.encoder.layers.0.layer_norm2.bias": "model-00001-of-00002.safetensors",
459
+ "vision_tower.vision_model.encoder.layers.0.layer_norm2.weight": "model-00001-of-00002.safetensors",
460
+ "vision_tower.vision_model.encoder.layers.0.mlp.fc1.bias": "model-00001-of-00002.safetensors",
461
+ "vision_tower.vision_model.encoder.layers.0.mlp.fc1.weight": "model-00001-of-00002.safetensors",
462
+ "vision_tower.vision_model.encoder.layers.0.mlp.fc2.bias": "model-00001-of-00002.safetensors",
463
+ "vision_tower.vision_model.encoder.layers.0.mlp.fc2.weight": "model-00001-of-00002.safetensors",
464
+ "vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
465
+ "vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
466
+ "vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
467
+ "vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
468
+ "vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
469
+ "vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
470
+ "vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
471
+ "vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
472
+ "vision_tower.vision_model.encoder.layers.1.layer_norm1.bias": "model-00001-of-00002.safetensors",
473
+ "vision_tower.vision_model.encoder.layers.1.layer_norm1.weight": "model-00001-of-00002.safetensors",
474
+ "vision_tower.vision_model.encoder.layers.1.layer_norm2.bias": "model-00001-of-00002.safetensors",
475
+ "vision_tower.vision_model.encoder.layers.1.layer_norm2.weight": "model-00001-of-00002.safetensors",
476
+ "vision_tower.vision_model.encoder.layers.1.mlp.fc1.bias": "model-00001-of-00002.safetensors",
477
+ "vision_tower.vision_model.encoder.layers.1.mlp.fc1.weight": "model-00001-of-00002.safetensors",
478
+ "vision_tower.vision_model.encoder.layers.1.mlp.fc2.bias": "model-00001-of-00002.safetensors",
479
+ "vision_tower.vision_model.encoder.layers.1.mlp.fc2.weight": "model-00001-of-00002.safetensors",
480
+ "vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
481
+ "vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
482
+ "vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
483
+ "vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
484
+ "vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
485
+ "vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
486
+ "vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
487
+ "vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
488
+ "vision_tower.vision_model.encoder.layers.10.layer_norm1.bias": "model-00001-of-00002.safetensors",
489
+ "vision_tower.vision_model.encoder.layers.10.layer_norm1.weight": "model-00001-of-00002.safetensors",
490
+ "vision_tower.vision_model.encoder.layers.10.layer_norm2.bias": "model-00001-of-00002.safetensors",
491
+ "vision_tower.vision_model.encoder.layers.10.layer_norm2.weight": "model-00001-of-00002.safetensors",
492
+ "vision_tower.vision_model.encoder.layers.10.mlp.fc1.bias": "model-00001-of-00002.safetensors",
493
+ "vision_tower.vision_model.encoder.layers.10.mlp.fc1.weight": "model-00001-of-00002.safetensors",
494
+ "vision_tower.vision_model.encoder.layers.10.mlp.fc2.bias": "model-00001-of-00002.safetensors",
495
+ "vision_tower.vision_model.encoder.layers.10.mlp.fc2.weight": "model-00001-of-00002.safetensors",
496
+ "vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
497
+ "vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
498
+ "vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
499
+ "vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
500
+ "vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
501
+ "vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
502
+ "vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
503
+ "vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
504
+ "vision_tower.vision_model.encoder.layers.11.layer_norm1.bias": "model-00001-of-00002.safetensors",
505
+ "vision_tower.vision_model.encoder.layers.11.layer_norm1.weight": "model-00001-of-00002.safetensors",
506
+ "vision_tower.vision_model.encoder.layers.11.layer_norm2.bias": "model-00001-of-00002.safetensors",
507
+ "vision_tower.vision_model.encoder.layers.11.layer_norm2.weight": "model-00001-of-00002.safetensors",
508
+ "vision_tower.vision_model.encoder.layers.11.mlp.fc1.bias": "model-00001-of-00002.safetensors",
509
+ "vision_tower.vision_model.encoder.layers.11.mlp.fc1.weight": "model-00001-of-00002.safetensors",
510
+ "vision_tower.vision_model.encoder.layers.11.mlp.fc2.bias": "model-00001-of-00002.safetensors",
511
+ "vision_tower.vision_model.encoder.layers.11.mlp.fc2.weight": "model-00001-of-00002.safetensors",
512
+ "vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
513
+ "vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
514
+ "vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
515
+ "vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
516
+ "vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
517
+ "vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
518
+ "vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
519
+ "vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
520
+ "vision_tower.vision_model.encoder.layers.12.layer_norm1.bias": "model-00001-of-00002.safetensors",
521
+ "vision_tower.vision_model.encoder.layers.12.layer_norm1.weight": "model-00001-of-00002.safetensors",
522
+ "vision_tower.vision_model.encoder.layers.12.layer_norm2.bias": "model-00001-of-00002.safetensors",
523
+ "vision_tower.vision_model.encoder.layers.12.layer_norm2.weight": "model-00001-of-00002.safetensors",
524
+ "vision_tower.vision_model.encoder.layers.12.mlp.fc1.bias": "model-00001-of-00002.safetensors",
525
+ "vision_tower.vision_model.encoder.layers.12.mlp.fc1.weight": "model-00001-of-00002.safetensors",
526
+ "vision_tower.vision_model.encoder.layers.12.mlp.fc2.bias": "model-00001-of-00002.safetensors",
527
+ "vision_tower.vision_model.encoder.layers.12.mlp.fc2.weight": "model-00001-of-00002.safetensors",
528
+ "vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
529
+ "vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
530
+ "vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
531
+ "vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
532
+ "vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
533
+ "vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
534
+ "vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
535
+ "vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
536
+ "vision_tower.vision_model.encoder.layers.13.layer_norm1.bias": "model-00001-of-00002.safetensors",
537
+ "vision_tower.vision_model.encoder.layers.13.layer_norm1.weight": "model-00001-of-00002.safetensors",
538
+ "vision_tower.vision_model.encoder.layers.13.layer_norm2.bias": "model-00001-of-00002.safetensors",
539
+ "vision_tower.vision_model.encoder.layers.13.layer_norm2.weight": "model-00001-of-00002.safetensors",
540
+ "vision_tower.vision_model.encoder.layers.13.mlp.fc1.bias": "model-00001-of-00002.safetensors",
541
+ "vision_tower.vision_model.encoder.layers.13.mlp.fc1.weight": "model-00001-of-00002.safetensors",
542
+ "vision_tower.vision_model.encoder.layers.13.mlp.fc2.bias": "model-00001-of-00002.safetensors",
543
+ "vision_tower.vision_model.encoder.layers.13.mlp.fc2.weight": "model-00001-of-00002.safetensors",
544
+ "vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
545
+ "vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
546
+ "vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
547
+ "vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
548
+ "vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
549
+ "vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
550
+ "vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
551
+ "vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
552
+ "vision_tower.vision_model.encoder.layers.14.layer_norm1.bias": "model-00001-of-00002.safetensors",
553
+ "vision_tower.vision_model.encoder.layers.14.layer_norm1.weight": "model-00001-of-00002.safetensors",
554
+ "vision_tower.vision_model.encoder.layers.14.layer_norm2.bias": "model-00001-of-00002.safetensors",
555
+ "vision_tower.vision_model.encoder.layers.14.layer_norm2.weight": "model-00001-of-00002.safetensors",
556
+ "vision_tower.vision_model.encoder.layers.14.mlp.fc1.bias": "model-00001-of-00002.safetensors",
557
+ "vision_tower.vision_model.encoder.layers.14.mlp.fc1.weight": "model-00001-of-00002.safetensors",
558
+ "vision_tower.vision_model.encoder.layers.14.mlp.fc2.bias": "model-00001-of-00002.safetensors",
559
+ "vision_tower.vision_model.encoder.layers.14.mlp.fc2.weight": "model-00001-of-00002.safetensors",
560
+ "vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
561
+ "vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
562
+ "vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
563
+ "vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
564
+ "vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
565
+ "vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
566
+ "vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
567
+ "vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
568
+ "vision_tower.vision_model.encoder.layers.15.layer_norm1.bias": "model-00001-of-00002.safetensors",
569
+ "vision_tower.vision_model.encoder.layers.15.layer_norm1.weight": "model-00001-of-00002.safetensors",
570
+ "vision_tower.vision_model.encoder.layers.15.layer_norm2.bias": "model-00001-of-00002.safetensors",
571
+ "vision_tower.vision_model.encoder.layers.15.layer_norm2.weight": "model-00001-of-00002.safetensors",
572
+ "vision_tower.vision_model.encoder.layers.15.mlp.fc1.bias": "model-00001-of-00002.safetensors",
573
+ "vision_tower.vision_model.encoder.layers.15.mlp.fc1.weight": "model-00001-of-00002.safetensors",
574
+ "vision_tower.vision_model.encoder.layers.15.mlp.fc2.bias": "model-00001-of-00002.safetensors",
575
+ "vision_tower.vision_model.encoder.layers.15.mlp.fc2.weight": "model-00001-of-00002.safetensors",
576
+ "vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
577
+ "vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
578
+ "vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
579
+ "vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
580
+ "vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
581
+ "vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
582
+ "vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
583
+ "vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
584
+ "vision_tower.vision_model.encoder.layers.16.layer_norm1.bias": "model-00001-of-00002.safetensors",
585
+ "vision_tower.vision_model.encoder.layers.16.layer_norm1.weight": "model-00001-of-00002.safetensors",
586
+ "vision_tower.vision_model.encoder.layers.16.layer_norm2.bias": "model-00001-of-00002.safetensors",
587
+ "vision_tower.vision_model.encoder.layers.16.layer_norm2.weight": "model-00001-of-00002.safetensors",
588
+ "vision_tower.vision_model.encoder.layers.16.mlp.fc1.bias": "model-00001-of-00002.safetensors",
589
+ "vision_tower.vision_model.encoder.layers.16.mlp.fc1.weight": "model-00001-of-00002.safetensors",
590
+ "vision_tower.vision_model.encoder.layers.16.mlp.fc2.bias": "model-00001-of-00002.safetensors",
591
+ "vision_tower.vision_model.encoder.layers.16.mlp.fc2.weight": "model-00001-of-00002.safetensors",
592
+ "vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
593
+ "vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
594
+ "vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
595
+ "vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
596
+ "vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
597
+ "vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
598
+ "vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
599
+ "vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
600
+ "vision_tower.vision_model.encoder.layers.17.layer_norm1.bias": "model-00001-of-00002.safetensors",
601
+ "vision_tower.vision_model.encoder.layers.17.layer_norm1.weight": "model-00001-of-00002.safetensors",
602
+ "vision_tower.vision_model.encoder.layers.17.layer_norm2.bias": "model-00001-of-00002.safetensors",
603
+ "vision_tower.vision_model.encoder.layers.17.layer_norm2.weight": "model-00001-of-00002.safetensors",
604
+ "vision_tower.vision_model.encoder.layers.17.mlp.fc1.bias": "model-00001-of-00002.safetensors",
605
+ "vision_tower.vision_model.encoder.layers.17.mlp.fc1.weight": "model-00001-of-00002.safetensors",
606
+ "vision_tower.vision_model.encoder.layers.17.mlp.fc2.bias": "model-00001-of-00002.safetensors",
607
+ "vision_tower.vision_model.encoder.layers.17.mlp.fc2.weight": "model-00001-of-00002.safetensors",
608
+ "vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
609
+ "vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
610
+ "vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
611
+ "vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
612
+ "vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
613
+ "vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
614
+ "vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
615
+ "vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
616
+ "vision_tower.vision_model.encoder.layers.18.layer_norm1.bias": "model-00001-of-00002.safetensors",
617
+ "vision_tower.vision_model.encoder.layers.18.layer_norm1.weight": "model-00001-of-00002.safetensors",
618
+ "vision_tower.vision_model.encoder.layers.18.layer_norm2.bias": "model-00001-of-00002.safetensors",
619
+ "vision_tower.vision_model.encoder.layers.18.layer_norm2.weight": "model-00001-of-00002.safetensors",
620
+ "vision_tower.vision_model.encoder.layers.18.mlp.fc1.bias": "model-00001-of-00002.safetensors",
621
+ "vision_tower.vision_model.encoder.layers.18.mlp.fc1.weight": "model-00001-of-00002.safetensors",
622
+ "vision_tower.vision_model.encoder.layers.18.mlp.fc2.bias": "model-00001-of-00002.safetensors",
623
+ "vision_tower.vision_model.encoder.layers.18.mlp.fc2.weight": "model-00001-of-00002.safetensors",
624
+ "vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
625
+ "vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
626
+ "vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
627
+ "vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
628
+ "vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
629
+ "vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
630
+ "vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
631
+ "vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
632
+ "vision_tower.vision_model.encoder.layers.19.layer_norm1.bias": "model-00001-of-00002.safetensors",
633
+ "vision_tower.vision_model.encoder.layers.19.layer_norm1.weight": "model-00001-of-00002.safetensors",
634
+ "vision_tower.vision_model.encoder.layers.19.layer_norm2.bias": "model-00001-of-00002.safetensors",
635
+ "vision_tower.vision_model.encoder.layers.19.layer_norm2.weight": "model-00001-of-00002.safetensors",
636
+ "vision_tower.vision_model.encoder.layers.19.mlp.fc1.bias": "model-00001-of-00002.safetensors",
637
+ "vision_tower.vision_model.encoder.layers.19.mlp.fc1.weight": "model-00001-of-00002.safetensors",
638
+ "vision_tower.vision_model.encoder.layers.19.mlp.fc2.bias": "model-00001-of-00002.safetensors",
639
+ "vision_tower.vision_model.encoder.layers.19.mlp.fc2.weight": "model-00001-of-00002.safetensors",
640
+ "vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
641
+ "vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
642
+ "vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
643
+ "vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
644
+ "vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
645
+ "vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
646
+ "vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
647
+ "vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
648
+ "vision_tower.vision_model.encoder.layers.2.layer_norm1.bias": "model-00001-of-00002.safetensors",
649
+ "vision_tower.vision_model.encoder.layers.2.layer_norm1.weight": "model-00001-of-00002.safetensors",
650
+ "vision_tower.vision_model.encoder.layers.2.layer_norm2.bias": "model-00001-of-00002.safetensors",
651
+ "vision_tower.vision_model.encoder.layers.2.layer_norm2.weight": "model-00001-of-00002.safetensors",
652
+ "vision_tower.vision_model.encoder.layers.2.mlp.fc1.bias": "model-00001-of-00002.safetensors",
653
+ "vision_tower.vision_model.encoder.layers.2.mlp.fc1.weight": "model-00001-of-00002.safetensors",
654
+ "vision_tower.vision_model.encoder.layers.2.mlp.fc2.bias": "model-00001-of-00002.safetensors",
655
+ "vision_tower.vision_model.encoder.layers.2.mlp.fc2.weight": "model-00001-of-00002.safetensors",
656
+ "vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
657
+ "vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
658
+ "vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
659
+ "vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
660
+ "vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
661
+ "vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
662
+ "vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
663
+ "vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
664
+ "vision_tower.vision_model.encoder.layers.20.layer_norm1.bias": "model-00001-of-00002.safetensors",
665
+ "vision_tower.vision_model.encoder.layers.20.layer_norm1.weight": "model-00001-of-00002.safetensors",
666
+ "vision_tower.vision_model.encoder.layers.20.layer_norm2.bias": "model-00001-of-00002.safetensors",
667
+ "vision_tower.vision_model.encoder.layers.20.layer_norm2.weight": "model-00001-of-00002.safetensors",
668
+ "vision_tower.vision_model.encoder.layers.20.mlp.fc1.bias": "model-00001-of-00002.safetensors",
669
+ "vision_tower.vision_model.encoder.layers.20.mlp.fc1.weight": "model-00001-of-00002.safetensors",
670
+ "vision_tower.vision_model.encoder.layers.20.mlp.fc2.bias": "model-00001-of-00002.safetensors",
671
+ "vision_tower.vision_model.encoder.layers.20.mlp.fc2.weight": "model-00001-of-00002.safetensors",
672
+ "vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
673
+ "vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
674
+ "vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
675
+ "vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
676
+ "vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
677
+ "vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
678
+ "vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
679
+ "vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
680
+ "vision_tower.vision_model.encoder.layers.21.layer_norm1.bias": "model-00001-of-00002.safetensors",
681
+ "vision_tower.vision_model.encoder.layers.21.layer_norm1.weight": "model-00001-of-00002.safetensors",
682
+ "vision_tower.vision_model.encoder.layers.21.layer_norm2.bias": "model-00001-of-00002.safetensors",
683
+ "vision_tower.vision_model.encoder.layers.21.layer_norm2.weight": "model-00001-of-00002.safetensors",
684
+ "vision_tower.vision_model.encoder.layers.21.mlp.fc1.bias": "model-00001-of-00002.safetensors",
685
+ "vision_tower.vision_model.encoder.layers.21.mlp.fc1.weight": "model-00001-of-00002.safetensors",
686
+ "vision_tower.vision_model.encoder.layers.21.mlp.fc2.bias": "model-00001-of-00002.safetensors",
687
+ "vision_tower.vision_model.encoder.layers.21.mlp.fc2.weight": "model-00001-of-00002.safetensors",
688
+ "vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
689
+ "vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
690
+ "vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
691
+ "vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
692
+ "vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
693
+ "vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
694
+ "vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
695
+ "vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
696
+ "vision_tower.vision_model.encoder.layers.22.layer_norm1.bias": "model-00001-of-00002.safetensors",
697
+ "vision_tower.vision_model.encoder.layers.22.layer_norm1.weight": "model-00001-of-00002.safetensors",
698
+ "vision_tower.vision_model.encoder.layers.22.layer_norm2.bias": "model-00001-of-00002.safetensors",
699
+ "vision_tower.vision_model.encoder.layers.22.layer_norm2.weight": "model-00001-of-00002.safetensors",
700
+ "vision_tower.vision_model.encoder.layers.22.mlp.fc1.bias": "model-00001-of-00002.safetensors",
701
+ "vision_tower.vision_model.encoder.layers.22.mlp.fc1.weight": "model-00001-of-00002.safetensors",
702
+ "vision_tower.vision_model.encoder.layers.22.mlp.fc2.bias": "model-00001-of-00002.safetensors",
703
+ "vision_tower.vision_model.encoder.layers.22.mlp.fc2.weight": "model-00001-of-00002.safetensors",
704
+ "vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
705
+ "vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
706
+ "vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
707
+ "vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
708
+ "vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
709
+ "vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
710
+ "vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
711
+ "vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
712
+ "vision_tower.vision_model.encoder.layers.23.layer_norm1.bias": "model-00001-of-00002.safetensors",
713
+ "vision_tower.vision_model.encoder.layers.23.layer_norm1.weight": "model-00001-of-00002.safetensors",
714
+ "vision_tower.vision_model.encoder.layers.23.layer_norm2.bias": "model-00001-of-00002.safetensors",
715
+ "vision_tower.vision_model.encoder.layers.23.layer_norm2.weight": "model-00001-of-00002.safetensors",
716
+ "vision_tower.vision_model.encoder.layers.23.mlp.fc1.bias": "model-00001-of-00002.safetensors",
717
+ "vision_tower.vision_model.encoder.layers.23.mlp.fc1.weight": "model-00001-of-00002.safetensors",
718
+ "vision_tower.vision_model.encoder.layers.23.mlp.fc2.bias": "model-00001-of-00002.safetensors",
719
+ "vision_tower.vision_model.encoder.layers.23.mlp.fc2.weight": "model-00001-of-00002.safetensors",
720
+ "vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
721
+ "vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
722
+ "vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
723
+ "vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
724
+ "vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
725
+ "vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
726
+ "vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
727
+ "vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
728
+ "vision_tower.vision_model.encoder.layers.24.layer_norm1.bias": "model-00001-of-00002.safetensors",
729
+ "vision_tower.vision_model.encoder.layers.24.layer_norm1.weight": "model-00001-of-00002.safetensors",
730
+ "vision_tower.vision_model.encoder.layers.24.layer_norm2.bias": "model-00001-of-00002.safetensors",
731
+ "vision_tower.vision_model.encoder.layers.24.layer_norm2.weight": "model-00001-of-00002.safetensors",
732
+ "vision_tower.vision_model.encoder.layers.24.mlp.fc1.bias": "model-00001-of-00002.safetensors",
733
+ "vision_tower.vision_model.encoder.layers.24.mlp.fc1.weight": "model-00001-of-00002.safetensors",
734
+ "vision_tower.vision_model.encoder.layers.24.mlp.fc2.bias": "model-00001-of-00002.safetensors",
735
+ "vision_tower.vision_model.encoder.layers.24.mlp.fc2.weight": "model-00001-of-00002.safetensors",
736
+ "vision_tower.vision_model.encoder.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
737
+ "vision_tower.vision_model.encoder.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
738
+ "vision_tower.vision_model.encoder.layers.24.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
739
+ "vision_tower.vision_model.encoder.layers.24.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
740
+ "vision_tower.vision_model.encoder.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
741
+ "vision_tower.vision_model.encoder.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
742
+ "vision_tower.vision_model.encoder.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
743
+ "vision_tower.vision_model.encoder.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
744
+ "vision_tower.vision_model.encoder.layers.25.layer_norm1.bias": "model-00001-of-00002.safetensors",
745
+ "vision_tower.vision_model.encoder.layers.25.layer_norm1.weight": "model-00001-of-00002.safetensors",
746
+ "vision_tower.vision_model.encoder.layers.25.layer_norm2.bias": "model-00001-of-00002.safetensors",
747
+ "vision_tower.vision_model.encoder.layers.25.layer_norm2.weight": "model-00001-of-00002.safetensors",
748
+ "vision_tower.vision_model.encoder.layers.25.mlp.fc1.bias": "model-00001-of-00002.safetensors",
749
+ "vision_tower.vision_model.encoder.layers.25.mlp.fc1.weight": "model-00001-of-00002.safetensors",
750
+ "vision_tower.vision_model.encoder.layers.25.mlp.fc2.bias": "model-00001-of-00002.safetensors",
751
+ "vision_tower.vision_model.encoder.layers.25.mlp.fc2.weight": "model-00001-of-00002.safetensors",
752
+ "vision_tower.vision_model.encoder.layers.25.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
753
+ "vision_tower.vision_model.encoder.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
754
+ "vision_tower.vision_model.encoder.layers.25.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
755
+ "vision_tower.vision_model.encoder.layers.25.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
756
+ "vision_tower.vision_model.encoder.layers.25.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
757
+ "vision_tower.vision_model.encoder.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
758
+ "vision_tower.vision_model.encoder.layers.25.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
759
+ "vision_tower.vision_model.encoder.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
760
+ "vision_tower.vision_model.encoder.layers.26.layer_norm1.bias": "model-00001-of-00002.safetensors",
761
+ "vision_tower.vision_model.encoder.layers.26.layer_norm1.weight": "model-00001-of-00002.safetensors",
762
+ "vision_tower.vision_model.encoder.layers.26.layer_norm2.bias": "model-00001-of-00002.safetensors",
763
+ "vision_tower.vision_model.encoder.layers.26.layer_norm2.weight": "model-00001-of-00002.safetensors",
764
+ "vision_tower.vision_model.encoder.layers.26.mlp.fc1.bias": "model-00001-of-00002.safetensors",
765
+ "vision_tower.vision_model.encoder.layers.26.mlp.fc1.weight": "model-00001-of-00002.safetensors",
766
+ "vision_tower.vision_model.encoder.layers.26.mlp.fc2.bias": "model-00001-of-00002.safetensors",
767
+ "vision_tower.vision_model.encoder.layers.26.mlp.fc2.weight": "model-00001-of-00002.safetensors",
768
+ "vision_tower.vision_model.encoder.layers.26.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
769
+ "vision_tower.vision_model.encoder.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
770
+ "vision_tower.vision_model.encoder.layers.26.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
771
+ "vision_tower.vision_model.encoder.layers.26.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
772
+ "vision_tower.vision_model.encoder.layers.26.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
773
+ "vision_tower.vision_model.encoder.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
774
+ "vision_tower.vision_model.encoder.layers.26.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
775
+ "vision_tower.vision_model.encoder.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
776
+ "vision_tower.vision_model.encoder.layers.3.layer_norm1.bias": "model-00001-of-00002.safetensors",
777
+ "vision_tower.vision_model.encoder.layers.3.layer_norm1.weight": "model-00001-of-00002.safetensors",
778
+ "vision_tower.vision_model.encoder.layers.3.layer_norm2.bias": "model-00001-of-00002.safetensors",
779
+ "vision_tower.vision_model.encoder.layers.3.layer_norm2.weight": "model-00001-of-00002.safetensors",
780
+ "vision_tower.vision_model.encoder.layers.3.mlp.fc1.bias": "model-00001-of-00002.safetensors",
781
+ "vision_tower.vision_model.encoder.layers.3.mlp.fc1.weight": "model-00001-of-00002.safetensors",
782
+ "vision_tower.vision_model.encoder.layers.3.mlp.fc2.bias": "model-00001-of-00002.safetensors",
783
+ "vision_tower.vision_model.encoder.layers.3.mlp.fc2.weight": "model-00001-of-00002.safetensors",
784
+ "vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
785
+ "vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
786
+ "vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
787
+ "vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
788
+ "vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
789
+ "vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
790
+ "vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
791
+ "vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
792
+ "vision_tower.vision_model.encoder.layers.4.layer_norm1.bias": "model-00001-of-00002.safetensors",
793
+ "vision_tower.vision_model.encoder.layers.4.layer_norm1.weight": "model-00001-of-00002.safetensors",
794
+ "vision_tower.vision_model.encoder.layers.4.layer_norm2.bias": "model-00001-of-00002.safetensors",
795
+ "vision_tower.vision_model.encoder.layers.4.layer_norm2.weight": "model-00001-of-00002.safetensors",
796
+ "vision_tower.vision_model.encoder.layers.4.mlp.fc1.bias": "model-00001-of-00002.safetensors",
797
+ "vision_tower.vision_model.encoder.layers.4.mlp.fc1.weight": "model-00001-of-00002.safetensors",
798
+ "vision_tower.vision_model.encoder.layers.4.mlp.fc2.bias": "model-00001-of-00002.safetensors",
799
+ "vision_tower.vision_model.encoder.layers.4.mlp.fc2.weight": "model-00001-of-00002.safetensors",
800
+ "vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
801
+ "vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
802
+ "vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
803
+ "vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
804
+ "vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
805
+ "vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
806
+ "vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
807
+ "vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
808
+ "vision_tower.vision_model.encoder.layers.5.layer_norm1.bias": "model-00001-of-00002.safetensors",
809
+ "vision_tower.vision_model.encoder.layers.5.layer_norm1.weight": "model-00001-of-00002.safetensors",
810
+ "vision_tower.vision_model.encoder.layers.5.layer_norm2.bias": "model-00001-of-00002.safetensors",
811
+ "vision_tower.vision_model.encoder.layers.5.layer_norm2.weight": "model-00001-of-00002.safetensors",
812
+ "vision_tower.vision_model.encoder.layers.5.mlp.fc1.bias": "model-00001-of-00002.safetensors",
813
+ "vision_tower.vision_model.encoder.layers.5.mlp.fc1.weight": "model-00001-of-00002.safetensors",
814
+ "vision_tower.vision_model.encoder.layers.5.mlp.fc2.bias": "model-00001-of-00002.safetensors",
815
+ "vision_tower.vision_model.encoder.layers.5.mlp.fc2.weight": "model-00001-of-00002.safetensors",
816
+ "vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
817
+ "vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
818
+ "vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
819
+ "vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
820
+ "vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
821
+ "vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
822
+ "vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
823
+ "vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
824
+ "vision_tower.vision_model.encoder.layers.6.layer_norm1.bias": "model-00001-of-00002.safetensors",
825
+ "vision_tower.vision_model.encoder.layers.6.layer_norm1.weight": "model-00001-of-00002.safetensors",
826
+ "vision_tower.vision_model.encoder.layers.6.layer_norm2.bias": "model-00001-of-00002.safetensors",
827
+ "vision_tower.vision_model.encoder.layers.6.layer_norm2.weight": "model-00001-of-00002.safetensors",
828
+ "vision_tower.vision_model.encoder.layers.6.mlp.fc1.bias": "model-00001-of-00002.safetensors",
829
+ "vision_tower.vision_model.encoder.layers.6.mlp.fc1.weight": "model-00001-of-00002.safetensors",
830
+ "vision_tower.vision_model.encoder.layers.6.mlp.fc2.bias": "model-00001-of-00002.safetensors",
831
+ "vision_tower.vision_model.encoder.layers.6.mlp.fc2.weight": "model-00001-of-00002.safetensors",
832
+ "vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
833
+ "vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
834
+ "vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
835
+ "vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
836
+ "vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
837
+ "vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
838
+ "vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
839
+ "vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
840
+ "vision_tower.vision_model.encoder.layers.7.layer_norm1.bias": "model-00001-of-00002.safetensors",
841
+ "vision_tower.vision_model.encoder.layers.7.layer_norm1.weight": "model-00001-of-00002.safetensors",
842
+ "vision_tower.vision_model.encoder.layers.7.layer_norm2.bias": "model-00001-of-00002.safetensors",
843
+ "vision_tower.vision_model.encoder.layers.7.layer_norm2.weight": "model-00001-of-00002.safetensors",
844
+ "vision_tower.vision_model.encoder.layers.7.mlp.fc1.bias": "model-00001-of-00002.safetensors",
845
+ "vision_tower.vision_model.encoder.layers.7.mlp.fc1.weight": "model-00001-of-00002.safetensors",
846
+ "vision_tower.vision_model.encoder.layers.7.mlp.fc2.bias": "model-00001-of-00002.safetensors",
847
+ "vision_tower.vision_model.encoder.layers.7.mlp.fc2.weight": "model-00001-of-00002.safetensors",
848
+ "vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
849
+ "vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
850
+ "vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
851
+ "vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
852
+ "vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
853
+ "vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
854
+ "vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
855
+ "vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
856
+ "vision_tower.vision_model.encoder.layers.8.layer_norm1.bias": "model-00001-of-00002.safetensors",
857
+ "vision_tower.vision_model.encoder.layers.8.layer_norm1.weight": "model-00001-of-00002.safetensors",
858
+ "vision_tower.vision_model.encoder.layers.8.layer_norm2.bias": "model-00001-of-00002.safetensors",
859
+ "vision_tower.vision_model.encoder.layers.8.layer_norm2.weight": "model-00001-of-00002.safetensors",
860
+ "vision_tower.vision_model.encoder.layers.8.mlp.fc1.bias": "model-00001-of-00002.safetensors",
861
+ "vision_tower.vision_model.encoder.layers.8.mlp.fc1.weight": "model-00001-of-00002.safetensors",
862
+ "vision_tower.vision_model.encoder.layers.8.mlp.fc2.bias": "model-00001-of-00002.safetensors",
863
+ "vision_tower.vision_model.encoder.layers.8.mlp.fc2.weight": "model-00001-of-00002.safetensors",
864
+ "vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
865
+ "vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
866
+ "vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
867
+ "vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
868
+ "vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
869
+ "vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
870
+ "vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
871
+ "vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
872
+ "vision_tower.vision_model.encoder.layers.9.layer_norm1.bias": "model-00001-of-00002.safetensors",
873
+ "vision_tower.vision_model.encoder.layers.9.layer_norm1.weight": "model-00001-of-00002.safetensors",
874
+ "vision_tower.vision_model.encoder.layers.9.layer_norm2.bias": "model-00001-of-00002.safetensors",
875
+ "vision_tower.vision_model.encoder.layers.9.layer_norm2.weight": "model-00001-of-00002.safetensors",
876
+ "vision_tower.vision_model.encoder.layers.9.mlp.fc1.bias": "model-00001-of-00002.safetensors",
877
+ "vision_tower.vision_model.encoder.layers.9.mlp.fc1.weight": "model-00001-of-00002.safetensors",
878
+ "vision_tower.vision_model.encoder.layers.9.mlp.fc2.bias": "model-00001-of-00002.safetensors",
879
+ "vision_tower.vision_model.encoder.layers.9.mlp.fc2.weight": "model-00001-of-00002.safetensors",
880
+ "vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
881
+ "vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
882
+ "vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
883
+ "vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
884
+ "vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
885
+ "vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
886
+ "vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
887
+ "vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
888
+ "vision_tower.vision_model.post_layernorm.bias": "model-00001-of-00002.safetensors",
889
+ "vision_tower.vision_model.post_layernorm.weight": "model-00001-of-00002.safetensors"
890
+ }
891
+ }
text_encoder/special_tokens_map.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "boi_token": "<start_of_image>",
3
+ "bos_token": {
4
+ "content": "<bos>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ },
10
+ "eoi_token": "<end_of_image>",
11
+ "eos_token": {
12
+ "content": "<eos>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false
17
+ },
18
+ "image_token": "<image_soft_token>",
19
+ "pad_token": {
20
+ "content": "<pad>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false
25
+ },
26
+ "unk_token": {
27
+ "content": "<unk>",
28
+ "lstrip": false,
29
+ "normalized": false,
30
+ "rstrip": false,
31
+ "single_word": false
32
+ }
33
+ }
text_encoder/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4667f2089529e8e7657cfb6d1c19910ae71ff5f28aa7ab2ff2763330affad795
3
+ size 33384568
text_encoder/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1299c11d7cf632ef3b4e11937501358ada021bbdf7c47638d13c0ee982f2e79c
3
+ size 4689074
text_encoder/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
transformer/config.json ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_type": "nextdit_clip",
3
+ "patch_size": 2,
4
+ "dim": 2304,
5
+ "n_layers": 36,
6
+ "n_heads": 24,
7
+ "n_kv_heads": 8,
8
+ "in_channels": 16,
9
+ "axes_dims": [
10
+ 32,
11
+ 32,
12
+ 32
13
+ ],
14
+ "axes_lens": [
15
+ 1024,
16
+ 512,
17
+ 512
18
+ ],
19
+ "clip_text_dim": 1024,
20
+ "clip_img_dim": 1024,
21
+ "_class_name": "NextDiT_3B_GQA_patch2_Adaln_Refiner_WHIT_CLIP"
22
+ }
transformer/diffusion_pytorch_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b8ed0f26c0b90b70a5a2ef0f69041529af7fbfef206f773c07d6cd1d56d77ef8
3
+ size 6973329400
vae/config.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_class_name": "AutoencoderKL",
3
+ "_diffusers_version": "0.35.2",
4
+ "_name_or_path": "black-forest-labs/FLUX.1-dev",
5
+ "act_fn": "silu",
6
+ "block_out_channels": [
7
+ 128,
8
+ 256,
9
+ 512,
10
+ 512
11
+ ],
12
+ "down_block_types": [
13
+ "DownEncoderBlock2D",
14
+ "DownEncoderBlock2D",
15
+ "DownEncoderBlock2D",
16
+ "DownEncoderBlock2D"
17
+ ],
18
+ "force_upcast": true,
19
+ "in_channels": 3,
20
+ "latent_channels": 16,
21
+ "latents_mean": null,
22
+ "latents_std": null,
23
+ "layers_per_block": 2,
24
+ "mid_block_add_attention": true,
25
+ "norm_num_groups": 32,
26
+ "out_channels": 3,
27
+ "sample_size": 1024,
28
+ "scaling_factor": 0.3611,
29
+ "shift_factor": 0.1159,
30
+ "up_block_types": [
31
+ "UpDecoderBlock2D",
32
+ "UpDecoderBlock2D",
33
+ "UpDecoderBlock2D",
34
+ "UpDecoderBlock2D"
35
+ ],
36
+ "use_post_quant_conv": false,
37
+ "use_quant_conv": false
38
+ }
vae/diffusion_pytorch_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f5b59a26851551b67ae1fe58d32e76486e1e812def4696a4bea97f16604d40a3
3
+ size 167666902