Upload converted diffusers files (skip README, no-overwrite)
Browse files- .gitattributes +2 -0
- clip_model/config.json +81 -0
- clip_model/configuration_clip.py +324 -0
- clip_model/eva_model.py +771 -0
- clip_model/hf_model.py +364 -0
- clip_model/model.safetensors +3 -0
- clip_model/modeling_clip.py +684 -0
- clip_model/rope_embeddings.py +160 -0
- clip_model/special_tokens_map.json +51 -0
- clip_model/tokenizer.json +3 -0
- clip_model/tokenizer_config.json +62 -0
- clip_model/transform.py +374 -0
- model_index.json +28 -0
- text_encoder/added_tokens.json +3 -0
- text_encoder/chat_template.jinja +47 -0
- text_encoder/config.json +98 -0
- text_encoder/model-00001-of-00002.safetensors +3 -0
- text_encoder/model-00002-of-00002.safetensors +3 -0
- text_encoder/model.safetensors.index.json +891 -0
- text_encoder/special_tokens_map.json +33 -0
- text_encoder/tokenizer.json +3 -0
- text_encoder/tokenizer.model +3 -0
- text_encoder/tokenizer_config.json +0 -0
- transformer/config.json +22 -0
- transformer/diffusion_pytorch_model.safetensors +3 -0
- vae/config.json +38 -0
- vae/diffusion_pytorch_model.safetensors +3 -0
.gitattributes
CHANGED
|
@@ -35,3 +35,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
image/newbie_image.png filter=lfs diff=lfs merge=lfs -text
|
| 37 |
image/XML_prompt_image.png filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
image/newbie_image.png filter=lfs diff=lfs merge=lfs -text
|
| 37 |
image/XML_prompt_image.png filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
clip_model/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
| 39 |
+
text_encoder/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
clip_model/config.json
ADDED
|
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_projections": false,
|
| 3 |
+
"architectures": [
|
| 4 |
+
"JinaCLIPModel"
|
| 5 |
+
],
|
| 6 |
+
"auto_map": {
|
| 7 |
+
"AutoConfig": "configuration_clip.JinaCLIPConfig",
|
| 8 |
+
"AutoModel": "modeling_clip.JinaCLIPModel"
|
| 9 |
+
},
|
| 10 |
+
"dtype": "bfloat16",
|
| 11 |
+
"initializer_factor": 1.0,
|
| 12 |
+
"logit_scale_init_value": 2.6592,
|
| 13 |
+
"matryoshka_dimensions": [
|
| 14 |
+
32,
|
| 15 |
+
64,
|
| 16 |
+
128,
|
| 17 |
+
256,
|
| 18 |
+
512,
|
| 19 |
+
768,
|
| 20 |
+
1024
|
| 21 |
+
],
|
| 22 |
+
"model_type": "jina_clip",
|
| 23 |
+
"output_attentions": false,
|
| 24 |
+
"projection_dim": 1024,
|
| 25 |
+
"text_config": {
|
| 26 |
+
"default_instruction_task": null,
|
| 27 |
+
"default_lora_task": "retrieval.query",
|
| 28 |
+
"embed_dim": 1024,
|
| 29 |
+
"hf_model_config_kwargs": {
|
| 30 |
+
"load_trained_adapters": false,
|
| 31 |
+
"lora_adaptations": [
|
| 32 |
+
"retrieval.query"
|
| 33 |
+
],
|
| 34 |
+
"lora_alpha": 4,
|
| 35 |
+
"lora_dropout_p": 0.0,
|
| 36 |
+
"lora_main_params_trainable": false,
|
| 37 |
+
"lora_rank": 4,
|
| 38 |
+
"task_instructions": {
|
| 39 |
+
"retrieval.query": "Represent the query for retrieving evidence documents: "
|
| 40 |
+
},
|
| 41 |
+
"use_flash_attn": true
|
| 42 |
+
},
|
| 43 |
+
"hf_model_name_or_path": "jinaai/jina-embeddings-v3",
|
| 44 |
+
"model_type": "jina_clip_text",
|
| 45 |
+
"pooler_type": "mean_pooler",
|
| 46 |
+
"proj_bias": false,
|
| 47 |
+
"proj_type": null
|
| 48 |
+
},
|
| 49 |
+
"transformers.js_config": {
|
| 50 |
+
"use_external_data_format": {
|
| 51 |
+
"model.onnx": true
|
| 52 |
+
}
|
| 53 |
+
},
|
| 54 |
+
"transformers_version": null,
|
| 55 |
+
"truncate_dim": null,
|
| 56 |
+
"use_text_flash_attn": true,
|
| 57 |
+
"use_vision_xformers": false,
|
| 58 |
+
"vision_config": {
|
| 59 |
+
"drop_path_rate": 0.0,
|
| 60 |
+
"embed_dim": 1024,
|
| 61 |
+
"fused_layer_norm": false,
|
| 62 |
+
"head_width": 64,
|
| 63 |
+
"image_size": 512,
|
| 64 |
+
"intp_freq": true,
|
| 65 |
+
"layers": 24,
|
| 66 |
+
"ls_init_value": null,
|
| 67 |
+
"mlp_ratio": 2.6667,
|
| 68 |
+
"model_type": "jina_clip_vision",
|
| 69 |
+
"naive_swiglu": true,
|
| 70 |
+
"patch_dropout": 0.1,
|
| 71 |
+
"patch_size": 14,
|
| 72 |
+
"post_norm": false,
|
| 73 |
+
"proj_type": null,
|
| 74 |
+
"pt_hw_seq_len": 16,
|
| 75 |
+
"qkv_bias": true,
|
| 76 |
+
"rope_embeddings": true,
|
| 77 |
+
"subln": true,
|
| 78 |
+
"width": 1024,
|
| 79 |
+
"x_attention": false
|
| 80 |
+
}
|
| 81 |
+
}
|
clip_model/configuration_clip.py
ADDED
|
@@ -0,0 +1,324 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
#
|
| 3 |
+
# Code mainly copied from:
|
| 4 |
+
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/clip/configuration_clip.py
|
| 5 |
+
# and adjusted for Jina CLIP
|
| 6 |
+
|
| 7 |
+
import os
|
| 8 |
+
from copy import deepcopy
|
| 9 |
+
from typing import Any, Dict, List, Optional, Union
|
| 10 |
+
|
| 11 |
+
import torch
|
| 12 |
+
from transformers import PretrainedConfig, logging
|
| 13 |
+
|
| 14 |
+
logger = logging.get_logger(__name__)
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
""" Jina CLIP model configuration """
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
class JinaCLIPTextConfig(PretrainedConfig):
|
| 21 |
+
model_type = 'jina_clip_text'
|
| 22 |
+
|
| 23 |
+
def __init__(
|
| 24 |
+
self,
|
| 25 |
+
embed_dim: int = 768,
|
| 26 |
+
hf_model_name_or_path: str = 'jinaai/jina-bert-flash-implementation',
|
| 27 |
+
hf_model_config_kwargs: Optional[Dict[str, Any]] = None,
|
| 28 |
+
default_instruction_task: Optional[str] = None,
|
| 29 |
+
default_lora_task: Optional[str] = None,
|
| 30 |
+
pooler_type: Optional[str] = None,
|
| 31 |
+
proj_type: Optional[str] = None,
|
| 32 |
+
proj_bias: bool = False,
|
| 33 |
+
**kwargs,
|
| 34 |
+
):
|
| 35 |
+
super().__init__(**kwargs)
|
| 36 |
+
|
| 37 |
+
self.embed_dim = embed_dim
|
| 38 |
+
self.hf_model_name_or_path = hf_model_name_or_path
|
| 39 |
+
self.hf_model_config_kwargs = hf_model_config_kwargs or {}
|
| 40 |
+
self.default_instruction_task = default_instruction_task
|
| 41 |
+
self.default_lora_task = default_lora_task
|
| 42 |
+
self.pooler_type = pooler_type
|
| 43 |
+
self.proj_type = proj_type
|
| 44 |
+
self.proj_bias = proj_bias
|
| 45 |
+
|
| 46 |
+
@classmethod
|
| 47 |
+
def from_pretrained(
|
| 48 |
+
cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs
|
| 49 |
+
) -> 'PretrainedConfig':
|
| 50 |
+
cls._set_token_in_kwargs(kwargs)
|
| 51 |
+
|
| 52 |
+
configdict, kwargs = cls.get_config_dict(
|
| 53 |
+
pretrained_model_name_or_path, **kwargs
|
| 54 |
+
)
|
| 55 |
+
# get the text config dict if we are loading from JinaCLIPConfig
|
| 56 |
+
if configdict.get('model_type') == 'jina_clip':
|
| 57 |
+
configdict = configdict['text_config']
|
| 58 |
+
if (
|
| 59 |
+
'model_type' in configdict
|
| 60 |
+
and hasattr(cls, 'model_type')
|
| 61 |
+
and configdict['model_type'] != cls.model_type
|
| 62 |
+
):
|
| 63 |
+
logger.warning(
|
| 64 |
+
f'You are using a model of type {configdict["model_type"]} to '
|
| 65 |
+
f'instantiate a model of type {cls.model_type}. This is not supported '
|
| 66 |
+
'for all configurations of models and can yield errors.'
|
| 67 |
+
)
|
| 68 |
+
return cls.from_dict(configdict, **kwargs)
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
class JinaCLIPVisionConfig(PretrainedConfig):
|
| 72 |
+
model_type = 'jina_clip_vision'
|
| 73 |
+
|
| 74 |
+
def __init__(
|
| 75 |
+
self,
|
| 76 |
+
embed_dim: int = 768,
|
| 77 |
+
width: int = 768,
|
| 78 |
+
image_size: int = 224,
|
| 79 |
+
patch_size: int = 16,
|
| 80 |
+
layers: int = 12,
|
| 81 |
+
head_width: int = 64,
|
| 82 |
+
mlp_ratio: float = 4.0,
|
| 83 |
+
ls_init_value: Optional[float] = None,
|
| 84 |
+
patch_dropout: float = 0.0,
|
| 85 |
+
qkv_bias: bool = True,
|
| 86 |
+
fused_layer_norm: bool = False,
|
| 87 |
+
x_attention: bool = False,
|
| 88 |
+
post_norm: bool = False,
|
| 89 |
+
rope_embeddings: bool = False,
|
| 90 |
+
pt_hw_seq_len: int = 16,
|
| 91 |
+
intp_freq: bool = False,
|
| 92 |
+
naive_swiglu: bool = False,
|
| 93 |
+
subln: bool = False,
|
| 94 |
+
drop_path_rate: float = 0.0,
|
| 95 |
+
proj_type: Optional[str] = None,
|
| 96 |
+
**kwargs,
|
| 97 |
+
):
|
| 98 |
+
super().__init__(**kwargs)
|
| 99 |
+
|
| 100 |
+
self.layers = layers
|
| 101 |
+
self.embed_dim = embed_dim
|
| 102 |
+
self.width = width
|
| 103 |
+
self.head_width = head_width
|
| 104 |
+
self.mlp_ratio = mlp_ratio
|
| 105 |
+
self.image_size = image_size
|
| 106 |
+
self.patch_size = patch_size
|
| 107 |
+
self.ls_init_value = ls_init_value
|
| 108 |
+
self.patch_dropout = patch_dropout
|
| 109 |
+
self.qkv_bias = qkv_bias
|
| 110 |
+
self.fused_layer_norm = fused_layer_norm
|
| 111 |
+
self.x_attention = x_attention
|
| 112 |
+
self.post_norm = post_norm
|
| 113 |
+
self.rope_embeddings = rope_embeddings
|
| 114 |
+
self.pt_hw_seq_len = pt_hw_seq_len
|
| 115 |
+
self.intp_freq = intp_freq
|
| 116 |
+
self.naive_swiglu = naive_swiglu
|
| 117 |
+
self.subln = subln
|
| 118 |
+
self.drop_path_rate = drop_path_rate
|
| 119 |
+
self.proj_type = proj_type
|
| 120 |
+
|
| 121 |
+
@classmethod
|
| 122 |
+
def from_pretrained(
|
| 123 |
+
cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs
|
| 124 |
+
) -> 'PretrainedConfig':
|
| 125 |
+
cls._set_token_in_kwargs(kwargs)
|
| 126 |
+
|
| 127 |
+
configdict, kwargs = cls.get_config_dict(
|
| 128 |
+
pretrained_model_name_or_path, **kwargs
|
| 129 |
+
)
|
| 130 |
+
# get the vision config dict if we are loading from JinaCLIPConfig
|
| 131 |
+
if configdict.get('model_type') == 'jina_clip':
|
| 132 |
+
configdict = configdict['vision_config']
|
| 133 |
+
if (
|
| 134 |
+
'model_type' in configdict
|
| 135 |
+
and hasattr(cls, 'model_type')
|
| 136 |
+
and configdict['model_type'] != cls.model_type
|
| 137 |
+
):
|
| 138 |
+
logger.warning(
|
| 139 |
+
f'You are using a model of type {configdict["model_type"]} to '
|
| 140 |
+
f'instantiate a model of type {cls.model_type}. This is not supported '
|
| 141 |
+
'for all configurations of models and can yield errors.'
|
| 142 |
+
)
|
| 143 |
+
return cls.from_dict(configdict, **kwargs)
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
class JinaCLIPConfig(PretrainedConfig):
|
| 147 |
+
model_type = 'jina_clip'
|
| 148 |
+
is_composition = True
|
| 149 |
+
|
| 150 |
+
def __init__(
|
| 151 |
+
self,
|
| 152 |
+
text_config: Optional[Dict] = None,
|
| 153 |
+
vision_config: Optional[Dict] = None,
|
| 154 |
+
add_projections: bool = False,
|
| 155 |
+
projection_dim: int = 768,
|
| 156 |
+
logit_scale_init_value: float = 2.6592,
|
| 157 |
+
use_text_flash_attn: Optional[bool] = None,
|
| 158 |
+
use_vision_xformers: Optional[bool] = None,
|
| 159 |
+
matryoshka_dimensions: Optional[List[int]] = None,
|
| 160 |
+
truncate_dim: Optional[int] = None,
|
| 161 |
+
torch_dtype: Optional[Union[str, torch.dtype]] = None,
|
| 162 |
+
**kwargs,
|
| 163 |
+
):
|
| 164 |
+
# If `_config_dict` exist, we use them for the backward compatibility.
|
| 165 |
+
# We pop out these 2 attributes before calling `super().__init__` to avoid
|
| 166 |
+
# them being saved (which causes a lot of confusion!).
|
| 167 |
+
|
| 168 |
+
text_config_dict: Optional[Dict] = kwargs.pop('text_config_dict', None)
|
| 169 |
+
vision_config_dict: Optional[Dict] = kwargs.pop('vision_config_dict', None)
|
| 170 |
+
self.use_text_flash_attn = use_text_flash_attn
|
| 171 |
+
self.use_vision_xformers = use_vision_xformers
|
| 172 |
+
self.matryoshka_dimensions = matryoshka_dimensions
|
| 173 |
+
self.truncate_dim = truncate_dim
|
| 174 |
+
|
| 175 |
+
super().__init__(**kwargs)
|
| 176 |
+
|
| 177 |
+
if text_config_dict is not None:
|
| 178 |
+
if text_config is None:
|
| 179 |
+
text_config = {}
|
| 180 |
+
|
| 181 |
+
# This is the complete result when using `text_config_dict`.
|
| 182 |
+
_text_config_dict = JinaCLIPTextConfig(**text_config_dict).to_dict()
|
| 183 |
+
|
| 184 |
+
# Give a warning if the values exist in both `_text_config_dict` and
|
| 185 |
+
# `text_config` but being different.
|
| 186 |
+
for key, value in _text_config_dict.items():
|
| 187 |
+
if (
|
| 188 |
+
key in text_config
|
| 189 |
+
and value != text_config[key]
|
| 190 |
+
and key not in ['transformers_version']
|
| 191 |
+
):
|
| 192 |
+
# If specified in `text_config_dict`
|
| 193 |
+
if key in text_config_dict:
|
| 194 |
+
message = (
|
| 195 |
+
f'`{key}` is found in both `text_config_dict` and '
|
| 196 |
+
f'`text_config` but with different values. '
|
| 197 |
+
f'The value `text_config_dict["{key}"]` will be used '
|
| 198 |
+
f'instead.'
|
| 199 |
+
)
|
| 200 |
+
# If inferred from default argument values (
|
| 201 |
+
# just to be super careful)
|
| 202 |
+
else:
|
| 203 |
+
message = (
|
| 204 |
+
f'`text_config_dict` is provided which will be used to '
|
| 205 |
+
f'initialize `JinaCLIPTextConfig`. The '
|
| 206 |
+
f'value `text_config["{key}"]` will be overriden.'
|
| 207 |
+
)
|
| 208 |
+
logger.info(message)
|
| 209 |
+
|
| 210 |
+
# Update all values in `text_config` with the ones in `_text_config_dict`.
|
| 211 |
+
text_config.update(_text_config_dict)
|
| 212 |
+
|
| 213 |
+
if vision_config_dict is not None:
|
| 214 |
+
if vision_config is None:
|
| 215 |
+
vision_config = {}
|
| 216 |
+
|
| 217 |
+
# This is the complete result when using `vision_config_dict`.
|
| 218 |
+
_vision_config_dict = JinaCLIPVisionConfig(**vision_config_dict).to_dict()
|
| 219 |
+
# convert keys to string instead of integer
|
| 220 |
+
if 'id2label' in _vision_config_dict:
|
| 221 |
+
_vision_config_dict['id2label'] = {
|
| 222 |
+
str(key): value
|
| 223 |
+
for key, value in _vision_config_dict['id2label'].items()
|
| 224 |
+
}
|
| 225 |
+
|
| 226 |
+
# Give a warning if the values exist in both `_vision_config_dict`
|
| 227 |
+
# and `vision_config` but being different.
|
| 228 |
+
for key, value in _vision_config_dict.items():
|
| 229 |
+
if (
|
| 230 |
+
key in vision_config
|
| 231 |
+
and value != vision_config[key]
|
| 232 |
+
and key not in ['transformers_version']
|
| 233 |
+
):
|
| 234 |
+
# If specified in `vision_config_dict`
|
| 235 |
+
if key in vision_config_dict:
|
| 236 |
+
message = (
|
| 237 |
+
f'`{key}` is found in both `vision_config_dict` and '
|
| 238 |
+
f'`vision_config` but with different '
|
| 239 |
+
f'values. The value `vision_config_dict["{key}"]` will '
|
| 240 |
+
f'be used instead.'
|
| 241 |
+
)
|
| 242 |
+
# If inferred from default argument values
|
| 243 |
+
# (just to be super careful)
|
| 244 |
+
else:
|
| 245 |
+
message = (
|
| 246 |
+
f'`vision_config_dict` is provided which will be used to '
|
| 247 |
+
f'initialize `JinaCLIPVisionConfig`. '
|
| 248 |
+
f'The value `vision_config["{key}"]` will be overriden.'
|
| 249 |
+
)
|
| 250 |
+
logger.info(message)
|
| 251 |
+
|
| 252 |
+
# Update all values in `vision_config` with the ones in
|
| 253 |
+
# `_vision_config_dict`.
|
| 254 |
+
vision_config.update(_vision_config_dict)
|
| 255 |
+
|
| 256 |
+
if text_config is None:
|
| 257 |
+
text_config = {}
|
| 258 |
+
logger.info(
|
| 259 |
+
'`text_config` is `None`. Initializing the `JinaCLIPTextConfig` with '
|
| 260 |
+
'default values.'
|
| 261 |
+
)
|
| 262 |
+
|
| 263 |
+
if vision_config is None:
|
| 264 |
+
vision_config = {}
|
| 265 |
+
logger.info(
|
| 266 |
+
'`vision_config` is `None`. initializing the `JinaCLIPVisionConfig` '
|
| 267 |
+
'with default values.'
|
| 268 |
+
)
|
| 269 |
+
|
| 270 |
+
self.text_config = JinaCLIPTextConfig(**text_config)
|
| 271 |
+
self.vision_config = JinaCLIPVisionConfig(**vision_config)
|
| 272 |
+
|
| 273 |
+
self.add_projections = add_projections
|
| 274 |
+
self.projection_dim = projection_dim
|
| 275 |
+
self.logit_scale_init_value = logit_scale_init_value
|
| 276 |
+
self.initializer_factor = 1.0
|
| 277 |
+
|
| 278 |
+
if not self.add_projections:
|
| 279 |
+
if self.text_config.embed_dim != self.vision_config.embed_dim:
|
| 280 |
+
raise ValueError(
|
| 281 |
+
'When projections are disabled (`add_projections=False`), text '
|
| 282 |
+
'and vision towers need to have the same embedding dimensionality. '
|
| 283 |
+
f'Currently text embedding dim is {self.text_config.embed_dim} != '
|
| 284 |
+
f'{self.vision_config.embed_dim} of the vision tower. '
|
| 285 |
+
'Either set the same output dim for both towers, or enable '
|
| 286 |
+
'projections with `add_projections=True`.'
|
| 287 |
+
)
|
| 288 |
+
|
| 289 |
+
if (
|
| 290 |
+
torch_dtype
|
| 291 |
+
and hasattr(torch, torch_dtype)
|
| 292 |
+
and type(getattr(torch, torch_dtype)) is torch.dtype
|
| 293 |
+
):
|
| 294 |
+
self.torch_dtype = getattr(torch, torch_dtype)
|
| 295 |
+
else:
|
| 296 |
+
self.torch_dtype = torch_dtype
|
| 297 |
+
|
| 298 |
+
use_text_flash_attn = (
|
| 299 |
+
self.use_text_flash_attn if self.use_text_flash_attn is not None
|
| 300 |
+
else self.text_config.hf_model_config_kwargs.get('use_flash_attn', False)
|
| 301 |
+
)
|
| 302 |
+
if not use_text_flash_attn or not torch.cuda.is_available():
|
| 303 |
+
self.torch_dtype = torch.float32
|
| 304 |
+
|
| 305 |
+
@classmethod
|
| 306 |
+
def from_text_vision_configs(
|
| 307 |
+
cls,
|
| 308 |
+
text_config: JinaCLIPTextConfig,
|
| 309 |
+
vision_config: JinaCLIPVisionConfig,
|
| 310 |
+
**kwargs,
|
| 311 |
+
):
|
| 312 |
+
return cls(
|
| 313 |
+
text_config=text_config.to_dict(),
|
| 314 |
+
vision_config=vision_config.to_dict(),
|
| 315 |
+
projection_dim=text_config.projection_dim,
|
| 316 |
+
**kwargs,
|
| 317 |
+
)
|
| 318 |
+
|
| 319 |
+
def to_dict(self):
|
| 320 |
+
output = deepcopy(self.__dict__)
|
| 321 |
+
output['text_config'] = self.text_config.to_dict()
|
| 322 |
+
output['vision_config'] = self.vision_config.to_dict()
|
| 323 |
+
output['model_type'] = self.__class__.model_type
|
| 324 |
+
return output
|
clip_model/eva_model.py
ADDED
|
@@ -0,0 +1,771 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# --------------------------------------------------------
|
| 2 |
+
# Adapted from EVA CLIP
|
| 3 |
+
# https://github.com/baaivision/EVA/tree/master/EVA-CLIP/rei/eva_clip
|
| 4 |
+
# --------------------------------------------------------
|
| 5 |
+
|
| 6 |
+
import math
|
| 7 |
+
import os
|
| 8 |
+
import warnings
|
| 9 |
+
from functools import partial
|
| 10 |
+
|
| 11 |
+
import torch
|
| 12 |
+
import torch.nn as nn
|
| 13 |
+
import torch.nn.functional as f
|
| 14 |
+
|
| 15 |
+
try:
|
| 16 |
+
warnings.filterwarnings('ignore', category=FutureWarning, module='timm')
|
| 17 |
+
from timm.models.layers import drop_path as timm_drop_path
|
| 18 |
+
from timm.models.layers import to_2tuple, trunc_normal_
|
| 19 |
+
except ImportError or ModuleNotFoundError:
|
| 20 |
+
from timm.layers import drop_path as timm_drop_path, to_2tuple, trunc_normal_
|
| 21 |
+
|
| 22 |
+
from .rope_embeddings import VisionRotaryEmbeddingFast
|
| 23 |
+
|
| 24 |
+
if os.getenv('ENV_TYPE') == 'deepspeed':
|
| 25 |
+
try:
|
| 26 |
+
from deepspeed.runtime.activation_checkpointing.checkpointing import checkpoint
|
| 27 |
+
except ImportError or ModuleNotFoundError:
|
| 28 |
+
from torch.utils.checkpoint import checkpoint
|
| 29 |
+
else:
|
| 30 |
+
from torch.utils.checkpoint import checkpoint
|
| 31 |
+
|
| 32 |
+
try:
|
| 33 |
+
import xformers.ops as xops
|
| 34 |
+
except ImportError:
|
| 35 |
+
xops = None
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
class PatchDropout(nn.Module):
|
| 39 |
+
"""
|
| 40 |
+
https://arxiv.org/abs/2212.00794
|
| 41 |
+
"""
|
| 42 |
+
|
| 43 |
+
def __init__(self, prob, exclude_first_token=True):
|
| 44 |
+
super().__init__()
|
| 45 |
+
assert 0 <= prob < 1.0
|
| 46 |
+
self.prob = prob
|
| 47 |
+
self.exclude_first_token = exclude_first_token # exclude CLS token
|
| 48 |
+
|
| 49 |
+
def forward(self, x):
|
| 50 |
+
if not self.training or self.prob == 0.0:
|
| 51 |
+
return x
|
| 52 |
+
|
| 53 |
+
if self.exclude_first_token:
|
| 54 |
+
cls_tokens, x = x[:, :1], x[:, 1:]
|
| 55 |
+
else:
|
| 56 |
+
cls_tokens = torch.jit.annotate(torch.Tensor, x[:, :1])
|
| 57 |
+
|
| 58 |
+
batch = x.size()[0]
|
| 59 |
+
num_tokens = x.size()[1]
|
| 60 |
+
|
| 61 |
+
batch_indices = torch.arange(batch)
|
| 62 |
+
batch_indices = batch_indices[..., None]
|
| 63 |
+
|
| 64 |
+
keep_prob = 1 - self.prob
|
| 65 |
+
num_patches_keep = max(1, int(num_tokens * keep_prob))
|
| 66 |
+
|
| 67 |
+
rand = torch.randn(batch, num_tokens)
|
| 68 |
+
patch_indices_keep = rand.topk(num_patches_keep, dim=-1).indices
|
| 69 |
+
|
| 70 |
+
x = x[batch_indices, patch_indices_keep]
|
| 71 |
+
|
| 72 |
+
if self.exclude_first_token:
|
| 73 |
+
x = torch.cat((cls_tokens, x), dim=1)
|
| 74 |
+
|
| 75 |
+
return x, patch_indices_keep
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
class DropPath(nn.Module):
|
| 79 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of
|
| 80 |
+
residual blocks)."""
|
| 81 |
+
|
| 82 |
+
def __init__(self, drop_prob=None):
|
| 83 |
+
super(DropPath, self).__init__()
|
| 84 |
+
self.drop_prob = drop_prob
|
| 85 |
+
|
| 86 |
+
def forward(self, x):
|
| 87 |
+
return timm_drop_path(x, self.drop_prob, self.training)
|
| 88 |
+
|
| 89 |
+
def extra_repr(self) -> str:
|
| 90 |
+
return 'p={}'.format(self.drop_prob)
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
class Mlp(nn.Module):
|
| 94 |
+
def __init__(
|
| 95 |
+
self,
|
| 96 |
+
in_features,
|
| 97 |
+
hidden_features=None,
|
| 98 |
+
out_features=None,
|
| 99 |
+
act_layer=nn.GELU,
|
| 100 |
+
norm_layer=nn.LayerNorm,
|
| 101 |
+
drop=0.0,
|
| 102 |
+
subln=False,
|
| 103 |
+
):
|
| 104 |
+
super().__init__()
|
| 105 |
+
out_features = out_features or in_features
|
| 106 |
+
hidden_features = hidden_features or in_features
|
| 107 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
| 108 |
+
self.act = act_layer()
|
| 109 |
+
|
| 110 |
+
self.ffn_ln = norm_layer(hidden_features) if subln else nn.Identity()
|
| 111 |
+
|
| 112 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
| 113 |
+
self.drop = nn.Dropout(drop)
|
| 114 |
+
|
| 115 |
+
def forward(self, x):
|
| 116 |
+
x = self.fc1(x)
|
| 117 |
+
x = self.act(x)
|
| 118 |
+
# x = self.drop(x)
|
| 119 |
+
# commit this for the orignal BERT implement
|
| 120 |
+
x = self.ffn_ln(x)
|
| 121 |
+
|
| 122 |
+
x = self.fc2(x)
|
| 123 |
+
x = self.drop(x)
|
| 124 |
+
return x
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
class SwiGLU(nn.Module):
|
| 128 |
+
def __init__(
|
| 129 |
+
self,
|
| 130 |
+
in_features,
|
| 131 |
+
hidden_features=None,
|
| 132 |
+
out_features=None,
|
| 133 |
+
act_layer=nn.SiLU,
|
| 134 |
+
drop=0.0,
|
| 135 |
+
norm_layer=nn.LayerNorm,
|
| 136 |
+
subln=False,
|
| 137 |
+
):
|
| 138 |
+
super().__init__()
|
| 139 |
+
out_features = out_features or in_features
|
| 140 |
+
hidden_features = hidden_features or in_features
|
| 141 |
+
|
| 142 |
+
self.w1 = nn.Linear(in_features, hidden_features)
|
| 143 |
+
self.w2 = nn.Linear(in_features, hidden_features)
|
| 144 |
+
|
| 145 |
+
self.act = act_layer()
|
| 146 |
+
self.ffn_ln = norm_layer(hidden_features) if subln else nn.Identity()
|
| 147 |
+
self.w3 = nn.Linear(hidden_features, out_features)
|
| 148 |
+
|
| 149 |
+
self.drop = nn.Dropout(drop)
|
| 150 |
+
|
| 151 |
+
def forward(self, x):
|
| 152 |
+
x1 = self.w1(x)
|
| 153 |
+
x2 = self.w2(x)
|
| 154 |
+
hidden = self.act(x1) * x2
|
| 155 |
+
x = self.ffn_ln(hidden)
|
| 156 |
+
x = self.w3(x)
|
| 157 |
+
x = self.drop(x)
|
| 158 |
+
return x
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
class Attention(nn.Module):
|
| 162 |
+
def __init__(
|
| 163 |
+
self,
|
| 164 |
+
dim,
|
| 165 |
+
num_heads=8,
|
| 166 |
+
qkv_bias=False,
|
| 167 |
+
qk_scale=None,
|
| 168 |
+
attn_drop=0.0,
|
| 169 |
+
proj_drop=0.0,
|
| 170 |
+
window_size=None,
|
| 171 |
+
attn_head_dim=None,
|
| 172 |
+
xattn=False,
|
| 173 |
+
rope=None,
|
| 174 |
+
subln=False,
|
| 175 |
+
norm_layer=nn.LayerNorm,
|
| 176 |
+
):
|
| 177 |
+
super().__init__()
|
| 178 |
+
self.num_heads = num_heads
|
| 179 |
+
head_dim = dim // num_heads
|
| 180 |
+
if attn_head_dim is not None:
|
| 181 |
+
head_dim = attn_head_dim
|
| 182 |
+
all_head_dim = head_dim * self.num_heads
|
| 183 |
+
self.scale = qk_scale or head_dim**-0.5
|
| 184 |
+
|
| 185 |
+
self.subln = subln
|
| 186 |
+
if self.subln:
|
| 187 |
+
self.q_proj = nn.Linear(dim, all_head_dim, bias=False)
|
| 188 |
+
self.k_proj = nn.Linear(dim, all_head_dim, bias=False)
|
| 189 |
+
self.v_proj = nn.Linear(dim, all_head_dim, bias=False)
|
| 190 |
+
else:
|
| 191 |
+
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
|
| 192 |
+
|
| 193 |
+
if qkv_bias:
|
| 194 |
+
self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
|
| 195 |
+
self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
|
| 196 |
+
else:
|
| 197 |
+
self.q_bias = None
|
| 198 |
+
self.v_bias = None
|
| 199 |
+
|
| 200 |
+
if window_size:
|
| 201 |
+
self.window_size = window_size
|
| 202 |
+
self.num_relative_distance = (2 * window_size[0] - 1) * (
|
| 203 |
+
2 * window_size[1] - 1
|
| 204 |
+
) + 3
|
| 205 |
+
self.relative_position_bias_table = nn.Parameter(
|
| 206 |
+
torch.zeros(self.num_relative_distance, num_heads)
|
| 207 |
+
) # 2*Wh-1 * 2*Ww-1, nH
|
| 208 |
+
# cls to token & token 2 cls & cls to cls
|
| 209 |
+
|
| 210 |
+
# get pair-wise relative position index for each token inside the window
|
| 211 |
+
coords_h = torch.arange(window_size[0])
|
| 212 |
+
coords_w = torch.arange(window_size[1])
|
| 213 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
| 214 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
| 215 |
+
relative_coords = (
|
| 216 |
+
coords_flatten[:, :, None] - coords_flatten[:, None, :]
|
| 217 |
+
) # 2, Wh*Ww, Wh*Ww
|
| 218 |
+
relative_coords = relative_coords.permute(
|
| 219 |
+
1, 2, 0
|
| 220 |
+
).contiguous() # Wh*Ww, Wh*Ww, 2
|
| 221 |
+
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
|
| 222 |
+
relative_coords[:, :, 1] += window_size[1] - 1
|
| 223 |
+
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
|
| 224 |
+
relative_position_index = torch.zeros(
|
| 225 |
+
size=(window_size[0] * window_size[1] + 1,) * 2,
|
| 226 |
+
dtype=relative_coords.dtype,
|
| 227 |
+
)
|
| 228 |
+
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
| 229 |
+
relative_position_index[0, 0:] = self.num_relative_distance - 3
|
| 230 |
+
relative_position_index[0:, 0] = self.num_relative_distance - 2
|
| 231 |
+
relative_position_index[0, 0] = self.num_relative_distance - 1
|
| 232 |
+
|
| 233 |
+
self.register_buffer('relative_position_index', relative_position_index)
|
| 234 |
+
else:
|
| 235 |
+
self.window_size = None
|
| 236 |
+
self.relative_position_bias_table = None
|
| 237 |
+
self.relative_position_index = None
|
| 238 |
+
|
| 239 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
| 240 |
+
self.inner_attn_ln = norm_layer(all_head_dim) if subln else nn.Identity()
|
| 241 |
+
# self.proj = nn.Linear(all_head_dim, all_head_dim)
|
| 242 |
+
self.proj = nn.Linear(all_head_dim, dim)
|
| 243 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
| 244 |
+
self.xattn = xattn
|
| 245 |
+
self.xattn_drop = attn_drop
|
| 246 |
+
|
| 247 |
+
self.rope = rope
|
| 248 |
+
|
| 249 |
+
def forward(self, x, rel_pos_bias=None, attn_mask=None):
|
| 250 |
+
b, n, _ = x.shape
|
| 251 |
+
if self.subln:
|
| 252 |
+
q = f.linear(input=x, weight=self.q_proj.weight, bias=self.q_bias)
|
| 253 |
+
k = f.linear(input=x, weight=self.k_proj.weight, bias=None)
|
| 254 |
+
v = f.linear(input=x, weight=self.v_proj.weight, bias=self.v_bias)
|
| 255 |
+
|
| 256 |
+
q = q.reshape(b, n, self.num_heads, -1).permute(
|
| 257 |
+
0, 2, 1, 3
|
| 258 |
+
) # B, num_heads, N, C
|
| 259 |
+
k = k.reshape(b, n, self.num_heads, -1).permute(0, 2, 1, 3)
|
| 260 |
+
v = v.reshape(b, n, self.num_heads, -1).permute(0, 2, 1, 3)
|
| 261 |
+
else:
|
| 262 |
+
qkv_bias = None
|
| 263 |
+
if self.q_bias is not None:
|
| 264 |
+
qkv_bias = torch.cat(
|
| 265 |
+
(
|
| 266 |
+
self.q_bias,
|
| 267 |
+
torch.zeros_like(self.v_bias, requires_grad=False),
|
| 268 |
+
self.v_bias,
|
| 269 |
+
)
|
| 270 |
+
)
|
| 271 |
+
|
| 272 |
+
qkv = f.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
|
| 273 |
+
qkv = qkv.reshape(b, n, 3, self.num_heads, -1).permute(
|
| 274 |
+
2, 0, 3, 1, 4
|
| 275 |
+
) # 3, B, num_heads, N, C
|
| 276 |
+
q, k, v = qkv[0], qkv[1], qkv[2]
|
| 277 |
+
|
| 278 |
+
if self.rope:
|
| 279 |
+
# slightly fast impl
|
| 280 |
+
q_t = q[:, :, 1:, :]
|
| 281 |
+
ro_q_t = self.rope(q_t)
|
| 282 |
+
q = torch.cat((q[:, :, :1, :], ro_q_t), -2).type_as(v)
|
| 283 |
+
|
| 284 |
+
k_t = k[:, :, 1:, :]
|
| 285 |
+
ro_k_t = self.rope(k_t)
|
| 286 |
+
k = torch.cat((k[:, :, :1, :], ro_k_t), -2).type_as(v)
|
| 287 |
+
|
| 288 |
+
if self.xattn:
|
| 289 |
+
if xops is None:
|
| 290 |
+
raise ValueError(
|
| 291 |
+
"Can't use xattn without xformers. Please 'pip install xformers'"
|
| 292 |
+
)
|
| 293 |
+
q = q.permute(0, 2, 1, 3) # B, num_heads, N, C -> B, N, num_heads, C
|
| 294 |
+
k = k.permute(0, 2, 1, 3)
|
| 295 |
+
v = v.permute(0, 2, 1, 3)
|
| 296 |
+
|
| 297 |
+
x = xops.memory_efficient_attention(
|
| 298 |
+
q,
|
| 299 |
+
k,
|
| 300 |
+
v,
|
| 301 |
+
p=self.xattn_drop,
|
| 302 |
+
scale=self.scale,
|
| 303 |
+
)
|
| 304 |
+
x = x.reshape(b, n, -1)
|
| 305 |
+
x = self.inner_attn_ln(x)
|
| 306 |
+
x = self.proj(x)
|
| 307 |
+
x = self.proj_drop(x)
|
| 308 |
+
else:
|
| 309 |
+
q = q * self.scale
|
| 310 |
+
attn = q @ k.transpose(-2, -1)
|
| 311 |
+
|
| 312 |
+
if self.relative_position_bias_table is not None:
|
| 313 |
+
relative_position_bias = self.relative_position_bias_table[
|
| 314 |
+
self.relative_position_index.view(-1)
|
| 315 |
+
].view(
|
| 316 |
+
self.window_size[0] * self.window_size[1] + 1,
|
| 317 |
+
self.window_size[0] * self.window_size[1] + 1,
|
| 318 |
+
-1,
|
| 319 |
+
) # Wh*Ww,Wh*Ww,nH
|
| 320 |
+
relative_position_bias = relative_position_bias.permute(
|
| 321 |
+
2, 0, 1
|
| 322 |
+
).contiguous() # nH, Wh*Ww, Wh*Ww
|
| 323 |
+
attn = attn + relative_position_bias.unsqueeze(0).type_as(attn)
|
| 324 |
+
|
| 325 |
+
if rel_pos_bias is not None:
|
| 326 |
+
attn = attn + rel_pos_bias.type_as(attn)
|
| 327 |
+
|
| 328 |
+
if attn_mask is not None:
|
| 329 |
+
attn_mask = attn_mask.bool()
|
| 330 |
+
attn = attn.masked_fill(~attn_mask[:, None, None, :], float('-inf'))
|
| 331 |
+
|
| 332 |
+
attn = attn.softmax(dim=-1)
|
| 333 |
+
attn = self.attn_drop(attn)
|
| 334 |
+
|
| 335 |
+
x = (attn @ v).transpose(1, 2).reshape(b, n, -1)
|
| 336 |
+
x = self.inner_attn_ln(x)
|
| 337 |
+
x = self.proj(x)
|
| 338 |
+
x = self.proj_drop(x)
|
| 339 |
+
return x
|
| 340 |
+
|
| 341 |
+
|
| 342 |
+
class Block(nn.Module):
|
| 343 |
+
def __init__(
|
| 344 |
+
self,
|
| 345 |
+
dim,
|
| 346 |
+
num_heads,
|
| 347 |
+
mlp_ratio=4.0,
|
| 348 |
+
qkv_bias=False,
|
| 349 |
+
qk_scale=None,
|
| 350 |
+
drop=0.0,
|
| 351 |
+
attn_drop=0.0,
|
| 352 |
+
drop_path=0.0,
|
| 353 |
+
init_values=None,
|
| 354 |
+
act_layer=nn.GELU,
|
| 355 |
+
norm_layer=nn.LayerNorm,
|
| 356 |
+
window_size=None,
|
| 357 |
+
attn_head_dim=None,
|
| 358 |
+
xattn=False,
|
| 359 |
+
rope=None,
|
| 360 |
+
postnorm=False,
|
| 361 |
+
subln=False,
|
| 362 |
+
naiveswiglu=False,
|
| 363 |
+
):
|
| 364 |
+
super().__init__()
|
| 365 |
+
self.norm1 = norm_layer(dim)
|
| 366 |
+
self.attn = Attention(
|
| 367 |
+
dim,
|
| 368 |
+
num_heads=num_heads,
|
| 369 |
+
qkv_bias=qkv_bias,
|
| 370 |
+
qk_scale=qk_scale,
|
| 371 |
+
attn_drop=attn_drop,
|
| 372 |
+
proj_drop=drop,
|
| 373 |
+
window_size=window_size,
|
| 374 |
+
attn_head_dim=attn_head_dim,
|
| 375 |
+
xattn=xattn,
|
| 376 |
+
rope=rope,
|
| 377 |
+
subln=subln,
|
| 378 |
+
norm_layer=norm_layer,
|
| 379 |
+
)
|
| 380 |
+
# NOTE: drop path for stochastic depth, we shall see if this is better
|
| 381 |
+
# than dropout here
|
| 382 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
|
| 383 |
+
self.norm2 = norm_layer(dim)
|
| 384 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
| 385 |
+
|
| 386 |
+
if naiveswiglu:
|
| 387 |
+
self.mlp = SwiGLU(
|
| 388 |
+
in_features=dim,
|
| 389 |
+
hidden_features=mlp_hidden_dim,
|
| 390 |
+
subln=subln,
|
| 391 |
+
norm_layer=norm_layer,
|
| 392 |
+
)
|
| 393 |
+
else:
|
| 394 |
+
self.mlp = Mlp(
|
| 395 |
+
in_features=dim,
|
| 396 |
+
hidden_features=mlp_hidden_dim,
|
| 397 |
+
act_layer=act_layer,
|
| 398 |
+
subln=subln,
|
| 399 |
+
drop=drop,
|
| 400 |
+
)
|
| 401 |
+
|
| 402 |
+
if init_values is not None and init_values > 0:
|
| 403 |
+
self.gamma_1 = nn.Parameter(
|
| 404 |
+
init_values * torch.ones((dim,)), requires_grad=True
|
| 405 |
+
)
|
| 406 |
+
self.gamma_2 = nn.Parameter(
|
| 407 |
+
init_values * torch.ones((dim,)), requires_grad=True
|
| 408 |
+
)
|
| 409 |
+
else:
|
| 410 |
+
self.gamma_1, self.gamma_2 = None, None
|
| 411 |
+
|
| 412 |
+
self.postnorm = postnorm
|
| 413 |
+
|
| 414 |
+
def forward(self, x, rel_pos_bias=None, attn_mask=None):
|
| 415 |
+
if self.gamma_1 is None:
|
| 416 |
+
if self.postnorm:
|
| 417 |
+
x = x + self.drop_path(
|
| 418 |
+
self.norm1(
|
| 419 |
+
self.attn(x, rel_pos_bias=rel_pos_bias, attn_mask=attn_mask)
|
| 420 |
+
)
|
| 421 |
+
)
|
| 422 |
+
x = x + self.drop_path(self.norm2(self.mlp(x)))
|
| 423 |
+
else:
|
| 424 |
+
x = x + self.drop_path(
|
| 425 |
+
self.attn(
|
| 426 |
+
self.norm1(x), rel_pos_bias=rel_pos_bias, attn_mask=attn_mask
|
| 427 |
+
)
|
| 428 |
+
)
|
| 429 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
| 430 |
+
else:
|
| 431 |
+
if self.postnorm:
|
| 432 |
+
x = x + self.drop_path(
|
| 433 |
+
self.gamma_1
|
| 434 |
+
* self.norm1(
|
| 435 |
+
self.attn(x, rel_pos_bias=rel_pos_bias, attn_mask=attn_mask)
|
| 436 |
+
)
|
| 437 |
+
)
|
| 438 |
+
x = x + self.drop_path(self.gamma_2 * self.norm2(self.mlp(x)))
|
| 439 |
+
else:
|
| 440 |
+
x = x + self.drop_path(
|
| 441 |
+
self.gamma_1
|
| 442 |
+
* self.attn(
|
| 443 |
+
self.norm1(x), rel_pos_bias=rel_pos_bias, attn_mask=attn_mask
|
| 444 |
+
)
|
| 445 |
+
)
|
| 446 |
+
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
|
| 447 |
+
return x
|
| 448 |
+
|
| 449 |
+
|
| 450 |
+
class PatchEmbed(nn.Module):
|
| 451 |
+
"""Image to Patch Embedding"""
|
| 452 |
+
|
| 453 |
+
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
|
| 454 |
+
super().__init__()
|
| 455 |
+
img_size = to_2tuple(img_size)
|
| 456 |
+
patch_size = to_2tuple(patch_size)
|
| 457 |
+
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
|
| 458 |
+
self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
|
| 459 |
+
self.img_size = img_size
|
| 460 |
+
self.patch_size = patch_size
|
| 461 |
+
self.num_patches = num_patches
|
| 462 |
+
|
| 463 |
+
self.proj = nn.Conv2d(
|
| 464 |
+
in_chans, embed_dim, kernel_size=patch_size, stride=patch_size
|
| 465 |
+
)
|
| 466 |
+
|
| 467 |
+
def forward(self, x, **_):
|
| 468 |
+
target_dtype = self.proj.weight.dtype
|
| 469 |
+
_, __, h, w = x.shape
|
| 470 |
+
# FIXME look at relaxing size constraints
|
| 471 |
+
assert h == self.img_size[0] and w == self.img_size[1], (
|
| 472 |
+
f"Input image size ({h}*{w}) doesn't match model "
|
| 473 |
+
f'({self.img_size[0]}*{self.img_size[1]}).'
|
| 474 |
+
)
|
| 475 |
+
x = self.proj(x.to(dtype=target_dtype)).flatten(2).transpose(1, 2)
|
| 476 |
+
return x
|
| 477 |
+
|
| 478 |
+
|
| 479 |
+
class RelativePositionBias(nn.Module):
|
| 480 |
+
def __init__(self, window_size, num_heads):
|
| 481 |
+
super().__init__()
|
| 482 |
+
self.window_size = window_size
|
| 483 |
+
self.num_relative_distance = (2 * window_size[0] - 1) * (
|
| 484 |
+
2 * window_size[1] - 1
|
| 485 |
+
) + 3
|
| 486 |
+
self.relative_position_bias_table = nn.Parameter(
|
| 487 |
+
torch.zeros(self.num_relative_distance, num_heads)
|
| 488 |
+
) # 2*Wh-1 * 2*Ww-1, nH
|
| 489 |
+
# cls to token & token 2 cls & cls to cls
|
| 490 |
+
|
| 491 |
+
# get pair-wise relative position index for each token inside the window
|
| 492 |
+
coords_h = torch.arange(window_size[0])
|
| 493 |
+
coords_w = torch.arange(window_size[1])
|
| 494 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
| 495 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
| 496 |
+
relative_coords = (
|
| 497 |
+
coords_flatten[:, :, None] - coords_flatten[:, None, :]
|
| 498 |
+
) # 2, Wh*Ww, Wh*Ww
|
| 499 |
+
relative_coords = relative_coords.permute(
|
| 500 |
+
1, 2, 0
|
| 501 |
+
).contiguous() # Wh*Ww, Wh*Ww, 2
|
| 502 |
+
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
|
| 503 |
+
relative_coords[:, :, 1] += window_size[1] - 1
|
| 504 |
+
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
|
| 505 |
+
relative_position_index = torch.zeros(
|
| 506 |
+
size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype
|
| 507 |
+
)
|
| 508 |
+
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
| 509 |
+
relative_position_index[0, 0:] = self.num_relative_distance - 3
|
| 510 |
+
relative_position_index[0:, 0] = self.num_relative_distance - 2
|
| 511 |
+
relative_position_index[0, 0] = self.num_relative_distance - 1
|
| 512 |
+
|
| 513 |
+
self.register_buffer('relative_position_index', relative_position_index)
|
| 514 |
+
|
| 515 |
+
def forward(self):
|
| 516 |
+
relative_position_bias = self.relative_position_bias_table[
|
| 517 |
+
self.relative_position_index.view(-1)
|
| 518 |
+
].view(
|
| 519 |
+
self.window_size[0] * self.window_size[1] + 1,
|
| 520 |
+
self.window_size[0] * self.window_size[1] + 1,
|
| 521 |
+
-1,
|
| 522 |
+
) # Wh*Ww,Wh*Ww,nH
|
| 523 |
+
return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
| 524 |
+
|
| 525 |
+
|
| 526 |
+
class EVAVisionTransformer(nn.Module):
|
| 527 |
+
"""Vision Transformer with support for patch or hybrid CNN input stage"""
|
| 528 |
+
|
| 529 |
+
def __init__(
|
| 530 |
+
self,
|
| 531 |
+
img_size=224,
|
| 532 |
+
patch_size=16,
|
| 533 |
+
in_chans=3,
|
| 534 |
+
num_classes=0,
|
| 535 |
+
embed_dim=768,
|
| 536 |
+
depth=12,
|
| 537 |
+
num_heads=12,
|
| 538 |
+
mlp_ratio=4.0,
|
| 539 |
+
qkv_bias=False,
|
| 540 |
+
qk_scale=None,
|
| 541 |
+
drop_rate=0.0,
|
| 542 |
+
attn_drop_rate=0.0,
|
| 543 |
+
drop_path_rate=0.0,
|
| 544 |
+
norm_layer=nn.LayerNorm,
|
| 545 |
+
init_values=None,
|
| 546 |
+
patch_dropout=0.0,
|
| 547 |
+
use_abs_pos_emb=True,
|
| 548 |
+
use_rel_pos_bias=False,
|
| 549 |
+
use_shared_rel_pos_bias=False,
|
| 550 |
+
rope=False,
|
| 551 |
+
use_mean_pooling=True,
|
| 552 |
+
init_scale=0.001,
|
| 553 |
+
grad_checkpointing=False,
|
| 554 |
+
xattn=False,
|
| 555 |
+
postnorm=False,
|
| 556 |
+
pt_hw_seq_len=16,
|
| 557 |
+
intp_freq=False,
|
| 558 |
+
naiveswiglu=False,
|
| 559 |
+
subln=False,
|
| 560 |
+
proj_type=None,
|
| 561 |
+
):
|
| 562 |
+
super().__init__()
|
| 563 |
+
self.image_size = img_size
|
| 564 |
+
self.num_classes = num_classes
|
| 565 |
+
# num_features for consistency with other models
|
| 566 |
+
self.num_features = self.embed_dim = embed_dim
|
| 567 |
+
|
| 568 |
+
self.patch_embed = PatchEmbed(
|
| 569 |
+
img_size=img_size,
|
| 570 |
+
patch_size=patch_size,
|
| 571 |
+
in_chans=in_chans,
|
| 572 |
+
embed_dim=embed_dim,
|
| 573 |
+
)
|
| 574 |
+
num_patches = self.patch_embed.num_patches
|
| 575 |
+
|
| 576 |
+
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
| 577 |
+
# self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
| 578 |
+
if use_abs_pos_emb:
|
| 579 |
+
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
|
| 580 |
+
else:
|
| 581 |
+
self.pos_embed = None
|
| 582 |
+
self.pos_drop = nn.Dropout(p=drop_rate)
|
| 583 |
+
|
| 584 |
+
if use_shared_rel_pos_bias:
|
| 585 |
+
self.rel_pos_bias = RelativePositionBias(
|
| 586 |
+
window_size=self.patch_embed.patch_shape, num_heads=num_heads
|
| 587 |
+
)
|
| 588 |
+
else:
|
| 589 |
+
self.rel_pos_bias = None
|
| 590 |
+
|
| 591 |
+
if rope:
|
| 592 |
+
half_head_dim = embed_dim // num_heads // 2
|
| 593 |
+
hw_seq_len = img_size // patch_size
|
| 594 |
+
self.rope = VisionRotaryEmbeddingFast(
|
| 595 |
+
dim=half_head_dim,
|
| 596 |
+
pt_seq_len=pt_hw_seq_len,
|
| 597 |
+
ft_seq_len=hw_seq_len if intp_freq else None,
|
| 598 |
+
patch_dropout=patch_dropout,
|
| 599 |
+
)
|
| 600 |
+
else:
|
| 601 |
+
self.rope = None
|
| 602 |
+
|
| 603 |
+
self.naiveswiglu = naiveswiglu
|
| 604 |
+
|
| 605 |
+
dpr = [
|
| 606 |
+
x.item() for x in torch.linspace(0, drop_path_rate, depth)
|
| 607 |
+
] # stochastic depth decay rule
|
| 608 |
+
self.use_rel_pos_bias = use_rel_pos_bias
|
| 609 |
+
self.blocks = nn.ModuleList(
|
| 610 |
+
[
|
| 611 |
+
Block(
|
| 612 |
+
dim=embed_dim,
|
| 613 |
+
num_heads=num_heads,
|
| 614 |
+
mlp_ratio=mlp_ratio,
|
| 615 |
+
qkv_bias=qkv_bias,
|
| 616 |
+
qk_scale=qk_scale,
|
| 617 |
+
drop=drop_rate,
|
| 618 |
+
attn_drop=attn_drop_rate,
|
| 619 |
+
drop_path=dpr[i],
|
| 620 |
+
norm_layer=norm_layer,
|
| 621 |
+
init_values=init_values,
|
| 622 |
+
window_size=self.patch_embed.patch_shape
|
| 623 |
+
if use_rel_pos_bias
|
| 624 |
+
else None,
|
| 625 |
+
xattn=xattn,
|
| 626 |
+
rope=self.rope,
|
| 627 |
+
postnorm=postnorm,
|
| 628 |
+
subln=subln,
|
| 629 |
+
naiveswiglu=naiveswiglu,
|
| 630 |
+
)
|
| 631 |
+
for i in range(depth)
|
| 632 |
+
]
|
| 633 |
+
)
|
| 634 |
+
self.norm = nn.Identity() if use_mean_pooling else norm_layer(embed_dim)
|
| 635 |
+
self.fc_norm = norm_layer(embed_dim) if use_mean_pooling else None
|
| 636 |
+
if (num_classes == embed_dim) and (proj_type is None):
|
| 637 |
+
self.head = nn.Identity()
|
| 638 |
+
elif proj_type == 'linear':
|
| 639 |
+
self.head = nn.Linear(embed_dim, num_classes, bias=qkv_bias)
|
| 640 |
+
elif proj_type == 'mlp':
|
| 641 |
+
hidden_size = (embed_dim + num_classes) // 2
|
| 642 |
+
self.proj = nn.Sequential(
|
| 643 |
+
nn.Linear(embed_dim, hidden_size, bias=qkv_bias),
|
| 644 |
+
nn.GELU(),
|
| 645 |
+
nn.Linear(hidden_size, num_classes, bias=qkv_bias),
|
| 646 |
+
)
|
| 647 |
+
|
| 648 |
+
if self.pos_embed is not None:
|
| 649 |
+
trunc_normal_(self.pos_embed, std=0.02)
|
| 650 |
+
|
| 651 |
+
trunc_normal_(self.cls_token, std=0.02)
|
| 652 |
+
|
| 653 |
+
self.apply(self._init_weights)
|
| 654 |
+
self.fix_init_weight()
|
| 655 |
+
|
| 656 |
+
if isinstance(self.head, nn.Linear):
|
| 657 |
+
trunc_normal_(self.head.weight, std=0.02)
|
| 658 |
+
self.head.weight.data.mul_(init_scale)
|
| 659 |
+
if qkv_bias:
|
| 660 |
+
self.head.bias.data.mul_(init_scale)
|
| 661 |
+
|
| 662 |
+
# setting a patch_dropout of 0. would mean it is disabled and this function
|
| 663 |
+
# would be the identity fn
|
| 664 |
+
self.patch_dropout = (
|
| 665 |
+
PatchDropout(patch_dropout) if patch_dropout > 0.0 else nn.Identity()
|
| 666 |
+
)
|
| 667 |
+
|
| 668 |
+
self.grad_checkpointing = grad_checkpointing
|
| 669 |
+
|
| 670 |
+
def fix_init_weight(self):
|
| 671 |
+
def rescale(param, _layer_id):
|
| 672 |
+
param.div_(math.sqrt(2.0 * _layer_id))
|
| 673 |
+
|
| 674 |
+
for layer_id, layer in enumerate(self.blocks):
|
| 675 |
+
rescale(layer.attn.proj.weight.data, layer_id + 1)
|
| 676 |
+
if self.naiveswiglu:
|
| 677 |
+
rescale(layer.mlp.w3.weight.data, layer_id + 1)
|
| 678 |
+
else:
|
| 679 |
+
rescale(layer.mlp.fc2.weight.data, layer_id + 1)
|
| 680 |
+
|
| 681 |
+
def get_cast_dtype(self) -> torch.dtype:
|
| 682 |
+
return self.blocks[0].mlp.fc2.weight.dtype
|
| 683 |
+
|
| 684 |
+
@staticmethod
|
| 685 |
+
def _init_weights(m):
|
| 686 |
+
if isinstance(m, nn.Linear):
|
| 687 |
+
trunc_normal_(m.weight, std=0.02)
|
| 688 |
+
if m.bias is not None:
|
| 689 |
+
nn.init.constant_(m.bias, 0)
|
| 690 |
+
elif isinstance(m, nn.LayerNorm):
|
| 691 |
+
nn.init.constant_(m.bias, 0)
|
| 692 |
+
nn.init.constant_(m.weight, 1.0)
|
| 693 |
+
|
| 694 |
+
@staticmethod
|
| 695 |
+
def _initialize_weights(m):
|
| 696 |
+
EVAVisionTransformer._init_weights(m)
|
| 697 |
+
|
| 698 |
+
def get_num_layers(self):
|
| 699 |
+
return len(self.blocks)
|
| 700 |
+
|
| 701 |
+
def lock(self, unlocked_groups=0, *_, **__):
|
| 702 |
+
assert (
|
| 703 |
+
unlocked_groups == 0
|
| 704 |
+
), 'partial locking not currently supported for this model'
|
| 705 |
+
for param in self.parameters():
|
| 706 |
+
param.requires_grad = False
|
| 707 |
+
|
| 708 |
+
@torch.jit.ignore
|
| 709 |
+
def set_grad_checkpointing(self, enable=True):
|
| 710 |
+
self.grad_checkpointing = enable
|
| 711 |
+
|
| 712 |
+
@torch.jit.ignore
|
| 713 |
+
def no_weight_decay(self):
|
| 714 |
+
return {'pos_embed', 'cls_token'}
|
| 715 |
+
|
| 716 |
+
def get_classifier(self):
|
| 717 |
+
return self.head
|
| 718 |
+
|
| 719 |
+
def reset_classifier(self, num_classes, *_, **__):
|
| 720 |
+
self.num_classes = num_classes
|
| 721 |
+
self.head = (
|
| 722 |
+
nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
| 723 |
+
)
|
| 724 |
+
|
| 725 |
+
def forward_features(self, x, return_all_features=False):
|
| 726 |
+
x = self.patch_embed(x)
|
| 727 |
+
batch_size, seq_len, _ = x.size()
|
| 728 |
+
|
| 729 |
+
cls_tokens = self.cls_token.expand(
|
| 730 |
+
batch_size, -1, -1
|
| 731 |
+
) # stole cls_tokens impl from Phil Wang, thanks
|
| 732 |
+
x = torch.cat((cls_tokens, x), dim=1)
|
| 733 |
+
if self.pos_embed is not None:
|
| 734 |
+
x = x + self.pos_embed
|
| 735 |
+
x = self.pos_drop(x)
|
| 736 |
+
|
| 737 |
+
# a patch_dropout of 0. would mean it is disabled and this function would do
|
| 738 |
+
# nothing but return what was passed in
|
| 739 |
+
if self.rope is not None:
|
| 740 |
+
if self.training and not isinstance(self.patch_dropout, nn.Identity):
|
| 741 |
+
x, patch_indices_keep = self.patch_dropout(x)
|
| 742 |
+
self.rope.forward = partial(
|
| 743 |
+
self.rope.forward, patch_indices_keep=patch_indices_keep
|
| 744 |
+
)
|
| 745 |
+
else:
|
| 746 |
+
self.rope.forward = partial(self.rope.forward, patch_indices_keep=None)
|
| 747 |
+
x = self.patch_dropout(x)
|
| 748 |
+
else:
|
| 749 |
+
x = self.patch_dropout(x)
|
| 750 |
+
|
| 751 |
+
rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None
|
| 752 |
+
for blk in self.blocks:
|
| 753 |
+
if self.grad_checkpointing:
|
| 754 |
+
x = checkpoint(blk, x, (rel_pos_bias,))
|
| 755 |
+
else:
|
| 756 |
+
x = blk(x, rel_pos_bias=rel_pos_bias)
|
| 757 |
+
|
| 758 |
+
if not return_all_features:
|
| 759 |
+
x = self.norm(x)
|
| 760 |
+
if self.fc_norm is not None:
|
| 761 |
+
return self.fc_norm(x.mean(1))
|
| 762 |
+
else:
|
| 763 |
+
return x[:, 0]
|
| 764 |
+
return x
|
| 765 |
+
|
| 766 |
+
def forward(self, x, return_all_features=False):
|
| 767 |
+
if return_all_features:
|
| 768 |
+
return self.forward_features(x, return_all_features)
|
| 769 |
+
x = self.forward_features(x)
|
| 770 |
+
x = self.head(x)
|
| 771 |
+
return x
|
clip_model/hf_model.py
ADDED
|
@@ -0,0 +1,364 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
import warnings
|
| 3 |
+
from typing import Dict, Optional, Union
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
from transformers import AutoConfig, AutoModel, PretrainedConfig
|
| 8 |
+
from transformers.modeling_outputs import (
|
| 9 |
+
BaseModelOutput,
|
| 10 |
+
BaseModelOutputWithPooling,
|
| 11 |
+
BaseModelOutputWithPoolingAndCrossAttentions,
|
| 12 |
+
)
|
| 13 |
+
|
| 14 |
+
_HF_ARCH_DICT = {
|
| 15 |
+
# https://huggingface.co/docs/transformers/model_doc/roberta#roberta
|
| 16 |
+
'roberta': {
|
| 17 |
+
'config_names': {
|
| 18 |
+
'context_length': 'max_position_embeddings',
|
| 19 |
+
'vocab_size': 'vocab_size',
|
| 20 |
+
'width': 'hidden_size',
|
| 21 |
+
'heads': 'num_attention_heads',
|
| 22 |
+
'layers': 'num_hidden_layers',
|
| 23 |
+
'layer_attr': 'layer',
|
| 24 |
+
'token_embeddings_attr': 'embeddings',
|
| 25 |
+
},
|
| 26 |
+
'pooler': 'mean_pooler',
|
| 27 |
+
},
|
| 28 |
+
# https://huggingface.co/docs/transformers/model_doc/xlm-roberta#transformers.XLMRobertaConfig
|
| 29 |
+
'xlm-roberta': {
|
| 30 |
+
'config_names': {
|
| 31 |
+
'context_length': 'max_position_embeddings',
|
| 32 |
+
'vocab_size': 'vocab_size',
|
| 33 |
+
'width': 'hidden_size',
|
| 34 |
+
'heads': 'num_attention_heads',
|
| 35 |
+
'layers': 'num_hidden_layers',
|
| 36 |
+
'layer_attr': 'layer',
|
| 37 |
+
'token_embeddings_attr': 'embeddings',
|
| 38 |
+
},
|
| 39 |
+
'pooler': 'mean_pooler',
|
| 40 |
+
},
|
| 41 |
+
# https://huggingface.co/docs/transformers/model_doc/bert
|
| 42 |
+
'bert': {
|
| 43 |
+
'config_names': {
|
| 44 |
+
'context_length': 'max_position_embeddings',
|
| 45 |
+
'vocab_size': 'vocab_size',
|
| 46 |
+
'width': 'hidden_size',
|
| 47 |
+
'heads': 'num_attention_heads',
|
| 48 |
+
'layers': 'num_hidden_layers',
|
| 49 |
+
},
|
| 50 |
+
'pooler': 'cls_pooler',
|
| 51 |
+
},
|
| 52 |
+
}
|
| 53 |
+
|
| 54 |
+
_POOLERS = {}
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def _camel2snake(s):
|
| 58 |
+
return re.sub(r'(?<!^)(?=[A-Z])', '_', s).lower()
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def register_pooler(cls):
|
| 62 |
+
"""Decorator registering pooler class"""
|
| 63 |
+
_POOLERS[_camel2snake(cls.__name__)] = cls
|
| 64 |
+
return cls
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
@register_pooler
|
| 68 |
+
class MeanPooler(nn.Module):
|
| 69 |
+
@staticmethod
|
| 70 |
+
def forward(x: BaseModelOutput, attention_mask: torch.Tensor):
|
| 71 |
+
masked_output = x.last_hidden_state * attention_mask.unsqueeze(-1)
|
| 72 |
+
return masked_output.sum(dim=1) / attention_mask.sum(-1, keepdim=True)
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
@register_pooler
|
| 76 |
+
class MaxPooler(nn.Module):
|
| 77 |
+
@staticmethod
|
| 78 |
+
def forward(x: BaseModelOutput, attention_mask: torch.Tensor):
|
| 79 |
+
masked_output = x.last_hidden_state.masked_fill(
|
| 80 |
+
attention_mask.unsqueeze(-1), -torch.inf
|
| 81 |
+
)
|
| 82 |
+
return masked_output.max(1).values
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
@register_pooler
|
| 86 |
+
class ClsPooler(nn.Module):
|
| 87 |
+
def __init__(self, use_pooler_output: bool = True):
|
| 88 |
+
super().__init__()
|
| 89 |
+
self.cls_token_position = 0
|
| 90 |
+
self.use_pooler_output = use_pooler_output
|
| 91 |
+
|
| 92 |
+
def forward(self, x: BaseModelOutput, _: torch.Tensor):
|
| 93 |
+
if (
|
| 94 |
+
self.use_pooler_output
|
| 95 |
+
and isinstance(
|
| 96 |
+
x,
|
| 97 |
+
(
|
| 98 |
+
BaseModelOutputWithPooling,
|
| 99 |
+
BaseModelOutputWithPoolingAndCrossAttentions,
|
| 100 |
+
),
|
| 101 |
+
)
|
| 102 |
+
and (x.pooler_output is not None)
|
| 103 |
+
):
|
| 104 |
+
return x.pooler_output
|
| 105 |
+
return x.last_hidden_state[:, self.cls_token_position, :]
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
class HFTextEncoder(nn.Module):
|
| 109 |
+
output_tokens: torch.jit.Final[bool]
|
| 110 |
+
|
| 111 |
+
def __init__(
|
| 112 |
+
self,
|
| 113 |
+
model_name_or_path: str,
|
| 114 |
+
output_dim: int,
|
| 115 |
+
config: PretrainedConfig = None,
|
| 116 |
+
pooler_type: str = None,
|
| 117 |
+
proj_type: str = None,
|
| 118 |
+
proj_bias: bool = False,
|
| 119 |
+
pretrained: bool = True,
|
| 120 |
+
output_tokens: bool = False,
|
| 121 |
+
trust_remote_code: bool = False,
|
| 122 |
+
revision: Optional[str] = None,
|
| 123 |
+
code_revision: Optional[str] = None,
|
| 124 |
+
default_instruction_task: Optional[str] = None,
|
| 125 |
+
default_lora_task: Optional[str] = None,
|
| 126 |
+
model_config_kwargs: Optional[Dict] = None,
|
| 127 |
+
):
|
| 128 |
+
super().__init__()
|
| 129 |
+
self.output_tokens = output_tokens
|
| 130 |
+
self.output_dim = output_dim
|
| 131 |
+
|
| 132 |
+
model_config_kwargs = model_config_kwargs or {}
|
| 133 |
+
|
| 134 |
+
if config is None:
|
| 135 |
+
if pretrained:
|
| 136 |
+
self.transformer = AutoModel.from_pretrained(
|
| 137 |
+
model_name_or_path,
|
| 138 |
+
trust_remote_code=trust_remote_code,
|
| 139 |
+
revision=revision,
|
| 140 |
+
add_pooling_layer=False,
|
| 141 |
+
code_revision=code_revision,
|
| 142 |
+
**model_config_kwargs,
|
| 143 |
+
)
|
| 144 |
+
self.config = self.transformer.config
|
| 145 |
+
else:
|
| 146 |
+
self.config = AutoConfig.from_pretrained(
|
| 147 |
+
model_name_or_path,
|
| 148 |
+
trust_remote_code=trust_remote_code,
|
| 149 |
+
code_revision=code_revision,
|
| 150 |
+
)
|
| 151 |
+
self.config.update(model_config_kwargs)
|
| 152 |
+
self.transformer = AutoModel.from_config(
|
| 153 |
+
self.config,
|
| 154 |
+
trust_remote_code=trust_remote_code,
|
| 155 |
+
add_pooling_layer=False,
|
| 156 |
+
code_revision=code_revision,
|
| 157 |
+
)
|
| 158 |
+
if (
|
| 159 |
+
hasattr(self.config, 'is_encoder_decoder')
|
| 160 |
+
and self.config.is_encoder_decoder
|
| 161 |
+
):
|
| 162 |
+
self.transformer = self.transformer.encoder
|
| 163 |
+
|
| 164 |
+
else:
|
| 165 |
+
self.config = config
|
| 166 |
+
self.config.update(model_config_kwargs)
|
| 167 |
+
self.transformer = AutoModel.from_config(
|
| 168 |
+
self.config,
|
| 169 |
+
trust_remote_code=trust_remote_code,
|
| 170 |
+
revision=revision,
|
| 171 |
+
code_revision=code_revision,
|
| 172 |
+
)
|
| 173 |
+
self.vocab_size = getattr(self.config, 'vocab_size', 0)
|
| 174 |
+
self.context_length = getattr(self.config, 'max_position_embeddings', 0)
|
| 175 |
+
|
| 176 |
+
pooler_type = pooler_type or _HF_ARCH_DICT[self.config.model_type]['pooler']
|
| 177 |
+
self.pooler = _POOLERS[pooler_type]()
|
| 178 |
+
|
| 179 |
+
d_model = getattr(
|
| 180 |
+
self.config, _HF_ARCH_DICT[self.config.model_type]['config_names']['width']
|
| 181 |
+
)
|
| 182 |
+
if (d_model == output_dim) and (proj_type is None): # do we always need a proj?
|
| 183 |
+
self.proj = nn.Identity()
|
| 184 |
+
elif (d_model != output_dim) or proj_type == 'linear':
|
| 185 |
+
self.proj = nn.Linear(d_model, output_dim, bias=proj_bias)
|
| 186 |
+
elif proj_type == 'mlp':
|
| 187 |
+
hidden_size = (d_model + output_dim) // 2
|
| 188 |
+
self.proj = nn.Sequential(
|
| 189 |
+
nn.Linear(d_model, hidden_size, bias=proj_bias),
|
| 190 |
+
nn.GELU(),
|
| 191 |
+
nn.Linear(hidden_size, output_dim, bias=proj_bias),
|
| 192 |
+
)
|
| 193 |
+
|
| 194 |
+
self._task_instructions = {}
|
| 195 |
+
self._lora_adaptation_map = {}
|
| 196 |
+
self._supports_task_instructions = False
|
| 197 |
+
self._supports_lora = False
|
| 198 |
+
if (
|
| 199 |
+
hasattr(self.transformer, '_adaptation_map')
|
| 200 |
+
and len(self.transformer._adaptation_map) > 0
|
| 201 |
+
):
|
| 202 |
+
self._lora_adaptation_map = self.transformer._adaptation_map
|
| 203 |
+
self._supports_lora = True
|
| 204 |
+
if (
|
| 205 |
+
hasattr(self.transformer, '_task_instructions')
|
| 206 |
+
and len(self.transformer._task_instructions) > 0
|
| 207 |
+
):
|
| 208 |
+
self._task_instructions = self.transformer._task_instructions
|
| 209 |
+
self._supports_task_instructions = True
|
| 210 |
+
|
| 211 |
+
self._default_instruction_task = None
|
| 212 |
+
self._default_lora_task = None
|
| 213 |
+
self._default_instruction = None
|
| 214 |
+
self._default_loraid = None
|
| 215 |
+
|
| 216 |
+
if default_instruction_task is not None:
|
| 217 |
+
self._default_instruction_task = default_instruction_task
|
| 218 |
+
self._default_instruction = self.get_instruction_from_task(
|
| 219 |
+
default_instruction_task
|
| 220 |
+
)
|
| 221 |
+
if default_lora_task is not None:
|
| 222 |
+
self._default_lora_task = default_lora_task
|
| 223 |
+
self._default_loraid = self.get_loraid_from_task(default_lora_task)
|
| 224 |
+
|
| 225 |
+
@property
|
| 226 |
+
def supports_task_instructions(self) -> bool:
|
| 227 |
+
return self._supports_task_instructions
|
| 228 |
+
|
| 229 |
+
@property
|
| 230 |
+
def supports_lora(self) -> bool:
|
| 231 |
+
return self._supports_lora
|
| 232 |
+
|
| 233 |
+
@property
|
| 234 |
+
def task_instructions(self) -> Dict[str, str]:
|
| 235 |
+
return self._task_instructions
|
| 236 |
+
|
| 237 |
+
@property
|
| 238 |
+
def lora_adaptation_map(self) -> Dict[str, int]:
|
| 239 |
+
return self._lora_adaptation_map
|
| 240 |
+
|
| 241 |
+
@property
|
| 242 |
+
def default_instruction(self) -> Optional[str]:
|
| 243 |
+
return self._default_instruction
|
| 244 |
+
|
| 245 |
+
@property
|
| 246 |
+
def default_loraid(self) -> Optional[int]:
|
| 247 |
+
return self._default_loraid
|
| 248 |
+
|
| 249 |
+
def get_instruction_from_task(self, task: Optional[str]) -> Optional[str]:
|
| 250 |
+
if self._supports_task_instructions:
|
| 251 |
+
if task is None:
|
| 252 |
+
return self._default_instruction
|
| 253 |
+
if task not in self._task_instructions:
|
| 254 |
+
raise ValueError(
|
| 255 |
+
f'Unsupported task \'{task}\'. Choose one of the following: '
|
| 256 |
+
f'{", ".join(self._task_instructions)} or set to None to disable '
|
| 257 |
+
f'task instructions completely'
|
| 258 |
+
)
|
| 259 |
+
return self._task_instructions[task]
|
| 260 |
+
else:
|
| 261 |
+
if task is not None:
|
| 262 |
+
warnings.warn(
|
| 263 |
+
'Model does not support task instructions, ignoring instruction '
|
| 264 |
+
f"task '{task}'"
|
| 265 |
+
)
|
| 266 |
+
return None
|
| 267 |
+
|
| 268 |
+
def get_loraid_from_task(self, task: Optional[str]) -> Optional[int]:
|
| 269 |
+
if self._supports_lora:
|
| 270 |
+
if task is None:
|
| 271 |
+
return self._default_loraid
|
| 272 |
+
if task not in self._lora_adaptation_map:
|
| 273 |
+
raise ValueError(
|
| 274 |
+
f'Unsupported task \'{task}\'. Choose one of the following: '
|
| 275 |
+
f'{", ".join(self._task_instructions)} or set to None to disable '
|
| 276 |
+
f'the LoRA adapters completely'
|
| 277 |
+
)
|
| 278 |
+
return self._lora_adaptation_map[task]
|
| 279 |
+
else:
|
| 280 |
+
if task is not None:
|
| 281 |
+
warnings.warn(
|
| 282 |
+
f"Model does not support LoRA adapters, ignoring LoRA task '{task}'"
|
| 283 |
+
)
|
| 284 |
+
return None
|
| 285 |
+
|
| 286 |
+
@staticmethod
|
| 287 |
+
def get_adapter_mask_from_loraid(
|
| 288 |
+
batch_size: int, loraid: int, device: Union[str, torch.device]
|
| 289 |
+
):
|
| 290 |
+
return torch.full((batch_size,), loraid, dtype=torch.int32, device=device)
|
| 291 |
+
|
| 292 |
+
@torch.jit.ignore
|
| 293 |
+
def set_grad_checkpointing(self, _=True):
|
| 294 |
+
self.transformer.gradient_checkpointing_enable()
|
| 295 |
+
|
| 296 |
+
def init_parameters(self):
|
| 297 |
+
pass
|
| 298 |
+
|
| 299 |
+
def forward(self, x: torch.Tensor, adapter_mask: Optional[torch.Tensor] = None):
|
| 300 |
+
if adapter_mask is None:
|
| 301 |
+
default_loraid = self.default_loraid
|
| 302 |
+
if default_loraid is not None:
|
| 303 |
+
adapter_mask = self.get_adapter_mask_from_loraid(
|
| 304 |
+
x.shape[0], default_loraid, x.device
|
| 305 |
+
)
|
| 306 |
+
else:
|
| 307 |
+
if not self.supports_lora:
|
| 308 |
+
warnings.warn(
|
| 309 |
+
'Model does not support LoRA adapters, setting adapter_mask to None'
|
| 310 |
+
)
|
| 311 |
+
adapter_mask = None
|
| 312 |
+
|
| 313 |
+
attention_mask = (x != self.config.pad_token_id).long()
|
| 314 |
+
lora_kwargs = {}
|
| 315 |
+
if adapter_mask is not None:
|
| 316 |
+
lora_kwargs['adapter_mask'] = adapter_mask
|
| 317 |
+
|
| 318 |
+
out = self.transformer(
|
| 319 |
+
input_ids=x, attention_mask=attention_mask, **lora_kwargs
|
| 320 |
+
)
|
| 321 |
+
pooled_out = self.pooler(out, attention_mask)
|
| 322 |
+
projected = self.proj(pooled_out)
|
| 323 |
+
seqlen = out.last_hidden_state.shape[1]
|
| 324 |
+
tokens = (
|
| 325 |
+
out.last_hidden_state[
|
| 326 |
+
:, torch.arange(seqlen) != self.pooler.cls_token_position, :
|
| 327 |
+
]
|
| 328 |
+
if isinstance(self.pooler, ClsPooler)
|
| 329 |
+
else out.last_hidden_state
|
| 330 |
+
)
|
| 331 |
+
if self.output_tokens:
|
| 332 |
+
return projected, tokens
|
| 333 |
+
return projected
|
| 334 |
+
|
| 335 |
+
def lock(self, unlocked_layers: int = 0, freeze_layer_norm: bool = True):
|
| 336 |
+
if not unlocked_layers:
|
| 337 |
+
for n, p in self.transformer.named_parameters():
|
| 338 |
+
p.requires_grad = (
|
| 339 |
+
(not freeze_layer_norm) if 'LayerNorm' in n.split('.') else False
|
| 340 |
+
)
|
| 341 |
+
return
|
| 342 |
+
|
| 343 |
+
encoder = (
|
| 344 |
+
self.transformer.encoder
|
| 345 |
+
if hasattr(self.transformer, 'encoder')
|
| 346 |
+
else self.transformer
|
| 347 |
+
)
|
| 348 |
+
layer_list = getattr(
|
| 349 |
+
encoder, _HF_ARCH_DICT[self.config.model_type]['config_names']['layer_attr']
|
| 350 |
+
)
|
| 351 |
+
print(f'Unlocking {unlocked_layers}/{len(layer_list) + 1} layers of hf model')
|
| 352 |
+
embeddings = getattr(
|
| 353 |
+
self.transformer,
|
| 354 |
+
_HF_ARCH_DICT[self.config.model_type]['config_names'][
|
| 355 |
+
'token_embeddings_attr'
|
| 356 |
+
],
|
| 357 |
+
)
|
| 358 |
+
modules = [embeddings, *layer_list][:-unlocked_layers]
|
| 359 |
+
# freeze layers
|
| 360 |
+
for module in modules:
|
| 361 |
+
for n, p in module.named_parameters():
|
| 362 |
+
p.requires_grad = (
|
| 363 |
+
(not freeze_layer_norm) if 'LayerNorm' in n.split('.') else False
|
| 364 |
+
)
|
clip_model/model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b4ff9dcfc8abed950427cd693c1143cfacc818ed327e74839da2611f9d8dc693
|
| 3 |
+
size 1730689642
|
clip_model/modeling_clip.py
ADDED
|
@@ -0,0 +1,684 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
#
|
| 3 |
+
# Code mainly copied from:
|
| 4 |
+
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/clip/modeling_clip.py
|
| 5 |
+
# and adjusted for Jina CLIP
|
| 6 |
+
|
| 7 |
+
import base64
|
| 8 |
+
import importlib.util
|
| 9 |
+
import warnings
|
| 10 |
+
from functools import partial
|
| 11 |
+
from io import BytesIO
|
| 12 |
+
from typing import List, Optional, Tuple, Union
|
| 13 |
+
|
| 14 |
+
import numpy as np
|
| 15 |
+
import requests
|
| 16 |
+
import torch
|
| 17 |
+
import torch.nn.functional as f
|
| 18 |
+
import torch.utils.checkpoint
|
| 19 |
+
from PIL import Image
|
| 20 |
+
from torch import nn
|
| 21 |
+
from transformers import (
|
| 22 |
+
AutoImageProcessor,
|
| 23 |
+
AutoTokenizer,
|
| 24 |
+
BatchEncoding,
|
| 25 |
+
BatchFeature,
|
| 26 |
+
PreTrainedModel,
|
| 27 |
+
logging,
|
| 28 |
+
)
|
| 29 |
+
from transformers.models.clip.modeling_clip import (
|
| 30 |
+
CLIPOutput,
|
| 31 |
+
CLIPTextModelOutput,
|
| 32 |
+
CLIPVisionModelOutput,
|
| 33 |
+
clip_loss,
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
try:
|
| 37 |
+
from tqdm.autonotebook import trange
|
| 38 |
+
|
| 39 |
+
has_tqdm = True
|
| 40 |
+
except ImportError:
|
| 41 |
+
trange = None
|
| 42 |
+
has_tqdm = False
|
| 43 |
+
|
| 44 |
+
from .configuration_clip import JinaCLIPConfig, JinaCLIPTextConfig, JinaCLIPVisionConfig
|
| 45 |
+
from .eva_model import EVAVisionTransformer
|
| 46 |
+
from .hf_model import HFTextEncoder
|
| 47 |
+
from .rope_embeddings import VisionRotaryEmbeddingFast # noqa: F401
|
| 48 |
+
from .transform import ( # noqa: F401
|
| 49 |
+
OPENAI_DATASET_MEAN,
|
| 50 |
+
OPENAI_DATASET_STD,
|
| 51 |
+
image_transform,
|
| 52 |
+
)
|
| 53 |
+
|
| 54 |
+
logger = logging.get_logger(__name__)
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
""" Jina CLIP model implementation """
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
class LayerNorm(nn.LayerNorm):
|
| 61 |
+
"""Subclass torch's LayerNorm (with cast back to input dtype)."""
|
| 62 |
+
|
| 63 |
+
def forward(self, x: torch.Tensor):
|
| 64 |
+
origtype = x.dtype
|
| 65 |
+
x = f.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
|
| 66 |
+
return x.to(origtype)
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
def _build_text_tower(config: JinaCLIPTextConfig) -> HFTextEncoder:
|
| 70 |
+
return HFTextEncoder(
|
| 71 |
+
model_name_or_path=config.hf_model_name_or_path,
|
| 72 |
+
output_dim=config.embed_dim,
|
| 73 |
+
default_instruction_task=config.default_instruction_task,
|
| 74 |
+
default_lora_task=config.default_lora_task,
|
| 75 |
+
pooler_type=config.pooler_type,
|
| 76 |
+
proj_type=config.proj_type,
|
| 77 |
+
proj_bias=config.proj_bias,
|
| 78 |
+
pretrained=False,
|
| 79 |
+
output_tokens=False,
|
| 80 |
+
trust_remote_code=True,
|
| 81 |
+
revision=None,
|
| 82 |
+
model_config_kwargs=config.hf_model_config_kwargs,
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
def _build_vision_tower(config: JinaCLIPVisionConfig) -> EVAVisionTransformer:
|
| 87 |
+
norm_layer = partial(LayerNorm, eps=1e-6)
|
| 88 |
+
|
| 89 |
+
if config.fused_layer_norm:
|
| 90 |
+
try:
|
| 91 |
+
from apex.normalization import FusedLayerNorm
|
| 92 |
+
|
| 93 |
+
norm_layer = partial(FusedLayerNorm, eps=1e-6)
|
| 94 |
+
except (ModuleNotFoundError, ImportError):
|
| 95 |
+
logger.warning('Please install apex to use fused layer norm, ignoring')
|
| 96 |
+
|
| 97 |
+
return EVAVisionTransformer(
|
| 98 |
+
img_size=config.image_size,
|
| 99 |
+
patch_size=config.patch_size,
|
| 100 |
+
num_classes=config.embed_dim,
|
| 101 |
+
use_mean_pooling=False,
|
| 102 |
+
init_values=config.ls_init_value,
|
| 103 |
+
patch_dropout=config.patch_dropout,
|
| 104 |
+
embed_dim=config.width,
|
| 105 |
+
depth=config.layers,
|
| 106 |
+
num_heads=config.width // config.head_width,
|
| 107 |
+
mlp_ratio=config.mlp_ratio,
|
| 108 |
+
qkv_bias=config.qkv_bias,
|
| 109 |
+
drop_path_rate=config.drop_path_rate,
|
| 110 |
+
norm_layer=norm_layer,
|
| 111 |
+
xattn=config.x_attention,
|
| 112 |
+
rope=config.rope_embeddings,
|
| 113 |
+
postnorm=config.post_norm,
|
| 114 |
+
pt_hw_seq_len=config.pt_hw_seq_len,
|
| 115 |
+
intp_freq=config.intp_freq,
|
| 116 |
+
naiveswiglu=config.naive_swiglu,
|
| 117 |
+
subln=config.subln,
|
| 118 |
+
proj_type=config.proj_type,
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
def _resolve_attention_libs(config: JinaCLIPConfig):
|
| 123 |
+
use_text_flash_attn = (
|
| 124 |
+
config.use_text_flash_attn
|
| 125 |
+
if config.use_text_flash_attn is not None
|
| 126 |
+
else config.text_config.hf_model_config_kwargs.get('use_flash_attn', True)
|
| 127 |
+
)
|
| 128 |
+
use_vision_xformers = (
|
| 129 |
+
config.use_vision_xformers
|
| 130 |
+
if config.use_vision_xformers is not None
|
| 131 |
+
else config.vision_config.x_attention
|
| 132 |
+
)
|
| 133 |
+
|
| 134 |
+
def _resolve_use_text_flash_attn() -> bool:
|
| 135 |
+
if use_text_flash_attn:
|
| 136 |
+
if not torch.cuda.is_available():
|
| 137 |
+
warnings.warn('Flash attention requires CUDA, disabling')
|
| 138 |
+
return False
|
| 139 |
+
if importlib.util.find_spec('flash_attn') is None:
|
| 140 |
+
warnings.warn(
|
| 141 |
+
'Flash attention is not installed. Check '
|
| 142 |
+
'https://github.com/Dao-AILab/flash-attention?'
|
| 143 |
+
'tab=readme-ov-file#installation-and-features '
|
| 144 |
+
'for installation instructions, disabling'
|
| 145 |
+
)
|
| 146 |
+
return False
|
| 147 |
+
major, minor, *_ = torch.version.cuda.split('.')
|
| 148 |
+
major, minor = int(major), int(minor)
|
| 149 |
+
if major < 11 or (major == 11 and minor < 7):
|
| 150 |
+
warnings.warn(
|
| 151 |
+
'Flash attention requires CUDA>=11.7. Found version '
|
| 152 |
+
f'{major}.{minor}, disabling'
|
| 153 |
+
)
|
| 154 |
+
return False
|
| 155 |
+
capability = torch.cuda.get_device_capability()
|
| 156 |
+
major, *_ = capability
|
| 157 |
+
major = int(major)
|
| 158 |
+
if major < 8:
|
| 159 |
+
device_name = torch.cuda.get_device_properties(0).name
|
| 160 |
+
warnings.warn(
|
| 161 |
+
'Flash attention requires device capability>=8.0 (NVIDIA Ampere, '
|
| 162 |
+
f'Hopper or ADA). Found device {device_name} with capability '
|
| 163 |
+
f'{capability}, disabling'
|
| 164 |
+
)
|
| 165 |
+
return False
|
| 166 |
+
return True
|
| 167 |
+
return False
|
| 168 |
+
|
| 169 |
+
def _resolve_use_vision_xformers() -> bool:
|
| 170 |
+
if use_vision_xformers:
|
| 171 |
+
if not torch.cuda.is_available():
|
| 172 |
+
warnings.warn('xFormers requires CUDA, disabling')
|
| 173 |
+
return False
|
| 174 |
+
if importlib.util.find_spec('xformers') is None:
|
| 175 |
+
warnings.warn(
|
| 176 |
+
'xFormers is not installed. Check '
|
| 177 |
+
'https://github.com/facebookresearch/xformers?'
|
| 178 |
+
'tab=readme-ov-file#installing-xformers for installation '
|
| 179 |
+
'instructions, disabling'
|
| 180 |
+
)
|
| 181 |
+
return False
|
| 182 |
+
return True
|
| 183 |
+
return False
|
| 184 |
+
|
| 185 |
+
_use_text_flash_attn = _resolve_use_text_flash_attn()
|
| 186 |
+
_use_vision_xformers = _resolve_use_vision_xformers()
|
| 187 |
+
|
| 188 |
+
config.use_text_flash_attn = _use_text_flash_attn
|
| 189 |
+
config.use_vision_xformers = _use_vision_xformers
|
| 190 |
+
config.text_config.hf_model_config_kwargs['use_flash_attn'] = _use_text_flash_attn
|
| 191 |
+
config.vision_config.x_attention = _use_vision_xformers
|
| 192 |
+
|
| 193 |
+
return config
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
class JinaCLIPPreTrainedModel(PreTrainedModel):
|
| 197 |
+
"""
|
| 198 |
+
An abstract class to handle weights initialization and a simple interface for
|
| 199 |
+
downloading and loading pretrained models.
|
| 200 |
+
"""
|
| 201 |
+
|
| 202 |
+
config_class = JinaCLIPConfig
|
| 203 |
+
base_model_prefix = 'clip'
|
| 204 |
+
supports_gradient_checkpointing = True
|
| 205 |
+
|
| 206 |
+
def _init_weights(self, module):
|
| 207 |
+
"""Initialize the weights"""
|
| 208 |
+
if isinstance(module, JinaCLIPModel):
|
| 209 |
+
if isinstance(module.text_projection, nn.Linear):
|
| 210 |
+
nn.init.normal_(
|
| 211 |
+
module.text_projection.weight,
|
| 212 |
+
std=module.text_embed_dim**-0.5 * self.config.initializer_factor,
|
| 213 |
+
)
|
| 214 |
+
if isinstance(module.text_projection, nn.Linear):
|
| 215 |
+
nn.init.normal_(
|
| 216 |
+
module.visual_projection.weight,
|
| 217 |
+
std=module.vision_embed_dim**-0.5 * self.config.initializer_factor,
|
| 218 |
+
)
|
| 219 |
+
if isinstance(module, nn.LayerNorm):
|
| 220 |
+
module.bias.data.zero_()
|
| 221 |
+
module.weight.data.fill_(1.0)
|
| 222 |
+
if isinstance(module, nn.Linear) and module.bias is not None:
|
| 223 |
+
module.bias.data.zero_()
|
| 224 |
+
|
| 225 |
+
@classmethod
|
| 226 |
+
def from_pretrained(cls, *args, **kwargs):
|
| 227 |
+
if 'torch_dtype' not in kwargs:
|
| 228 |
+
kwargs['torch_dtype'] = 'auto'
|
| 229 |
+
return super().from_pretrained(*args, **kwargs)
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
class JinaCLIPTextModel(JinaCLIPPreTrainedModel):
|
| 233 |
+
config_class = JinaCLIPTextConfig
|
| 234 |
+
|
| 235 |
+
def __init__(self, config: JinaCLIPTextConfig):
|
| 236 |
+
super().__init__(config)
|
| 237 |
+
self.text_model = _build_text_tower(config)
|
| 238 |
+
self.post_init()
|
| 239 |
+
|
| 240 |
+
def forward(
|
| 241 |
+
self,
|
| 242 |
+
input_ids: Union[None, torch.Tensor, BatchEncoding] = None,
|
| 243 |
+
return_dict: Optional[bool] = None,
|
| 244 |
+
*_,
|
| 245 |
+
**__,
|
| 246 |
+
) -> Union[Tuple[Optional[torch.FloatTensor], ...], CLIPTextModelOutput]:
|
| 247 |
+
return_dict = (
|
| 248 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 249 |
+
)
|
| 250 |
+
x = input_ids.input_ids if isinstance(input_ids, BatchEncoding) else input_ids
|
| 251 |
+
feats = self.text_model(x=x)
|
| 252 |
+
out = CLIPTextModelOutput(text_embeds=feats)
|
| 253 |
+
return out if return_dict else out.to_tuple()
|
| 254 |
+
|
| 255 |
+
|
| 256 |
+
class JinaCLIPVisionModel(JinaCLIPPreTrainedModel):
|
| 257 |
+
config_class = JinaCLIPVisionConfig
|
| 258 |
+
main_input_name = 'pixel_values'
|
| 259 |
+
|
| 260 |
+
def __init__(self, config: JinaCLIPVisionConfig):
|
| 261 |
+
super().__init__(config)
|
| 262 |
+
self.vision_model = _build_vision_tower(config)
|
| 263 |
+
self.post_init()
|
| 264 |
+
|
| 265 |
+
def forward(
|
| 266 |
+
self,
|
| 267 |
+
pixel_values: Union[None, torch.FloatTensor, BatchFeature] = None,
|
| 268 |
+
return_dict: Optional[bool] = None,
|
| 269 |
+
*_,
|
| 270 |
+
**__,
|
| 271 |
+
) -> Union[Tuple[Optional[torch.FloatTensor], ...], CLIPVisionModelOutput]:
|
| 272 |
+
return_dict = (
|
| 273 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 274 |
+
)
|
| 275 |
+
x = (
|
| 276 |
+
pixel_values.pixel_values
|
| 277 |
+
if isinstance(pixel_values, BatchFeature)
|
| 278 |
+
else pixel_values
|
| 279 |
+
)
|
| 280 |
+
feats = self.vision_model(x=x)
|
| 281 |
+
out = CLIPVisionModelOutput(image_embeds=feats)
|
| 282 |
+
return out if return_dict else out.to_tuple()
|
| 283 |
+
|
| 284 |
+
|
| 285 |
+
class JinaCLIPModel(JinaCLIPPreTrainedModel):
|
| 286 |
+
config_class = JinaCLIPConfig
|
| 287 |
+
|
| 288 |
+
def __init__(self, config: JinaCLIPConfig):
|
| 289 |
+
super().__init__(config)
|
| 290 |
+
|
| 291 |
+
if not isinstance(config.text_config, JinaCLIPTextConfig):
|
| 292 |
+
raise ValueError(
|
| 293 |
+
'Attribute config.text_config is expected to be of type '
|
| 294 |
+
f'JinaCLIPTextConfig but is of type {type(config.text_config)}.'
|
| 295 |
+
)
|
| 296 |
+
|
| 297 |
+
if not isinstance(config.vision_config, JinaCLIPVisionConfig):
|
| 298 |
+
raise ValueError(
|
| 299 |
+
'Attribute config.vision_config is expected to be of type '
|
| 300 |
+
f'JinaCLIPVisionConfig but is of type {type(config.vision_config)}.'
|
| 301 |
+
)
|
| 302 |
+
|
| 303 |
+
config = _resolve_attention_libs(config)
|
| 304 |
+
text_config = config.text_config
|
| 305 |
+
vision_config = config.vision_config
|
| 306 |
+
|
| 307 |
+
self.add_projections = config.add_projections
|
| 308 |
+
self.projection_dim = config.projection_dim
|
| 309 |
+
self.text_embed_dim = text_config.embed_dim
|
| 310 |
+
self.vision_embed_dim = vision_config.embed_dim
|
| 311 |
+
self.text_model = _build_text_tower(text_config)
|
| 312 |
+
self.vision_model = _build_vision_tower(vision_config)
|
| 313 |
+
self.logit_scale = nn.Parameter(
|
| 314 |
+
torch.tensor(self.config.logit_scale_init_value)
|
| 315 |
+
)
|
| 316 |
+
if self.add_projections:
|
| 317 |
+
self.visual_projection = nn.Linear(
|
| 318 |
+
self.vision_embed_dim, self.projection_dim, bias=False
|
| 319 |
+
)
|
| 320 |
+
self.text_projection = nn.Linear(
|
| 321 |
+
self.text_embed_dim, self.projection_dim, bias=False
|
| 322 |
+
)
|
| 323 |
+
else:
|
| 324 |
+
self.visual_projection = nn.Identity()
|
| 325 |
+
self.text_projection = nn.Identity()
|
| 326 |
+
|
| 327 |
+
self.tokenizer = None
|
| 328 |
+
self.preprocess = None
|
| 329 |
+
self.post_init()
|
| 330 |
+
|
| 331 |
+
def get_tokenizer(self):
|
| 332 |
+
if self.tokenizer is None:
|
| 333 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
| 334 |
+
self.config._name_or_path, trust_remote_code=True
|
| 335 |
+
)
|
| 336 |
+
return self.tokenizer
|
| 337 |
+
|
| 338 |
+
def get_preprocess(self):
|
| 339 |
+
if not self.preprocess:
|
| 340 |
+
self.preprocess = AutoImageProcessor.from_pretrained(
|
| 341 |
+
self.config._name_or_path, trust_remote_code=True
|
| 342 |
+
)
|
| 343 |
+
return self.preprocess
|
| 344 |
+
|
| 345 |
+
def get_text_features(
|
| 346 |
+
self,
|
| 347 |
+
input_ids: Union[None, torch.Tensor, BatchEncoding] = None,
|
| 348 |
+
*_,
|
| 349 |
+
**__,
|
| 350 |
+
) -> torch.FloatTensor:
|
| 351 |
+
x = input_ids.input_ids if isinstance(input_ids, BatchEncoding) else input_ids
|
| 352 |
+
return self.text_projection(self.text_model(x=x))
|
| 353 |
+
|
| 354 |
+
def get_image_features(
|
| 355 |
+
self,
|
| 356 |
+
pixel_values: Union[None, torch.FloatTensor, BatchFeature] = None,
|
| 357 |
+
*_,
|
| 358 |
+
**__,
|
| 359 |
+
) -> torch.FloatTensor:
|
| 360 |
+
x = (
|
| 361 |
+
pixel_values.pixel_values
|
| 362 |
+
if isinstance(pixel_values, BatchFeature)
|
| 363 |
+
else pixel_values
|
| 364 |
+
)
|
| 365 |
+
return self.visual_projection(self.vision_model(x=x))
|
| 366 |
+
|
| 367 |
+
def _truncate_embeddings(self, embeddings: torch.Tensor, truncate_dim: int):
|
| 368 |
+
if not self.config.matryoshka_dimensions:
|
| 369 |
+
logger.warning(
|
| 370 |
+
'Model is not trained using Matryoshka Representation Learning, '
|
| 371 |
+
'truncating embeddings will not work optimally.'
|
| 372 |
+
)
|
| 373 |
+
return embeddings[:, :truncate_dim]
|
| 374 |
+
|
| 375 |
+
@staticmethod
|
| 376 |
+
def _decode_image_data(image_data_str: str) -> Image:
|
| 377 |
+
header, data = image_data_str.split(',', 1)
|
| 378 |
+
image_data = base64.b64decode(data)
|
| 379 |
+
return Image.open(BytesIO(image_data))
|
| 380 |
+
|
| 381 |
+
@torch.inference_mode()
|
| 382 |
+
def encode_image(
|
| 383 |
+
self,
|
| 384 |
+
images: Union[str, List[Union[str, 'Image.Image']]],
|
| 385 |
+
batch_size: int = 32,
|
| 386 |
+
show_progress_bar: Optional[bool] = None,
|
| 387 |
+
convert_to_numpy: bool = True,
|
| 388 |
+
convert_to_tensor: bool = False,
|
| 389 |
+
device: Optional[torch.device] = None,
|
| 390 |
+
normalize_embeddings: bool = True,
|
| 391 |
+
truncate_dim: Optional[int] = None,
|
| 392 |
+
) -> Union[List[torch.Tensor], np.ndarray, torch.Tensor]:
|
| 393 |
+
"""
|
| 394 |
+
Computes image embeddings
|
| 395 |
+
|
| 396 |
+
Args:
|
| 397 |
+
images(`str` or `List[Union[str, Image.Image]]`):
|
| 398 |
+
Image paths, URLs, PIL images, or data:image/ strings to be encoded
|
| 399 |
+
batch_size(`int`, *optional*, defaults to 32):
|
| 400 |
+
Batch size for the computation
|
| 401 |
+
show_progress_bar(`bool`, *optional*, defaults to None):
|
| 402 |
+
Show a progress bar when encoding images. If set to None, progress bar
|
| 403 |
+
is only shown when `logger.level == logging.INFO` or
|
| 404 |
+
`logger.level == logging.DEBUG`
|
| 405 |
+
convert_to_numpy(`bool`, *optional*, defaults to True):
|
| 406 |
+
If true, the output is a list of numpy vectors. Else, it is a list of
|
| 407 |
+
pytorch tensors
|
| 408 |
+
convert_to_tensor(`bool`, *optional*, defaults to False):
|
| 409 |
+
If true, you get one large tensor as return. Overwrites any setting
|
| 410 |
+
from convert_to_numpy
|
| 411 |
+
device(`torch.device`, *optional*, defaults to None):
|
| 412 |
+
Which torch.device to use for the computation
|
| 413 |
+
normalize_embeddings(`bool`, *optional*, defaults to True):
|
| 414 |
+
If set to true, returned vectors will have length 1. In that case,
|
| 415 |
+
the faster dot-product (util.dot_score) instead of cosine similarity
|
| 416 |
+
can be used
|
| 417 |
+
truncate_dim(`int`, *optional*, defaults to None):
|
| 418 |
+
The dimension to truncate sentence embeddings to. If set to `None`
|
| 419 |
+
no truncation is performed
|
| 420 |
+
|
| 421 |
+
Returns:
|
| 422 |
+
By default, a list of tensors is returned. If convert_to_tensor, a stacked
|
| 423 |
+
tensor is returned. If convert_to_numpy, a numpy matrix is returned
|
| 424 |
+
"""
|
| 425 |
+
|
| 426 |
+
_is_training = self.training
|
| 427 |
+
self.eval()
|
| 428 |
+
|
| 429 |
+
self.preprocess = self.get_preprocess()
|
| 430 |
+
all_embeddings = []
|
| 431 |
+
|
| 432 |
+
if show_progress_bar is None:
|
| 433 |
+
show_progress_bar = (
|
| 434 |
+
logger.getEffectiveLevel() == logging.INFO
|
| 435 |
+
or logger.getEffectiveLevel() == logging.DEBUG
|
| 436 |
+
)
|
| 437 |
+
if convert_to_tensor:
|
| 438 |
+
convert_to_numpy = False
|
| 439 |
+
|
| 440 |
+
_input_was_single_img = False
|
| 441 |
+
if isinstance(images, str) or not hasattr(images, '__len__'):
|
| 442 |
+
images = [images]
|
| 443 |
+
_input_was_single_img = True
|
| 444 |
+
|
| 445 |
+
if device is not None:
|
| 446 |
+
self.to(device)
|
| 447 |
+
|
| 448 |
+
_permutation = np.argsort([-len(str(i)) for i in images])
|
| 449 |
+
_inverse_permutation = np.argsort(_permutation)
|
| 450 |
+
images = [images[idx] for idx in _permutation]
|
| 451 |
+
|
| 452 |
+
if has_tqdm:
|
| 453 |
+
range_iter = trange(
|
| 454 |
+
0,
|
| 455 |
+
len(images),
|
| 456 |
+
batch_size,
|
| 457 |
+
desc='Encoding',
|
| 458 |
+
disable=not show_progress_bar,
|
| 459 |
+
)
|
| 460 |
+
else:
|
| 461 |
+
range_iter = range(0, len(images), batch_size)
|
| 462 |
+
|
| 463 |
+
truncate_dim = truncate_dim or self.config.truncate_dim
|
| 464 |
+
|
| 465 |
+
for i in range_iter:
|
| 466 |
+
_processed_images = []
|
| 467 |
+
for img in images[i: i + batch_size]:
|
| 468 |
+
if isinstance(img, str):
|
| 469 |
+
if img.startswith('http'):
|
| 470 |
+
response = requests.get(img)
|
| 471 |
+
image = Image.open(BytesIO(response.content)).convert('RGB')
|
| 472 |
+
elif img.startswith('data:image/'):
|
| 473 |
+
image = self._decode_image_data(img).convert('RGB')
|
| 474 |
+
else:
|
| 475 |
+
image = Image.open(img).convert('RGB')
|
| 476 |
+
elif isinstance(img, Image.Image):
|
| 477 |
+
image = img.convert('RGB')
|
| 478 |
+
else:
|
| 479 |
+
raise ValueError('Unsupported image format')
|
| 480 |
+
_processed_images.append(image)
|
| 481 |
+
|
| 482 |
+
pixelvals = self.preprocess(_processed_images)
|
| 483 |
+
pixelvals = pixelvals.to(self.device)
|
| 484 |
+
embeddings = self.get_image_features(pixelvals)
|
| 485 |
+
|
| 486 |
+
if truncate_dim:
|
| 487 |
+
embeddings = self._truncate_embeddings(embeddings, truncate_dim)
|
| 488 |
+
if normalize_embeddings:
|
| 489 |
+
embeddings = f.normalize(embeddings, p=2, dim=1)
|
| 490 |
+
if convert_to_numpy:
|
| 491 |
+
embeddings = embeddings.cpu()
|
| 492 |
+
|
| 493 |
+
all_embeddings.extend(embeddings)
|
| 494 |
+
|
| 495 |
+
all_embeddings = [all_embeddings[idx] for idx in _inverse_permutation]
|
| 496 |
+
|
| 497 |
+
if convert_to_tensor:
|
| 498 |
+
all_embeddings = torch.stack(all_embeddings)
|
| 499 |
+
elif convert_to_numpy:
|
| 500 |
+
all_embeddings = np.asarray(
|
| 501 |
+
[emb.to(torch.float32).numpy() for emb in all_embeddings]
|
| 502 |
+
)
|
| 503 |
+
|
| 504 |
+
if _input_was_single_img:
|
| 505 |
+
all_embeddings = all_embeddings[0]
|
| 506 |
+
|
| 507 |
+
self.train(_is_training)
|
| 508 |
+
return all_embeddings
|
| 509 |
+
|
| 510 |
+
@torch.inference_mode()
|
| 511 |
+
def encode_text(
|
| 512 |
+
self,
|
| 513 |
+
sentences: Union[str, List[str]],
|
| 514 |
+
task: Optional[str] = None,
|
| 515 |
+
batch_size: int = 32,
|
| 516 |
+
show_progress_bar: Optional[bool] = None,
|
| 517 |
+
convert_to_numpy: bool = True,
|
| 518 |
+
convert_to_tensor: bool = False,
|
| 519 |
+
device: Optional[torch.device] = None,
|
| 520 |
+
normalize_embeddings: bool = True,
|
| 521 |
+
truncate_dim: Optional[int] = None,
|
| 522 |
+
**tokenizer_kwargs,
|
| 523 |
+
) -> Union[List[torch.Tensor], np.ndarray, torch.Tensor]:
|
| 524 |
+
"""
|
| 525 |
+
Computes text embeddings
|
| 526 |
+
|
| 527 |
+
Args:
|
| 528 |
+
sentences(`str` or `List[str]`):
|
| 529 |
+
Sentence or sentences to be encoded
|
| 530 |
+
task(`str`, *optional*, defaults to `None`):
|
| 531 |
+
Specifies the task for which the encoding is intended. If a `task` is
|
| 532 |
+
provided, a task-specific instruction is added to the beginning of each
|
| 533 |
+
sentence. If `task` is not provided, no instructions are added.
|
| 534 |
+
batch_size(`int`, *optional*, defaults to 32):
|
| 535 |
+
Batch size for the computation
|
| 536 |
+
show_progress_bar(`bool`, *optional*, defaults to None):
|
| 537 |
+
Show a progress bar when encoding sentences. If set to None, progress
|
| 538 |
+
bar is only shown when `logger.level == logging.INFO` or
|
| 539 |
+
`logger.level == logging.DEBUG`
|
| 540 |
+
convert_to_numpy(`bool`, *optional*, defaults to True):
|
| 541 |
+
If true, the output is a list of numpy vectors. Else, it is a list of
|
| 542 |
+
pytorch tensors
|
| 543 |
+
convert_to_tensor(`bool`, *optional*, defaults to False):
|
| 544 |
+
If true, you get one large tensor as return. Overwrites any setting
|
| 545 |
+
from convert_to_numpy
|
| 546 |
+
device(`torch.device`, *optional*, defaults to None):
|
| 547 |
+
Which torch.device to use for the computation
|
| 548 |
+
normalize_embeddings(`bool`, *optional*, defaults to True):
|
| 549 |
+
If set to true, returned vectors will have length 1. In that case,
|
| 550 |
+
the faster dot-product (util.dot_score) instead of cosine similarity
|
| 551 |
+
can be used
|
| 552 |
+
truncate_dim(`int`, *optional*, defaults to None):
|
| 553 |
+
The dimension to truncate sentence embeddings to. If set to `None`
|
| 554 |
+
no truncation is performed
|
| 555 |
+
tokenizer_kwargs(`Dict[str, Any]`, *optional*, defaults to {}):
|
| 556 |
+
Keyword arguments for the tokenizer
|
| 557 |
+
Returns:
|
| 558 |
+
By default, a list of tensors is returned. If convert_to_tensor, a stacked
|
| 559 |
+
tensor is returned. If convert_to_numpy, a numpy matrix is returned.
|
| 560 |
+
"""
|
| 561 |
+
_is_training = self.training
|
| 562 |
+
self.eval()
|
| 563 |
+
|
| 564 |
+
all_embeddings = []
|
| 565 |
+
self.tokenizer = self.get_tokenizer()
|
| 566 |
+
|
| 567 |
+
if show_progress_bar is None:
|
| 568 |
+
show_progress_bar = (
|
| 569 |
+
logger.getEffectiveLevel() == logging.INFO
|
| 570 |
+
or logger.getEffectiveLevel() == logging.DEBUG
|
| 571 |
+
)
|
| 572 |
+
if convert_to_tensor:
|
| 573 |
+
convert_to_numpy = False
|
| 574 |
+
|
| 575 |
+
_input_was_string = False
|
| 576 |
+
if isinstance(sentences, str) or not hasattr(sentences, '__len__'):
|
| 577 |
+
sentences = [sentences]
|
| 578 |
+
_input_was_string = True
|
| 579 |
+
|
| 580 |
+
if device is not None:
|
| 581 |
+
self.to(device)
|
| 582 |
+
|
| 583 |
+
_permutation = np.argsort([-len(i) for i in sentences])
|
| 584 |
+
_inverse_permutation = np.argsort(_permutation)
|
| 585 |
+
sentences = [sentences[idx] for idx in _permutation]
|
| 586 |
+
|
| 587 |
+
tokenizer_kwargs['padding'] = tokenizer_kwargs.get('padding', True)
|
| 588 |
+
tokenizer_kwargs['max_length'] = tokenizer_kwargs.get('max_length', 512)
|
| 589 |
+
tokenizer_kwargs['truncation'] = tokenizer_kwargs.get('truncation', True)
|
| 590 |
+
|
| 591 |
+
if has_tqdm:
|
| 592 |
+
range_iter = trange(
|
| 593 |
+
0,
|
| 594 |
+
len(sentences),
|
| 595 |
+
batch_size,
|
| 596 |
+
desc='Encoding',
|
| 597 |
+
disable=not show_progress_bar,
|
| 598 |
+
)
|
| 599 |
+
else:
|
| 600 |
+
range_iter = range(0, len(sentences), batch_size)
|
| 601 |
+
|
| 602 |
+
truncate_dim = truncate_dim or self.config.truncate_dim
|
| 603 |
+
|
| 604 |
+
instruction = self.text_model.get_instruction_from_task(task)
|
| 605 |
+
if instruction:
|
| 606 |
+
sentences = [instruction + sentence for sentence in sentences]
|
| 607 |
+
|
| 608 |
+
for i in range_iter:
|
| 609 |
+
tokens = self.tokenizer(
|
| 610 |
+
sentences[i: i + batch_size],
|
| 611 |
+
return_tensors='pt',
|
| 612 |
+
**tokenizer_kwargs,
|
| 613 |
+
).to(self.device)
|
| 614 |
+
embeddings = self.get_text_features(input_ids=tokens)
|
| 615 |
+
if truncate_dim:
|
| 616 |
+
embeddings = self._truncate_embeddings(embeddings, truncate_dim)
|
| 617 |
+
if normalize_embeddings:
|
| 618 |
+
embeddings = f.normalize(embeddings, p=2, dim=1)
|
| 619 |
+
if convert_to_numpy:
|
| 620 |
+
embeddings = embeddings.cpu()
|
| 621 |
+
all_embeddings.extend(embeddings)
|
| 622 |
+
|
| 623 |
+
all_embeddings = [all_embeddings[idx] for idx in _inverse_permutation]
|
| 624 |
+
|
| 625 |
+
if convert_to_tensor:
|
| 626 |
+
all_embeddings = torch.stack(all_embeddings)
|
| 627 |
+
elif convert_to_numpy:
|
| 628 |
+
all_embeddings = np.asarray(
|
| 629 |
+
[emb.to(torch.float32).numpy() for emb in all_embeddings]
|
| 630 |
+
)
|
| 631 |
+
if _input_was_string:
|
| 632 |
+
all_embeddings = all_embeddings[0]
|
| 633 |
+
|
| 634 |
+
self.train(_is_training)
|
| 635 |
+
return all_embeddings
|
| 636 |
+
|
| 637 |
+
def forward(
|
| 638 |
+
self,
|
| 639 |
+
input_ids: Union[None, torch.Tensor, BatchEncoding] = None,
|
| 640 |
+
pixel_values: Union[None, torch.FloatTensor, BatchFeature] = None,
|
| 641 |
+
return_dict: Optional[bool] = None,
|
| 642 |
+
return_loss: Optional[bool] = None,
|
| 643 |
+
*_,
|
| 644 |
+
**__,
|
| 645 |
+
) -> Union[Tuple[Optional[torch.FloatTensor], ...], CLIPOutput]:
|
| 646 |
+
return_dict = (
|
| 647 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
| 648 |
+
)
|
| 649 |
+
image_embeds = self.get_image_features(pixel_values=pixel_values)
|
| 650 |
+
text_embeds = self.get_text_features(input_ids=input_ids)
|
| 651 |
+
|
| 652 |
+
# normalized features
|
| 653 |
+
image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True)
|
| 654 |
+
text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
|
| 655 |
+
|
| 656 |
+
# cosine similarity as logits
|
| 657 |
+
logit_scale = self.logit_scale.exp()
|
| 658 |
+
logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale
|
| 659 |
+
logits_per_image = logits_per_text.t()
|
| 660 |
+
|
| 661 |
+
loss = None
|
| 662 |
+
if return_loss:
|
| 663 |
+
loss = clip_loss(logits_per_text)
|
| 664 |
+
|
| 665 |
+
if not return_dict:
|
| 666 |
+
output = (
|
| 667 |
+
logits_per_image,
|
| 668 |
+
logits_per_text,
|
| 669 |
+
text_embeds,
|
| 670 |
+
image_embeds,
|
| 671 |
+
None,
|
| 672 |
+
None,
|
| 673 |
+
)
|
| 674 |
+
return ((loss,) + output) if loss is not None else output
|
| 675 |
+
|
| 676 |
+
return CLIPOutput(
|
| 677 |
+
loss=loss,
|
| 678 |
+
logits_per_image=logits_per_image,
|
| 679 |
+
logits_per_text=logits_per_text,
|
| 680 |
+
text_embeds=text_embeds,
|
| 681 |
+
image_embeds=image_embeds,
|
| 682 |
+
text_model_output=None,
|
| 683 |
+
vision_model_output=None,
|
| 684 |
+
)
|
clip_model/rope_embeddings.py
ADDED
|
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# --------------------------------------------------------
|
| 2 |
+
# Adapted from EVA CLIP
|
| 3 |
+
# https://github.com/baaivision/EVA/tree/master/EVA-CLIP/rei/eva_clip
|
| 4 |
+
# --------------------------------------------------------
|
| 5 |
+
|
| 6 |
+
from math import pi
|
| 7 |
+
|
| 8 |
+
import torch
|
| 9 |
+
from einops import rearrange, repeat
|
| 10 |
+
from torch import nn
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def broadcast(tensors, dim=-1):
|
| 14 |
+
num_tensors = len(tensors)
|
| 15 |
+
shape_lens = set(list(map(lambda t: len(t.shape), tensors)))
|
| 16 |
+
assert len(shape_lens) == 1, 'tensors must all have the same number of dimensions'
|
| 17 |
+
shape_len = list(shape_lens)[0]
|
| 18 |
+
dim = (dim + shape_len) if dim < 0 else dim
|
| 19 |
+
dims = list(zip(*map(lambda t: list(t.shape), tensors)))
|
| 20 |
+
expandable_dims = [(i, val) for i, val in enumerate(dims) if i != dim]
|
| 21 |
+
assert all(
|
| 22 |
+
[*map(lambda t: len(set(t[1])) <= 2, expandable_dims)]
|
| 23 |
+
), 'invalid dimensions for broadcastable concatentation'
|
| 24 |
+
max_dims = list(map(lambda t: (t[0], max(t[1])), expandable_dims))
|
| 25 |
+
expanded_dims = list(map(lambda t: (t[0], (t[1],) * num_tensors), max_dims))
|
| 26 |
+
expanded_dims.insert(dim, (dim, dims[dim]))
|
| 27 |
+
expandable_shapes = list(zip(*map(lambda t: t[1], expanded_dims)))
|
| 28 |
+
tensors = list(map(lambda t: t[0].expand(*t[1]), zip(tensors, expandable_shapes)))
|
| 29 |
+
return torch.cat(tensors, dim=dim)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def rotate_half(x):
|
| 33 |
+
x = rearrange(x, '... (d r) -> ... d r', r=2)
|
| 34 |
+
x1, x2 = x.unbind(dim=-1)
|
| 35 |
+
x = torch.stack((-x2, x1), dim=-1)
|
| 36 |
+
return rearrange(x, '... d r -> ... (d r)')
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
class VisionRotaryEmbedding(nn.Module):
|
| 40 |
+
def __init__(
|
| 41 |
+
self,
|
| 42 |
+
dim,
|
| 43 |
+
pt_seq_len,
|
| 44 |
+
ft_seq_len=None,
|
| 45 |
+
custom_freqs=None,
|
| 46 |
+
freqs_for='lang',
|
| 47 |
+
theta=10000,
|
| 48 |
+
max_freq=10,
|
| 49 |
+
num_freqs=1,
|
| 50 |
+
):
|
| 51 |
+
super().__init__()
|
| 52 |
+
if custom_freqs:
|
| 53 |
+
freqs = custom_freqs
|
| 54 |
+
elif freqs_for == 'lang':
|
| 55 |
+
freqs = 1.0 / (
|
| 56 |
+
theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)
|
| 57 |
+
)
|
| 58 |
+
elif freqs_for == 'pixel':
|
| 59 |
+
freqs = torch.linspace(1.0, max_freq / 2, dim // 2) * pi
|
| 60 |
+
elif freqs_for == 'constant':
|
| 61 |
+
freqs = torch.ones(num_freqs).float()
|
| 62 |
+
else:
|
| 63 |
+
raise ValueError(f'unknown modality {freqs_for}')
|
| 64 |
+
|
| 65 |
+
if ft_seq_len is None:
|
| 66 |
+
ft_seq_len = pt_seq_len
|
| 67 |
+
t = torch.arange(ft_seq_len) / ft_seq_len * pt_seq_len
|
| 68 |
+
|
| 69 |
+
freqs_h = torch.einsum('..., f -> ... f', t, freqs)
|
| 70 |
+
freqs_h = repeat(freqs_h, '... n -> ... (n r)', r=2)
|
| 71 |
+
|
| 72 |
+
freqs_w = torch.einsum('..., f -> ... f', t, freqs)
|
| 73 |
+
freqs_w = repeat(freqs_w, '... n -> ... (n r)', r=2)
|
| 74 |
+
|
| 75 |
+
freqs = broadcast((freqs_h[:, None, :], freqs_w[None, :, :]), dim=-1)
|
| 76 |
+
|
| 77 |
+
self.register_buffer('freqs_cos', freqs.cos(), persistent=False)
|
| 78 |
+
self.register_buffer('freqs_sin', freqs.sin(), persistent=False)
|
| 79 |
+
|
| 80 |
+
def forward(self, t, start_index=0):
|
| 81 |
+
rot_dim = self.freqs_cos.shape[-1]
|
| 82 |
+
end_index = start_index + rot_dim
|
| 83 |
+
assert rot_dim <= t.shape[-1], (
|
| 84 |
+
f'feature dimension {t.shape[-1]} is not of sufficient size to rotate in '
|
| 85 |
+
f'all the positions {rot_dim}'
|
| 86 |
+
)
|
| 87 |
+
t_left, t, t_right = (
|
| 88 |
+
t[..., :start_index],
|
| 89 |
+
t[..., start_index:end_index],
|
| 90 |
+
t[..., end_index:],
|
| 91 |
+
)
|
| 92 |
+
t = (t * self.freqs_cos) + (rotate_half(t) * self.freqs_sin)
|
| 93 |
+
|
| 94 |
+
return torch.cat((t_left, t, t_right), dim=-1)
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
class VisionRotaryEmbeddingFast(nn.Module):
|
| 98 |
+
def __init__(
|
| 99 |
+
self,
|
| 100 |
+
dim,
|
| 101 |
+
pt_seq_len,
|
| 102 |
+
ft_seq_len=None,
|
| 103 |
+
custom_freqs=None,
|
| 104 |
+
freqs_for='lang',
|
| 105 |
+
theta=10000,
|
| 106 |
+
max_freq=10,
|
| 107 |
+
num_freqs=1,
|
| 108 |
+
patch_dropout=0.0,
|
| 109 |
+
):
|
| 110 |
+
super().__init__()
|
| 111 |
+
if custom_freqs:
|
| 112 |
+
freqs = custom_freqs
|
| 113 |
+
elif freqs_for == 'lang':
|
| 114 |
+
freqs = 1.0 / (
|
| 115 |
+
theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)
|
| 116 |
+
)
|
| 117 |
+
elif freqs_for == 'pixel':
|
| 118 |
+
freqs = torch.linspace(1.0, max_freq / 2, dim // 2) * pi
|
| 119 |
+
elif freqs_for == 'constant':
|
| 120 |
+
freqs = torch.ones(num_freqs).float()
|
| 121 |
+
else:
|
| 122 |
+
raise ValueError(f'unknown modality {freqs_for}')
|
| 123 |
+
|
| 124 |
+
if ft_seq_len is None:
|
| 125 |
+
ft_seq_len = pt_seq_len
|
| 126 |
+
t = torch.arange(ft_seq_len) / ft_seq_len * pt_seq_len
|
| 127 |
+
|
| 128 |
+
freqs = torch.einsum('..., f -> ... f', t, freqs)
|
| 129 |
+
freqs = repeat(freqs, '... n -> ... (n r)', r=2)
|
| 130 |
+
freqs = broadcast((freqs[:, None, :], freqs[None, :, :]), dim=-1)
|
| 131 |
+
|
| 132 |
+
freqs_cos = freqs.cos().view(-1, freqs.shape[-1])
|
| 133 |
+
freqs_sin = freqs.sin().view(-1, freqs.shape[-1])
|
| 134 |
+
|
| 135 |
+
self.patch_dropout = patch_dropout
|
| 136 |
+
|
| 137 |
+
self.register_buffer('freqs_cos', freqs_cos, persistent=False)
|
| 138 |
+
self.register_buffer('freqs_sin', freqs_sin, persistent=False)
|
| 139 |
+
|
| 140 |
+
def forward(self, t, patch_indices_keep=None):
|
| 141 |
+
if patch_indices_keep is not None:
|
| 142 |
+
batch = t.size()[0]
|
| 143 |
+
batch_indices = torch.arange(batch)
|
| 144 |
+
batch_indices = batch_indices[..., None]
|
| 145 |
+
|
| 146 |
+
freqs_cos = repeat(
|
| 147 |
+
self.freqs_cos, 'i j -> n i m j', n=t.shape[0], m=t.shape[1]
|
| 148 |
+
)
|
| 149 |
+
freqs_sin = repeat(
|
| 150 |
+
self.freqs_sin, 'i j -> n i m j', n=t.shape[0], m=t.shape[1]
|
| 151 |
+
)
|
| 152 |
+
|
| 153 |
+
freqs_cos = freqs_cos[batch_indices, patch_indices_keep]
|
| 154 |
+
freqs_cos = rearrange(freqs_cos, 'n i m j -> n m i j')
|
| 155 |
+
freqs_sin = freqs_sin[batch_indices, patch_indices_keep]
|
| 156 |
+
freqs_sin = rearrange(freqs_sin, 'n i m j -> n m i j')
|
| 157 |
+
|
| 158 |
+
return t * freqs_cos + rotate_half(t) * freqs_sin
|
| 159 |
+
|
| 160 |
+
return t * self.freqs_cos + rotate_half(t) * self.freqs_sin
|
clip_model/special_tokens_map.json
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"cls_token": {
|
| 10 |
+
"content": "<s>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"eos_token": {
|
| 17 |
+
"content": "</s>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"mask_token": {
|
| 24 |
+
"content": "<mask>",
|
| 25 |
+
"lstrip": true,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"pad_token": {
|
| 31 |
+
"content": "<pad>",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
},
|
| 37 |
+
"sep_token": {
|
| 38 |
+
"content": "</s>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false
|
| 43 |
+
},
|
| 44 |
+
"unk_token": {
|
| 45 |
+
"content": "<unk>",
|
| 46 |
+
"lstrip": false,
|
| 47 |
+
"normalized": false,
|
| 48 |
+
"rstrip": false,
|
| 49 |
+
"single_word": false
|
| 50 |
+
}
|
| 51 |
+
}
|
clip_model/tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6601c4120779a1a3863897ba332fe3481d548e363bec2c91eba10ef8640a5e93
|
| 3 |
+
size 17082997
|
clip_model/tokenizer_config.json
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "<s>",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "<pad>",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"2": {
|
| 20 |
+
"content": "</s>",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"3": {
|
| 28 |
+
"content": "<unk>",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"250001": {
|
| 36 |
+
"content": "<mask>",
|
| 37 |
+
"lstrip": true,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"bos_token": "<s>",
|
| 45 |
+
"clean_up_tokenization_spaces": true,
|
| 46 |
+
"cls_token": "<s>",
|
| 47 |
+
"eos_token": "</s>",
|
| 48 |
+
"extra_special_tokens": {},
|
| 49 |
+
"mask_token": "<mask>",
|
| 50 |
+
"max_length": 77,
|
| 51 |
+
"model_max_length": 8194,
|
| 52 |
+
"pad_to_multiple_of": null,
|
| 53 |
+
"pad_token": "<pad>",
|
| 54 |
+
"pad_token_type_id": 0,
|
| 55 |
+
"padding_side": "right",
|
| 56 |
+
"sep_token": "</s>",
|
| 57 |
+
"stride": 0,
|
| 58 |
+
"tokenizer_class": "XLMRobertaTokenizerFast",
|
| 59 |
+
"truncation_side": "right",
|
| 60 |
+
"truncation_strategy": "longest_first",
|
| 61 |
+
"unk_token": "<unk>"
|
| 62 |
+
}
|
clip_model/transform.py
ADDED
|
@@ -0,0 +1,374 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import random
|
| 2 |
+
import warnings
|
| 3 |
+
from dataclasses import asdict, dataclass
|
| 4 |
+
from typing import Any, Dict, List, Optional, Sequence, Tuple, Union
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import torchvision.transforms.functional as f
|
| 8 |
+
from torchvision.transforms import (
|
| 9 |
+
CenterCrop,
|
| 10 |
+
ColorJitter,
|
| 11 |
+
Compose,
|
| 12 |
+
Grayscale,
|
| 13 |
+
InterpolationMode,
|
| 14 |
+
Normalize,
|
| 15 |
+
RandomResizedCrop,
|
| 16 |
+
Resize,
|
| 17 |
+
ToTensor,
|
| 18 |
+
)
|
| 19 |
+
from transformers.image_utils import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
|
| 20 |
+
|
| 21 |
+
OPENAI_DATASET_MEAN = tuple(OPENAI_CLIP_MEAN)
|
| 22 |
+
OPENAI_DATASET_STD = tuple(OPENAI_CLIP_STD)
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def _setup_size(size, error_msg):
|
| 26 |
+
if isinstance(size, int):
|
| 27 |
+
return size, size
|
| 28 |
+
if isinstance(size, Sequence) and len(size) == 1:
|
| 29 |
+
return size[0], size[0]
|
| 30 |
+
if len(size) != 2:
|
| 31 |
+
raise ValueError(error_msg)
|
| 32 |
+
return size
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def _center_crop_or_pad(
|
| 36 |
+
img: torch.Tensor,
|
| 37 |
+
output_size: Union[int, Tuple[int, ...], List[int]],
|
| 38 |
+
fill: Union[int, Tuple[int]] = 0,
|
| 39 |
+
) -> torch.Tensor:
|
| 40 |
+
"""
|
| 41 |
+
Center crops and/or pads the given image. If the image is torch Tensor, it is
|
| 42 |
+
expected to have [..., H, W] shape, where ... means an arbitrary number of leading
|
| 43 |
+
dimensions. If image size is smaller than output size along any edge, image is
|
| 44 |
+
padded with 0 and then center cropped.
|
| 45 |
+
"""
|
| 46 |
+
if isinstance(output_size, int):
|
| 47 |
+
output_size = (output_size, output_size)
|
| 48 |
+
elif isinstance(output_size, (tuple, list)) and len(output_size) == 1:
|
| 49 |
+
output_size = (output_size[0], output_size[0])
|
| 50 |
+
|
| 51 |
+
_, image_height, image_width = f.get_dimensions(img)
|
| 52 |
+
crop_height, crop_width = output_size
|
| 53 |
+
|
| 54 |
+
if crop_width > image_width or crop_height > image_height:
|
| 55 |
+
padding_ltrb = [
|
| 56 |
+
(crop_width - image_width) // 2 if crop_width > image_width else 0,
|
| 57 |
+
(crop_height - image_height) // 2 if crop_height > image_height else 0,
|
| 58 |
+
(crop_width - image_width + 1) // 2 if crop_width > image_width else 0,
|
| 59 |
+
(crop_height - image_height + 1) // 2 if crop_height > image_height else 0,
|
| 60 |
+
]
|
| 61 |
+
img = f.pad(img, padding_ltrb, fill=fill)
|
| 62 |
+
_, image_height, image_width = f.get_dimensions(img)
|
| 63 |
+
if crop_width == image_width and crop_height == image_height:
|
| 64 |
+
return img
|
| 65 |
+
|
| 66 |
+
crop_top = int(round((image_height - crop_height) / 2.0))
|
| 67 |
+
crop_left = int(round((image_width - crop_width) / 2.0))
|
| 68 |
+
return f.crop(img, crop_top, crop_left, crop_height, crop_width)
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
class _CenterCropOrPad(torch.nn.Module):
|
| 72 |
+
"""Crops the given image at the center.
|
| 73 |
+
If the image is torch Tensor, it is expected
|
| 74 |
+
to have [..., H, W] shape, where ... means an arbitrary number of leading
|
| 75 |
+
dimensions. If image size is smaller than output size along any edge, image is
|
| 76 |
+
padded with 0 and then center cropped.
|
| 77 |
+
|
| 78 |
+
Args:
|
| 79 |
+
size (sequence or int): Desired output size of the crop. If size is an
|
| 80 |
+
int instead of sequence like (h, w), a square crop (size, size) is
|
| 81 |
+
made. If provided a sequence of length 1, it will be interpreted as
|
| 82 |
+
(size[0], size[0]).
|
| 83 |
+
"""
|
| 84 |
+
|
| 85 |
+
def __init__(self, size, fill=0):
|
| 86 |
+
super().__init__()
|
| 87 |
+
self.size = _setup_size(
|
| 88 |
+
size, error_msg='Please provide only two dimensions (h, w) for size.'
|
| 89 |
+
)
|
| 90 |
+
self.fill = fill
|
| 91 |
+
|
| 92 |
+
def forward(self, img):
|
| 93 |
+
"""
|
| 94 |
+
Args:
|
| 95 |
+
img (PIL Image or Tensor): Image to be cropped.
|
| 96 |
+
|
| 97 |
+
Returns:
|
| 98 |
+
PIL Image or Tensor: Cropped image.
|
| 99 |
+
"""
|
| 100 |
+
return _center_crop_or_pad(img, self.size, fill=self.fill)
|
| 101 |
+
|
| 102 |
+
def __repr__(self) -> str:
|
| 103 |
+
return f'{self.__class__.__name__}(size={self.size})'
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
def _convert_to_rgb(image):
|
| 107 |
+
return image.convert('RGB')
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
class _ResizeKeepRatio:
|
| 111 |
+
"""Resize while keeping ratio. Copied from timm"""
|
| 112 |
+
|
| 113 |
+
def __init__(
|
| 114 |
+
self,
|
| 115 |
+
size,
|
| 116 |
+
longest=0.0,
|
| 117 |
+
interpolation=InterpolationMode.BICUBIC,
|
| 118 |
+
random_scale_prob=0.0,
|
| 119 |
+
random_scale_range=(0.85, 1.05),
|
| 120 |
+
random_aspect_prob=0.0,
|
| 121 |
+
random_aspect_range=(0.9, 1.11),
|
| 122 |
+
):
|
| 123 |
+
if isinstance(size, (list, tuple)):
|
| 124 |
+
self.size = tuple(size)
|
| 125 |
+
else:
|
| 126 |
+
self.size = (size, size)
|
| 127 |
+
self.interpolation = interpolation
|
| 128 |
+
self.longest = float(longest) # [0, 1] where 0 == shortest edge, 1 == longest
|
| 129 |
+
self.random_scale_prob = random_scale_prob
|
| 130 |
+
self.random_scale_range = random_scale_range
|
| 131 |
+
self.random_aspect_prob = random_aspect_prob
|
| 132 |
+
self.random_aspect_range = random_aspect_range
|
| 133 |
+
|
| 134 |
+
@staticmethod
|
| 135 |
+
def get_params(
|
| 136 |
+
img,
|
| 137 |
+
target_size,
|
| 138 |
+
longest,
|
| 139 |
+
random_scale_prob=0.0,
|
| 140 |
+
random_scale_range=(0.85, 1.05),
|
| 141 |
+
random_aspect_prob=0.0,
|
| 142 |
+
random_aspect_range=(0.9, 1.11),
|
| 143 |
+
):
|
| 144 |
+
"""Get parameters"""
|
| 145 |
+
source_size = img.size[::-1] # h, w
|
| 146 |
+
h, w = source_size
|
| 147 |
+
target_h, target_w = target_size
|
| 148 |
+
ratio_h = h / target_h
|
| 149 |
+
ratio_w = w / target_w
|
| 150 |
+
ratio = max(ratio_h, ratio_w) * longest + min(ratio_h, ratio_w) * (
|
| 151 |
+
1.0 - longest
|
| 152 |
+
)
|
| 153 |
+
if random_scale_prob > 0 and random.random() < random_scale_prob:
|
| 154 |
+
ratio_factor = random.uniform(random_scale_range[0], random_scale_range[1])
|
| 155 |
+
ratio_factor = (ratio_factor, ratio_factor)
|
| 156 |
+
else:
|
| 157 |
+
ratio_factor = (1.0, 1.0)
|
| 158 |
+
if random_aspect_prob > 0 and random.random() < random_aspect_prob:
|
| 159 |
+
aspect_factor = random.uniform(
|
| 160 |
+
random_aspect_range[0], random_aspect_range[1]
|
| 161 |
+
)
|
| 162 |
+
ratio_factor = (
|
| 163 |
+
ratio_factor[0] / aspect_factor,
|
| 164 |
+
ratio_factor[1] * aspect_factor,
|
| 165 |
+
)
|
| 166 |
+
return [
|
| 167 |
+
round(x * factor / ratio) for x, factor in zip(source_size, ratio_factor)
|
| 168 |
+
]
|
| 169 |
+
|
| 170 |
+
def __call__(self, img):
|
| 171 |
+
"""
|
| 172 |
+
Args:
|
| 173 |
+
img (PIL Image): Image to be cropped and resized.
|
| 174 |
+
|
| 175 |
+
Returns:
|
| 176 |
+
PIL Image: Resized, padded to at least target size, possibly
|
| 177 |
+
cropped to exactly target size
|
| 178 |
+
"""
|
| 179 |
+
size = self.get_params(
|
| 180 |
+
img,
|
| 181 |
+
self.size,
|
| 182 |
+
self.longest,
|
| 183 |
+
self.random_scale_prob,
|
| 184 |
+
self.random_scale_range,
|
| 185 |
+
self.random_aspect_prob,
|
| 186 |
+
self.random_aspect_range,
|
| 187 |
+
)
|
| 188 |
+
img = f.resize(img, size, self.interpolation)
|
| 189 |
+
return img
|
| 190 |
+
|
| 191 |
+
def __repr__(self):
|
| 192 |
+
format_string = self.__class__.__name__ + '(size={0}'.format(self.size)
|
| 193 |
+
format_string += f', interpolation={self.interpolation})'
|
| 194 |
+
format_string += f', longest={self.longest:.3f})'
|
| 195 |
+
return format_string
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
class _ColorJitter(object):
|
| 199 |
+
"""Apply color jitter to the PIL image with a specified probability"""
|
| 200 |
+
|
| 201 |
+
def __init__(self, brightness=0.0, contrast=0.0, saturation=0.0, hue=0.0, p=0.8):
|
| 202 |
+
assert 0.0 <= p <= 1.0
|
| 203 |
+
self.p = p
|
| 204 |
+
self.transf = ColorJitter(
|
| 205 |
+
brightness=brightness, contrast=contrast, saturation=saturation, hue=hue
|
| 206 |
+
)
|
| 207 |
+
|
| 208 |
+
def __call__(self, img):
|
| 209 |
+
if random.random() < self.p:
|
| 210 |
+
return self.transf(img)
|
| 211 |
+
else:
|
| 212 |
+
return img
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
class _GrayScale(object):
|
| 216 |
+
"""Apply gray scale to the PIL image with a specified probability"""
|
| 217 |
+
|
| 218 |
+
def __init__(self, p=0.2):
|
| 219 |
+
assert 0.0 <= p <= 1.0
|
| 220 |
+
self.p = p
|
| 221 |
+
self.transf = Grayscale(num_output_channels=3)
|
| 222 |
+
|
| 223 |
+
def __call__(self, img):
|
| 224 |
+
if random.random() < self.p:
|
| 225 |
+
return self.transf(img)
|
| 226 |
+
else:
|
| 227 |
+
return img
|
| 228 |
+
|
| 229 |
+
|
| 230 |
+
@dataclass
|
| 231 |
+
class AugmentationCfg:
|
| 232 |
+
scale: Tuple[float, float] = (0.9, 1.0)
|
| 233 |
+
ratio: Optional[Tuple[float, float]] = None
|
| 234 |
+
color_jitter: Optional[
|
| 235 |
+
Union[float, Tuple[float, float, float], Tuple[float, float, float, float]]
|
| 236 |
+
] = None
|
| 237 |
+
re_prob: Optional[float] = None
|
| 238 |
+
re_count: Optional[int] = None
|
| 239 |
+
use_timm: bool = False
|
| 240 |
+
color_jitter_prob: float = None
|
| 241 |
+
gray_scale_prob: float = None
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
def image_transform(
|
| 245 |
+
image_size: Union[int, Tuple[int, int]],
|
| 246 |
+
is_train: bool,
|
| 247 |
+
mean: Optional[Tuple[float, ...]] = None,
|
| 248 |
+
std: Optional[Tuple[float, ...]] = None,
|
| 249 |
+
resize_mode: Optional[str] = None,
|
| 250 |
+
interpolation: Optional[str] = None,
|
| 251 |
+
fill_color: int = 0,
|
| 252 |
+
aug_cfg: Optional[Union[Dict[str, Any], AugmentationCfg]] = None,
|
| 253 |
+
):
|
| 254 |
+
mean = mean or OPENAI_DATASET_MEAN
|
| 255 |
+
if not isinstance(mean, (list, tuple)):
|
| 256 |
+
mean = (mean,) * 3
|
| 257 |
+
|
| 258 |
+
std = std or OPENAI_DATASET_STD
|
| 259 |
+
if not isinstance(std, (list, tuple)):
|
| 260 |
+
std = (std,) * 3
|
| 261 |
+
|
| 262 |
+
interpolation = interpolation or 'bicubic'
|
| 263 |
+
assert interpolation in ['bicubic', 'bilinear', 'random']
|
| 264 |
+
# NOTE random is ignored for interpolation_mode, so defaults to BICUBIC for
|
| 265 |
+
# inference if set
|
| 266 |
+
interpolation_mode = (
|
| 267 |
+
InterpolationMode.BILINEAR
|
| 268 |
+
if interpolation == 'bilinear'
|
| 269 |
+
else InterpolationMode.BICUBIC
|
| 270 |
+
)
|
| 271 |
+
|
| 272 |
+
resize_mode = resize_mode or 'shortest'
|
| 273 |
+
assert resize_mode in ('shortest', 'longest', 'squash')
|
| 274 |
+
|
| 275 |
+
if isinstance(aug_cfg, dict):
|
| 276 |
+
aug_cfg = AugmentationCfg(**aug_cfg)
|
| 277 |
+
else:
|
| 278 |
+
aug_cfg = aug_cfg or AugmentationCfg()
|
| 279 |
+
|
| 280 |
+
normalize = Normalize(mean=mean, std=std)
|
| 281 |
+
|
| 282 |
+
if is_train:
|
| 283 |
+
aug_cfg_dict = {k: v for k, v in asdict(aug_cfg).items() if v is not None}
|
| 284 |
+
use_timm = aug_cfg_dict.pop('use_timm', False)
|
| 285 |
+
if use_timm:
|
| 286 |
+
from timm.data import create_transform # timm can still be optional
|
| 287 |
+
|
| 288 |
+
if isinstance(image_size, (tuple, list)):
|
| 289 |
+
assert len(image_size) >= 2
|
| 290 |
+
input_size = (3,) + image_size[-2:]
|
| 291 |
+
else:
|
| 292 |
+
input_size = (3, image_size, image_size)
|
| 293 |
+
|
| 294 |
+
aug_cfg_dict.setdefault('color_jitter', None) # disable by default
|
| 295 |
+
# drop extra non-timm items
|
| 296 |
+
aug_cfg_dict.pop('color_jitter_prob', None)
|
| 297 |
+
aug_cfg_dict.pop('gray_scale_prob', None)
|
| 298 |
+
|
| 299 |
+
train_transform = create_transform(
|
| 300 |
+
input_size=input_size,
|
| 301 |
+
is_training=True,
|
| 302 |
+
hflip=0.0,
|
| 303 |
+
mean=mean,
|
| 304 |
+
std=std,
|
| 305 |
+
re_mode='pixel',
|
| 306 |
+
interpolation=interpolation,
|
| 307 |
+
**aug_cfg_dict,
|
| 308 |
+
)
|
| 309 |
+
else:
|
| 310 |
+
train_transform = [
|
| 311 |
+
RandomResizedCrop(
|
| 312 |
+
image_size,
|
| 313 |
+
scale=aug_cfg_dict.pop('scale'),
|
| 314 |
+
interpolation=InterpolationMode.BICUBIC,
|
| 315 |
+
),
|
| 316 |
+
_convert_to_rgb,
|
| 317 |
+
]
|
| 318 |
+
if aug_cfg.color_jitter_prob:
|
| 319 |
+
assert (
|
| 320 |
+
aug_cfg.color_jitter is not None and len(aug_cfg.color_jitter) == 4
|
| 321 |
+
)
|
| 322 |
+
train_transform.extend(
|
| 323 |
+
[_ColorJitter(*aug_cfg.color_jitter, p=aug_cfg.color_jitter_prob)]
|
| 324 |
+
)
|
| 325 |
+
if aug_cfg.gray_scale_prob:
|
| 326 |
+
train_transform.extend([_GrayScale(aug_cfg.gray_scale_prob)])
|
| 327 |
+
train_transform.extend(
|
| 328 |
+
[
|
| 329 |
+
ToTensor(),
|
| 330 |
+
normalize,
|
| 331 |
+
]
|
| 332 |
+
)
|
| 333 |
+
train_transform = Compose(train_transform)
|
| 334 |
+
if aug_cfg_dict:
|
| 335 |
+
warnings.warn(
|
| 336 |
+
f'Unused augmentation cfg items, specify `use_timm` to use '
|
| 337 |
+
f'({list(aug_cfg_dict.keys())}).'
|
| 338 |
+
)
|
| 339 |
+
return train_transform
|
| 340 |
+
else:
|
| 341 |
+
if resize_mode == 'longest':
|
| 342 |
+
transforms = [
|
| 343 |
+
_ResizeKeepRatio(
|
| 344 |
+
image_size, interpolation=interpolation_mode, longest=1
|
| 345 |
+
),
|
| 346 |
+
_CenterCropOrPad(image_size, fill=fill_color),
|
| 347 |
+
]
|
| 348 |
+
elif resize_mode == 'squash':
|
| 349 |
+
if isinstance(image_size, int):
|
| 350 |
+
image_size = (image_size, image_size)
|
| 351 |
+
transforms = [
|
| 352 |
+
Resize(image_size, interpolation=interpolation_mode),
|
| 353 |
+
]
|
| 354 |
+
else:
|
| 355 |
+
assert resize_mode == 'shortest'
|
| 356 |
+
if not isinstance(image_size, (tuple, list)):
|
| 357 |
+
image_size = (image_size, image_size)
|
| 358 |
+
if image_size[0] == image_size[1]:
|
| 359 |
+
# simple case, use torchvision built-in Resize w/ shortest edge mode
|
| 360 |
+
# (scalar size arg)
|
| 361 |
+
transforms = [Resize(image_size[0], interpolation=interpolation_mode)]
|
| 362 |
+
else:
|
| 363 |
+
# resize shortest edge to matching target dim for non-square target
|
| 364 |
+
transforms = [_ResizeKeepRatio(image_size)]
|
| 365 |
+
transforms += [CenterCrop(image_size)]
|
| 366 |
+
|
| 367 |
+
transforms.extend(
|
| 368 |
+
[
|
| 369 |
+
_convert_to_rgb,
|
| 370 |
+
ToTensor(),
|
| 371 |
+
normalize,
|
| 372 |
+
]
|
| 373 |
+
)
|
| 374 |
+
return Compose(transforms)
|
model_index.json
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_class_name": "NewbiePipeline",
|
| 3 |
+
"_diffusers_version": "0.30.0",
|
| 4 |
+
"transformer": [
|
| 5 |
+
"transformer",
|
| 6 |
+
"NextDiT_3B_GQA_patch2_Adaln_Refiner_WHIT_CLIP"
|
| 7 |
+
],
|
| 8 |
+
"text_encoder": [
|
| 9 |
+
"text_encoder",
|
| 10 |
+
"Gemma3ForConditionalGeneration"
|
| 11 |
+
],
|
| 12 |
+
"tokenizer": [
|
| 13 |
+
"text_encoder",
|
| 14 |
+
"AutoTokenizer"
|
| 15 |
+
],
|
| 16 |
+
"clip_model": [
|
| 17 |
+
"clip_model",
|
| 18 |
+
"JinaCLIPModel"
|
| 19 |
+
],
|
| 20 |
+
"clip_tokenizer": [
|
| 21 |
+
"clip_model",
|
| 22 |
+
"AutoTokenizer"
|
| 23 |
+
],
|
| 24 |
+
"vae": [
|
| 25 |
+
"vae",
|
| 26 |
+
"AutoencoderKL"
|
| 27 |
+
]
|
| 28 |
+
}
|
text_encoder/added_tokens.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"<image_soft_token>": 262144
|
| 3 |
+
}
|
text_encoder/chat_template.jinja
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{{ bos_token }}
|
| 2 |
+
{%- if messages[0]['role'] == 'system' -%}
|
| 3 |
+
{%- if messages[0]['content'] is string -%}
|
| 4 |
+
{%- set first_user_prefix = messages[0]['content'] + '
|
| 5 |
+
|
| 6 |
+
' -%}
|
| 7 |
+
{%- else -%}
|
| 8 |
+
{%- set first_user_prefix = messages[0]['content'][0]['text'] + '
|
| 9 |
+
|
| 10 |
+
' -%}
|
| 11 |
+
{%- endif -%}
|
| 12 |
+
{%- set loop_messages = messages[1:] -%}
|
| 13 |
+
{%- else -%}
|
| 14 |
+
{%- set first_user_prefix = "" -%}
|
| 15 |
+
{%- set loop_messages = messages -%}
|
| 16 |
+
{%- endif -%}
|
| 17 |
+
{%- for message in loop_messages -%}
|
| 18 |
+
{%- if (message['role'] == 'user') != (loop.index0 % 2 == 0) -%}
|
| 19 |
+
{{ raise_exception("Conversation roles must alternate user/assistant/user/assistant/...") }}
|
| 20 |
+
{%- endif -%}
|
| 21 |
+
{%- if (message['role'] == 'assistant') -%}
|
| 22 |
+
{%- set role = "model" -%}
|
| 23 |
+
{%- else -%}
|
| 24 |
+
{%- set role = message['role'] -%}
|
| 25 |
+
{%- endif -%}
|
| 26 |
+
{{ '<start_of_turn>' + role + '
|
| 27 |
+
' + (first_user_prefix if loop.first else "") }}
|
| 28 |
+
{%- if message['content'] is string -%}
|
| 29 |
+
{{ message['content'] | trim }}
|
| 30 |
+
{%- elif message['content'] is iterable -%}
|
| 31 |
+
{%- for item in message['content'] -%}
|
| 32 |
+
{%- if item['type'] == 'image' -%}
|
| 33 |
+
{{ '<start_of_image>' }}
|
| 34 |
+
{%- elif item['type'] == 'text' -%}
|
| 35 |
+
{{ item['text'] | trim }}
|
| 36 |
+
{%- endif -%}
|
| 37 |
+
{%- endfor -%}
|
| 38 |
+
{%- else -%}
|
| 39 |
+
{{ raise_exception("Invalid content type") }}
|
| 40 |
+
{%- endif -%}
|
| 41 |
+
{{ '<end_of_turn>
|
| 42 |
+
' }}
|
| 43 |
+
{%- endfor -%}
|
| 44 |
+
{%- if add_generation_prompt -%}
|
| 45 |
+
{{'<start_of_turn>model
|
| 46 |
+
'}}
|
| 47 |
+
{%- endif -%}
|
text_encoder/config.json
ADDED
|
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"Gemma3Model"
|
| 4 |
+
],
|
| 5 |
+
"boi_token_index": 255999,
|
| 6 |
+
"dtype": "bfloat16",
|
| 7 |
+
"eoi_token_index": 256000,
|
| 8 |
+
"eos_token_id": [
|
| 9 |
+
1,
|
| 10 |
+
106
|
| 11 |
+
],
|
| 12 |
+
"image_token_index": 262144,
|
| 13 |
+
"initializer_range": 0.02,
|
| 14 |
+
"mm_tokens_per_image": 256,
|
| 15 |
+
"model_type": "gemma3",
|
| 16 |
+
"text_config": {
|
| 17 |
+
"_sliding_window_pattern": 6,
|
| 18 |
+
"attention_bias": false,
|
| 19 |
+
"attention_dropout": 0.0,
|
| 20 |
+
"attn_logit_softcapping": null,
|
| 21 |
+
"dtype": "bfloat16",
|
| 22 |
+
"final_logit_softcapping": null,
|
| 23 |
+
"head_dim": 256,
|
| 24 |
+
"hidden_activation": "gelu_pytorch_tanh",
|
| 25 |
+
"hidden_size": 2560,
|
| 26 |
+
"initializer_range": 0.02,
|
| 27 |
+
"intermediate_size": 10240,
|
| 28 |
+
"layer_types": [
|
| 29 |
+
"sliding_attention",
|
| 30 |
+
"sliding_attention",
|
| 31 |
+
"sliding_attention",
|
| 32 |
+
"sliding_attention",
|
| 33 |
+
"sliding_attention",
|
| 34 |
+
"full_attention",
|
| 35 |
+
"sliding_attention",
|
| 36 |
+
"sliding_attention",
|
| 37 |
+
"sliding_attention",
|
| 38 |
+
"sliding_attention",
|
| 39 |
+
"sliding_attention",
|
| 40 |
+
"full_attention",
|
| 41 |
+
"sliding_attention",
|
| 42 |
+
"sliding_attention",
|
| 43 |
+
"sliding_attention",
|
| 44 |
+
"sliding_attention",
|
| 45 |
+
"sliding_attention",
|
| 46 |
+
"full_attention",
|
| 47 |
+
"sliding_attention",
|
| 48 |
+
"sliding_attention",
|
| 49 |
+
"sliding_attention",
|
| 50 |
+
"sliding_attention",
|
| 51 |
+
"sliding_attention",
|
| 52 |
+
"full_attention",
|
| 53 |
+
"sliding_attention",
|
| 54 |
+
"sliding_attention",
|
| 55 |
+
"sliding_attention",
|
| 56 |
+
"sliding_attention",
|
| 57 |
+
"sliding_attention",
|
| 58 |
+
"full_attention",
|
| 59 |
+
"sliding_attention",
|
| 60 |
+
"sliding_attention",
|
| 61 |
+
"sliding_attention",
|
| 62 |
+
"sliding_attention"
|
| 63 |
+
],
|
| 64 |
+
"max_position_embeddings": 131072,
|
| 65 |
+
"model_type": "gemma3_text",
|
| 66 |
+
"num_attention_heads": 8,
|
| 67 |
+
"num_hidden_layers": 34,
|
| 68 |
+
"num_key_value_heads": 4,
|
| 69 |
+
"query_pre_attn_scalar": 256,
|
| 70 |
+
"rms_norm_eps": 1e-06,
|
| 71 |
+
"rope_local_base_freq": 10000.0,
|
| 72 |
+
"rope_scaling": {
|
| 73 |
+
"factor": 8.0,
|
| 74 |
+
"rope_type": "linear"
|
| 75 |
+
},
|
| 76 |
+
"rope_theta": 1000000.0,
|
| 77 |
+
"sliding_window": 1024,
|
| 78 |
+
"use_bidirectional_attention": false,
|
| 79 |
+
"use_cache": true,
|
| 80 |
+
"vocab_size": 262208
|
| 81 |
+
},
|
| 82 |
+
"transformers_version": "4.57.3",
|
| 83 |
+
"vision_config": {
|
| 84 |
+
"attention_dropout": 0.0,
|
| 85 |
+
"dtype": "bfloat16",
|
| 86 |
+
"hidden_act": "gelu_pytorch_tanh",
|
| 87 |
+
"hidden_size": 1152,
|
| 88 |
+
"image_size": 896,
|
| 89 |
+
"intermediate_size": 4304,
|
| 90 |
+
"layer_norm_eps": 1e-06,
|
| 91 |
+
"model_type": "siglip_vision_model",
|
| 92 |
+
"num_attention_heads": 16,
|
| 93 |
+
"num_channels": 3,
|
| 94 |
+
"num_hidden_layers": 27,
|
| 95 |
+
"patch_size": 14,
|
| 96 |
+
"vision_use_head": false
|
| 97 |
+
}
|
| 98 |
+
}
|
text_encoder/model-00001-of-00002.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:eb5fd5e97ddd07b56778733e9653c07312529cb00980a318fc3e1c4e3b5a8f1f
|
| 3 |
+
size 4961251752
|
text_encoder/model-00002-of-00002.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fdde0e5aa5ced0fa203b3d50f4ab78168b7e3a3e08c6349f5cc9326666e1bb13
|
| 3 |
+
size 3639026128
|
text_encoder/model.safetensors.index.json
ADDED
|
@@ -0,0 +1,891 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_parameters": 4300079472,
|
| 4 |
+
"total_size": 8600158944
|
| 5 |
+
},
|
| 6 |
+
"weight_map": {
|
| 7 |
+
"language_model.model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
| 8 |
+
"language_model.model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 9 |
+
"language_model.model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 10 |
+
"language_model.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 11 |
+
"language_model.model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 12 |
+
"language_model.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 13 |
+
"language_model.model.layers.0.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 14 |
+
"language_model.model.layers.0.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 15 |
+
"language_model.model.layers.0.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 16 |
+
"language_model.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 17 |
+
"language_model.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 18 |
+
"language_model.model.layers.0.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 19 |
+
"language_model.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 20 |
+
"language_model.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 21 |
+
"language_model.model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 22 |
+
"language_model.model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 23 |
+
"language_model.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 24 |
+
"language_model.model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 25 |
+
"language_model.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 26 |
+
"language_model.model.layers.1.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 27 |
+
"language_model.model.layers.1.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 28 |
+
"language_model.model.layers.1.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 29 |
+
"language_model.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 30 |
+
"language_model.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 31 |
+
"language_model.model.layers.1.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 32 |
+
"language_model.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 33 |
+
"language_model.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 34 |
+
"language_model.model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 35 |
+
"language_model.model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 36 |
+
"language_model.model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 37 |
+
"language_model.model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 38 |
+
"language_model.model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 39 |
+
"language_model.model.layers.10.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 40 |
+
"language_model.model.layers.10.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 41 |
+
"language_model.model.layers.10.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 42 |
+
"language_model.model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 43 |
+
"language_model.model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 44 |
+
"language_model.model.layers.10.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 45 |
+
"language_model.model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 46 |
+
"language_model.model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 47 |
+
"language_model.model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 48 |
+
"language_model.model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 49 |
+
"language_model.model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 50 |
+
"language_model.model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 51 |
+
"language_model.model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 52 |
+
"language_model.model.layers.11.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 53 |
+
"language_model.model.layers.11.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 54 |
+
"language_model.model.layers.11.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 55 |
+
"language_model.model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 56 |
+
"language_model.model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 57 |
+
"language_model.model.layers.11.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 58 |
+
"language_model.model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 59 |
+
"language_model.model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 60 |
+
"language_model.model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 61 |
+
"language_model.model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 62 |
+
"language_model.model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 63 |
+
"language_model.model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 64 |
+
"language_model.model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 65 |
+
"language_model.model.layers.12.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 66 |
+
"language_model.model.layers.12.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 67 |
+
"language_model.model.layers.12.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 68 |
+
"language_model.model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 69 |
+
"language_model.model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 70 |
+
"language_model.model.layers.12.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 71 |
+
"language_model.model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 72 |
+
"language_model.model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 73 |
+
"language_model.model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 74 |
+
"language_model.model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 75 |
+
"language_model.model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 76 |
+
"language_model.model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 77 |
+
"language_model.model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 78 |
+
"language_model.model.layers.13.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 79 |
+
"language_model.model.layers.13.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 80 |
+
"language_model.model.layers.13.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 81 |
+
"language_model.model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 82 |
+
"language_model.model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 83 |
+
"language_model.model.layers.13.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 84 |
+
"language_model.model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 85 |
+
"language_model.model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 86 |
+
"language_model.model.layers.14.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 87 |
+
"language_model.model.layers.14.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 88 |
+
"language_model.model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 89 |
+
"language_model.model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 90 |
+
"language_model.model.layers.14.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 91 |
+
"language_model.model.layers.14.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 92 |
+
"language_model.model.layers.14.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 93 |
+
"language_model.model.layers.14.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 94 |
+
"language_model.model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 95 |
+
"language_model.model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 96 |
+
"language_model.model.layers.14.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 97 |
+
"language_model.model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 98 |
+
"language_model.model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 99 |
+
"language_model.model.layers.15.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 100 |
+
"language_model.model.layers.15.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 101 |
+
"language_model.model.layers.15.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 102 |
+
"language_model.model.layers.15.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 103 |
+
"language_model.model.layers.15.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 104 |
+
"language_model.model.layers.15.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 105 |
+
"language_model.model.layers.15.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 106 |
+
"language_model.model.layers.15.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 107 |
+
"language_model.model.layers.15.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 108 |
+
"language_model.model.layers.15.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 109 |
+
"language_model.model.layers.15.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 110 |
+
"language_model.model.layers.15.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 111 |
+
"language_model.model.layers.15.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 112 |
+
"language_model.model.layers.16.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 113 |
+
"language_model.model.layers.16.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 114 |
+
"language_model.model.layers.16.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 115 |
+
"language_model.model.layers.16.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 116 |
+
"language_model.model.layers.16.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 117 |
+
"language_model.model.layers.16.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 118 |
+
"language_model.model.layers.16.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 119 |
+
"language_model.model.layers.16.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 120 |
+
"language_model.model.layers.16.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 121 |
+
"language_model.model.layers.16.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 122 |
+
"language_model.model.layers.16.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 123 |
+
"language_model.model.layers.16.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 124 |
+
"language_model.model.layers.16.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 125 |
+
"language_model.model.layers.17.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 126 |
+
"language_model.model.layers.17.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 127 |
+
"language_model.model.layers.17.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 128 |
+
"language_model.model.layers.17.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 129 |
+
"language_model.model.layers.17.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 130 |
+
"language_model.model.layers.17.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 131 |
+
"language_model.model.layers.17.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 132 |
+
"language_model.model.layers.17.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 133 |
+
"language_model.model.layers.17.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 134 |
+
"language_model.model.layers.17.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 135 |
+
"language_model.model.layers.17.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 136 |
+
"language_model.model.layers.17.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 137 |
+
"language_model.model.layers.17.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 138 |
+
"language_model.model.layers.18.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 139 |
+
"language_model.model.layers.18.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 140 |
+
"language_model.model.layers.18.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 141 |
+
"language_model.model.layers.18.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 142 |
+
"language_model.model.layers.18.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 143 |
+
"language_model.model.layers.18.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 144 |
+
"language_model.model.layers.18.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 145 |
+
"language_model.model.layers.18.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 146 |
+
"language_model.model.layers.18.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 147 |
+
"language_model.model.layers.18.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 148 |
+
"language_model.model.layers.18.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 149 |
+
"language_model.model.layers.18.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 150 |
+
"language_model.model.layers.18.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 151 |
+
"language_model.model.layers.19.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 152 |
+
"language_model.model.layers.19.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 153 |
+
"language_model.model.layers.19.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 154 |
+
"language_model.model.layers.19.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 155 |
+
"language_model.model.layers.19.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 156 |
+
"language_model.model.layers.19.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 157 |
+
"language_model.model.layers.19.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 158 |
+
"language_model.model.layers.19.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 159 |
+
"language_model.model.layers.19.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 160 |
+
"language_model.model.layers.19.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 161 |
+
"language_model.model.layers.19.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 162 |
+
"language_model.model.layers.19.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 163 |
+
"language_model.model.layers.19.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 164 |
+
"language_model.model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 165 |
+
"language_model.model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 166 |
+
"language_model.model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 167 |
+
"language_model.model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 168 |
+
"language_model.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 169 |
+
"language_model.model.layers.2.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 170 |
+
"language_model.model.layers.2.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 171 |
+
"language_model.model.layers.2.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 172 |
+
"language_model.model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 173 |
+
"language_model.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 174 |
+
"language_model.model.layers.2.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 175 |
+
"language_model.model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 176 |
+
"language_model.model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 177 |
+
"language_model.model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 178 |
+
"language_model.model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 179 |
+
"language_model.model.layers.20.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 180 |
+
"language_model.model.layers.20.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 181 |
+
"language_model.model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 182 |
+
"language_model.model.layers.20.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 183 |
+
"language_model.model.layers.20.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 184 |
+
"language_model.model.layers.20.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 185 |
+
"language_model.model.layers.20.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 186 |
+
"language_model.model.layers.20.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 187 |
+
"language_model.model.layers.20.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 188 |
+
"language_model.model.layers.20.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 189 |
+
"language_model.model.layers.20.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 190 |
+
"language_model.model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 191 |
+
"language_model.model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 192 |
+
"language_model.model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 193 |
+
"language_model.model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 194 |
+
"language_model.model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 195 |
+
"language_model.model.layers.21.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 196 |
+
"language_model.model.layers.21.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 197 |
+
"language_model.model.layers.21.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 198 |
+
"language_model.model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 199 |
+
"language_model.model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 200 |
+
"language_model.model.layers.21.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 201 |
+
"language_model.model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 202 |
+
"language_model.model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 203 |
+
"language_model.model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 204 |
+
"language_model.model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 205 |
+
"language_model.model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 206 |
+
"language_model.model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 207 |
+
"language_model.model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 208 |
+
"language_model.model.layers.22.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 209 |
+
"language_model.model.layers.22.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 210 |
+
"language_model.model.layers.22.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 211 |
+
"language_model.model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 212 |
+
"language_model.model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 213 |
+
"language_model.model.layers.22.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 214 |
+
"language_model.model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 215 |
+
"language_model.model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 216 |
+
"language_model.model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 217 |
+
"language_model.model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 218 |
+
"language_model.model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 219 |
+
"language_model.model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 220 |
+
"language_model.model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 221 |
+
"language_model.model.layers.23.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 222 |
+
"language_model.model.layers.23.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 223 |
+
"language_model.model.layers.23.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 224 |
+
"language_model.model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 225 |
+
"language_model.model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 226 |
+
"language_model.model.layers.23.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 227 |
+
"language_model.model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 228 |
+
"language_model.model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 229 |
+
"language_model.model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 230 |
+
"language_model.model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 231 |
+
"language_model.model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 232 |
+
"language_model.model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 233 |
+
"language_model.model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 234 |
+
"language_model.model.layers.24.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 235 |
+
"language_model.model.layers.24.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 236 |
+
"language_model.model.layers.24.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 237 |
+
"language_model.model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 238 |
+
"language_model.model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 239 |
+
"language_model.model.layers.24.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 240 |
+
"language_model.model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 241 |
+
"language_model.model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 242 |
+
"language_model.model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 243 |
+
"language_model.model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 244 |
+
"language_model.model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 245 |
+
"language_model.model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 246 |
+
"language_model.model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 247 |
+
"language_model.model.layers.25.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 248 |
+
"language_model.model.layers.25.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 249 |
+
"language_model.model.layers.25.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 250 |
+
"language_model.model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 251 |
+
"language_model.model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 252 |
+
"language_model.model.layers.25.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 253 |
+
"language_model.model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 254 |
+
"language_model.model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 255 |
+
"language_model.model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 256 |
+
"language_model.model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 257 |
+
"language_model.model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 258 |
+
"language_model.model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 259 |
+
"language_model.model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 260 |
+
"language_model.model.layers.26.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 261 |
+
"language_model.model.layers.26.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 262 |
+
"language_model.model.layers.26.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 263 |
+
"language_model.model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 264 |
+
"language_model.model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 265 |
+
"language_model.model.layers.26.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 266 |
+
"language_model.model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 267 |
+
"language_model.model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 268 |
+
"language_model.model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 269 |
+
"language_model.model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 270 |
+
"language_model.model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 271 |
+
"language_model.model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 272 |
+
"language_model.model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 273 |
+
"language_model.model.layers.27.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 274 |
+
"language_model.model.layers.27.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 275 |
+
"language_model.model.layers.27.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 276 |
+
"language_model.model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 277 |
+
"language_model.model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 278 |
+
"language_model.model.layers.27.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 279 |
+
"language_model.model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 280 |
+
"language_model.model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 281 |
+
"language_model.model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 282 |
+
"language_model.model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 283 |
+
"language_model.model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 284 |
+
"language_model.model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 285 |
+
"language_model.model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 286 |
+
"language_model.model.layers.28.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 287 |
+
"language_model.model.layers.28.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 288 |
+
"language_model.model.layers.28.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 289 |
+
"language_model.model.layers.28.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 290 |
+
"language_model.model.layers.28.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 291 |
+
"language_model.model.layers.28.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 292 |
+
"language_model.model.layers.28.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 293 |
+
"language_model.model.layers.28.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 294 |
+
"language_model.model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 295 |
+
"language_model.model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 296 |
+
"language_model.model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 297 |
+
"language_model.model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 298 |
+
"language_model.model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 299 |
+
"language_model.model.layers.29.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 300 |
+
"language_model.model.layers.29.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 301 |
+
"language_model.model.layers.29.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 302 |
+
"language_model.model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 303 |
+
"language_model.model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 304 |
+
"language_model.model.layers.29.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 305 |
+
"language_model.model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 306 |
+
"language_model.model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 307 |
+
"language_model.model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 308 |
+
"language_model.model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 309 |
+
"language_model.model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 310 |
+
"language_model.model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 311 |
+
"language_model.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 312 |
+
"language_model.model.layers.3.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 313 |
+
"language_model.model.layers.3.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 314 |
+
"language_model.model.layers.3.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 315 |
+
"language_model.model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 316 |
+
"language_model.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 317 |
+
"language_model.model.layers.3.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 318 |
+
"language_model.model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 319 |
+
"language_model.model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 320 |
+
"language_model.model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 321 |
+
"language_model.model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 322 |
+
"language_model.model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 323 |
+
"language_model.model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 324 |
+
"language_model.model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 325 |
+
"language_model.model.layers.30.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 326 |
+
"language_model.model.layers.30.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 327 |
+
"language_model.model.layers.30.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 328 |
+
"language_model.model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 329 |
+
"language_model.model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 330 |
+
"language_model.model.layers.30.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 331 |
+
"language_model.model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 332 |
+
"language_model.model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 333 |
+
"language_model.model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 334 |
+
"language_model.model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 335 |
+
"language_model.model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 336 |
+
"language_model.model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 337 |
+
"language_model.model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 338 |
+
"language_model.model.layers.31.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 339 |
+
"language_model.model.layers.31.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 340 |
+
"language_model.model.layers.31.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 341 |
+
"language_model.model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 342 |
+
"language_model.model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 343 |
+
"language_model.model.layers.31.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 344 |
+
"language_model.model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 345 |
+
"language_model.model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 346 |
+
"language_model.model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 347 |
+
"language_model.model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 348 |
+
"language_model.model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 349 |
+
"language_model.model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 350 |
+
"language_model.model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 351 |
+
"language_model.model.layers.32.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 352 |
+
"language_model.model.layers.32.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 353 |
+
"language_model.model.layers.32.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 354 |
+
"language_model.model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 355 |
+
"language_model.model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 356 |
+
"language_model.model.layers.32.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 357 |
+
"language_model.model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 358 |
+
"language_model.model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 359 |
+
"language_model.model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 360 |
+
"language_model.model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 361 |
+
"language_model.model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 362 |
+
"language_model.model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 363 |
+
"language_model.model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 364 |
+
"language_model.model.layers.33.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 365 |
+
"language_model.model.layers.33.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 366 |
+
"language_model.model.layers.33.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
|
| 367 |
+
"language_model.model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 368 |
+
"language_model.model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 369 |
+
"language_model.model.layers.33.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
|
| 370 |
+
"language_model.model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 371 |
+
"language_model.model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 372 |
+
"language_model.model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 373 |
+
"language_model.model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 374 |
+
"language_model.model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 375 |
+
"language_model.model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 376 |
+
"language_model.model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 377 |
+
"language_model.model.layers.4.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 378 |
+
"language_model.model.layers.4.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 379 |
+
"language_model.model.layers.4.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 380 |
+
"language_model.model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 381 |
+
"language_model.model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 382 |
+
"language_model.model.layers.4.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 383 |
+
"language_model.model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 384 |
+
"language_model.model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 385 |
+
"language_model.model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 386 |
+
"language_model.model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 387 |
+
"language_model.model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 388 |
+
"language_model.model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 389 |
+
"language_model.model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 390 |
+
"language_model.model.layers.5.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 391 |
+
"language_model.model.layers.5.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 392 |
+
"language_model.model.layers.5.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 393 |
+
"language_model.model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 394 |
+
"language_model.model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 395 |
+
"language_model.model.layers.5.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 396 |
+
"language_model.model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 397 |
+
"language_model.model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 398 |
+
"language_model.model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 399 |
+
"language_model.model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 400 |
+
"language_model.model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 401 |
+
"language_model.model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 402 |
+
"language_model.model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 403 |
+
"language_model.model.layers.6.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 404 |
+
"language_model.model.layers.6.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 405 |
+
"language_model.model.layers.6.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 406 |
+
"language_model.model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 407 |
+
"language_model.model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 408 |
+
"language_model.model.layers.6.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 409 |
+
"language_model.model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 410 |
+
"language_model.model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 411 |
+
"language_model.model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 412 |
+
"language_model.model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 413 |
+
"language_model.model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 414 |
+
"language_model.model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 415 |
+
"language_model.model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 416 |
+
"language_model.model.layers.7.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 417 |
+
"language_model.model.layers.7.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 418 |
+
"language_model.model.layers.7.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 419 |
+
"language_model.model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 420 |
+
"language_model.model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 421 |
+
"language_model.model.layers.7.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 422 |
+
"language_model.model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 423 |
+
"language_model.model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 424 |
+
"language_model.model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 425 |
+
"language_model.model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 426 |
+
"language_model.model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 427 |
+
"language_model.model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 428 |
+
"language_model.model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 429 |
+
"language_model.model.layers.8.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 430 |
+
"language_model.model.layers.8.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 431 |
+
"language_model.model.layers.8.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 432 |
+
"language_model.model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 433 |
+
"language_model.model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 434 |
+
"language_model.model.layers.8.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 435 |
+
"language_model.model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 436 |
+
"language_model.model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 437 |
+
"language_model.model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 438 |
+
"language_model.model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 439 |
+
"language_model.model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 440 |
+
"language_model.model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 441 |
+
"language_model.model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 442 |
+
"language_model.model.layers.9.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 443 |
+
"language_model.model.layers.9.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 444 |
+
"language_model.model.layers.9.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
|
| 445 |
+
"language_model.model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 446 |
+
"language_model.model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 447 |
+
"language_model.model.layers.9.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
|
| 448 |
+
"language_model.model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 449 |
+
"language_model.model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 450 |
+
"language_model.model.norm.weight": "model-00002-of-00002.safetensors",
|
| 451 |
+
"multi_modal_projector.mm_input_projection_weight": "model-00001-of-00002.safetensors",
|
| 452 |
+
"multi_modal_projector.mm_soft_emb_norm.weight": "model-00001-of-00002.safetensors",
|
| 453 |
+
"vision_tower.vision_model.embeddings.patch_embedding.bias": "model-00001-of-00002.safetensors",
|
| 454 |
+
"vision_tower.vision_model.embeddings.patch_embedding.weight": "model-00001-of-00002.safetensors",
|
| 455 |
+
"vision_tower.vision_model.embeddings.position_embedding.weight": "model-00001-of-00002.safetensors",
|
| 456 |
+
"vision_tower.vision_model.encoder.layers.0.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 457 |
+
"vision_tower.vision_model.encoder.layers.0.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 458 |
+
"vision_tower.vision_model.encoder.layers.0.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 459 |
+
"vision_tower.vision_model.encoder.layers.0.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 460 |
+
"vision_tower.vision_model.encoder.layers.0.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 461 |
+
"vision_tower.vision_model.encoder.layers.0.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 462 |
+
"vision_tower.vision_model.encoder.layers.0.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 463 |
+
"vision_tower.vision_model.encoder.layers.0.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 464 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 465 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 466 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 467 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 468 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 469 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 470 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 471 |
+
"vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 472 |
+
"vision_tower.vision_model.encoder.layers.1.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 473 |
+
"vision_tower.vision_model.encoder.layers.1.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 474 |
+
"vision_tower.vision_model.encoder.layers.1.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 475 |
+
"vision_tower.vision_model.encoder.layers.1.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 476 |
+
"vision_tower.vision_model.encoder.layers.1.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 477 |
+
"vision_tower.vision_model.encoder.layers.1.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 478 |
+
"vision_tower.vision_model.encoder.layers.1.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 479 |
+
"vision_tower.vision_model.encoder.layers.1.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 480 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 481 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 482 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 483 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 484 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 485 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 486 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 487 |
+
"vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 488 |
+
"vision_tower.vision_model.encoder.layers.10.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 489 |
+
"vision_tower.vision_model.encoder.layers.10.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 490 |
+
"vision_tower.vision_model.encoder.layers.10.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 491 |
+
"vision_tower.vision_model.encoder.layers.10.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 492 |
+
"vision_tower.vision_model.encoder.layers.10.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 493 |
+
"vision_tower.vision_model.encoder.layers.10.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 494 |
+
"vision_tower.vision_model.encoder.layers.10.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 495 |
+
"vision_tower.vision_model.encoder.layers.10.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 496 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 497 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 498 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 499 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 500 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 501 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 502 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 503 |
+
"vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 504 |
+
"vision_tower.vision_model.encoder.layers.11.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 505 |
+
"vision_tower.vision_model.encoder.layers.11.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 506 |
+
"vision_tower.vision_model.encoder.layers.11.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 507 |
+
"vision_tower.vision_model.encoder.layers.11.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 508 |
+
"vision_tower.vision_model.encoder.layers.11.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 509 |
+
"vision_tower.vision_model.encoder.layers.11.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 510 |
+
"vision_tower.vision_model.encoder.layers.11.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 511 |
+
"vision_tower.vision_model.encoder.layers.11.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 512 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 513 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 514 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 515 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 516 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 517 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 518 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 519 |
+
"vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 520 |
+
"vision_tower.vision_model.encoder.layers.12.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 521 |
+
"vision_tower.vision_model.encoder.layers.12.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 522 |
+
"vision_tower.vision_model.encoder.layers.12.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 523 |
+
"vision_tower.vision_model.encoder.layers.12.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 524 |
+
"vision_tower.vision_model.encoder.layers.12.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 525 |
+
"vision_tower.vision_model.encoder.layers.12.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 526 |
+
"vision_tower.vision_model.encoder.layers.12.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 527 |
+
"vision_tower.vision_model.encoder.layers.12.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 528 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 529 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 530 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 531 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 532 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 533 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 534 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 535 |
+
"vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 536 |
+
"vision_tower.vision_model.encoder.layers.13.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 537 |
+
"vision_tower.vision_model.encoder.layers.13.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 538 |
+
"vision_tower.vision_model.encoder.layers.13.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 539 |
+
"vision_tower.vision_model.encoder.layers.13.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 540 |
+
"vision_tower.vision_model.encoder.layers.13.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 541 |
+
"vision_tower.vision_model.encoder.layers.13.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 542 |
+
"vision_tower.vision_model.encoder.layers.13.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 543 |
+
"vision_tower.vision_model.encoder.layers.13.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 544 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 545 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 546 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 547 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 548 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 549 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 550 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 551 |
+
"vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 552 |
+
"vision_tower.vision_model.encoder.layers.14.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 553 |
+
"vision_tower.vision_model.encoder.layers.14.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 554 |
+
"vision_tower.vision_model.encoder.layers.14.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 555 |
+
"vision_tower.vision_model.encoder.layers.14.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 556 |
+
"vision_tower.vision_model.encoder.layers.14.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 557 |
+
"vision_tower.vision_model.encoder.layers.14.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 558 |
+
"vision_tower.vision_model.encoder.layers.14.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 559 |
+
"vision_tower.vision_model.encoder.layers.14.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 560 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 561 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 562 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 563 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 564 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 565 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 566 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 567 |
+
"vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 568 |
+
"vision_tower.vision_model.encoder.layers.15.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 569 |
+
"vision_tower.vision_model.encoder.layers.15.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 570 |
+
"vision_tower.vision_model.encoder.layers.15.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 571 |
+
"vision_tower.vision_model.encoder.layers.15.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 572 |
+
"vision_tower.vision_model.encoder.layers.15.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 573 |
+
"vision_tower.vision_model.encoder.layers.15.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 574 |
+
"vision_tower.vision_model.encoder.layers.15.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 575 |
+
"vision_tower.vision_model.encoder.layers.15.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 576 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 577 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 578 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 579 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 580 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 581 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 582 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 583 |
+
"vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 584 |
+
"vision_tower.vision_model.encoder.layers.16.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 585 |
+
"vision_tower.vision_model.encoder.layers.16.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 586 |
+
"vision_tower.vision_model.encoder.layers.16.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 587 |
+
"vision_tower.vision_model.encoder.layers.16.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 588 |
+
"vision_tower.vision_model.encoder.layers.16.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 589 |
+
"vision_tower.vision_model.encoder.layers.16.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 590 |
+
"vision_tower.vision_model.encoder.layers.16.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 591 |
+
"vision_tower.vision_model.encoder.layers.16.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 592 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 593 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 594 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 595 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 596 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 597 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 598 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 599 |
+
"vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 600 |
+
"vision_tower.vision_model.encoder.layers.17.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 601 |
+
"vision_tower.vision_model.encoder.layers.17.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 602 |
+
"vision_tower.vision_model.encoder.layers.17.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 603 |
+
"vision_tower.vision_model.encoder.layers.17.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 604 |
+
"vision_tower.vision_model.encoder.layers.17.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 605 |
+
"vision_tower.vision_model.encoder.layers.17.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 606 |
+
"vision_tower.vision_model.encoder.layers.17.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 607 |
+
"vision_tower.vision_model.encoder.layers.17.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 608 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 609 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 610 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 611 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 612 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 613 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 614 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 615 |
+
"vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 616 |
+
"vision_tower.vision_model.encoder.layers.18.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 617 |
+
"vision_tower.vision_model.encoder.layers.18.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 618 |
+
"vision_tower.vision_model.encoder.layers.18.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 619 |
+
"vision_tower.vision_model.encoder.layers.18.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 620 |
+
"vision_tower.vision_model.encoder.layers.18.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 621 |
+
"vision_tower.vision_model.encoder.layers.18.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 622 |
+
"vision_tower.vision_model.encoder.layers.18.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 623 |
+
"vision_tower.vision_model.encoder.layers.18.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 624 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 625 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 626 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 627 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 628 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 629 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 630 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 631 |
+
"vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 632 |
+
"vision_tower.vision_model.encoder.layers.19.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 633 |
+
"vision_tower.vision_model.encoder.layers.19.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 634 |
+
"vision_tower.vision_model.encoder.layers.19.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 635 |
+
"vision_tower.vision_model.encoder.layers.19.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 636 |
+
"vision_tower.vision_model.encoder.layers.19.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 637 |
+
"vision_tower.vision_model.encoder.layers.19.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 638 |
+
"vision_tower.vision_model.encoder.layers.19.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 639 |
+
"vision_tower.vision_model.encoder.layers.19.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 640 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 641 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 642 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 643 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 644 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 645 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 646 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 647 |
+
"vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 648 |
+
"vision_tower.vision_model.encoder.layers.2.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 649 |
+
"vision_tower.vision_model.encoder.layers.2.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 650 |
+
"vision_tower.vision_model.encoder.layers.2.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 651 |
+
"vision_tower.vision_model.encoder.layers.2.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 652 |
+
"vision_tower.vision_model.encoder.layers.2.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 653 |
+
"vision_tower.vision_model.encoder.layers.2.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 654 |
+
"vision_tower.vision_model.encoder.layers.2.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 655 |
+
"vision_tower.vision_model.encoder.layers.2.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 656 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 657 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 658 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 659 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 660 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 661 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 662 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 663 |
+
"vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 664 |
+
"vision_tower.vision_model.encoder.layers.20.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 665 |
+
"vision_tower.vision_model.encoder.layers.20.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 666 |
+
"vision_tower.vision_model.encoder.layers.20.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 667 |
+
"vision_tower.vision_model.encoder.layers.20.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 668 |
+
"vision_tower.vision_model.encoder.layers.20.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 669 |
+
"vision_tower.vision_model.encoder.layers.20.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 670 |
+
"vision_tower.vision_model.encoder.layers.20.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 671 |
+
"vision_tower.vision_model.encoder.layers.20.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 672 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 673 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 674 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 675 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 676 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 677 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 678 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 679 |
+
"vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 680 |
+
"vision_tower.vision_model.encoder.layers.21.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 681 |
+
"vision_tower.vision_model.encoder.layers.21.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 682 |
+
"vision_tower.vision_model.encoder.layers.21.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 683 |
+
"vision_tower.vision_model.encoder.layers.21.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 684 |
+
"vision_tower.vision_model.encoder.layers.21.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 685 |
+
"vision_tower.vision_model.encoder.layers.21.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 686 |
+
"vision_tower.vision_model.encoder.layers.21.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 687 |
+
"vision_tower.vision_model.encoder.layers.21.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 688 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 689 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 690 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 691 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 692 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 693 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 694 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 695 |
+
"vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 696 |
+
"vision_tower.vision_model.encoder.layers.22.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 697 |
+
"vision_tower.vision_model.encoder.layers.22.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 698 |
+
"vision_tower.vision_model.encoder.layers.22.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 699 |
+
"vision_tower.vision_model.encoder.layers.22.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 700 |
+
"vision_tower.vision_model.encoder.layers.22.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 701 |
+
"vision_tower.vision_model.encoder.layers.22.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 702 |
+
"vision_tower.vision_model.encoder.layers.22.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 703 |
+
"vision_tower.vision_model.encoder.layers.22.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 704 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 705 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 706 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 707 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 708 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 709 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 710 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 711 |
+
"vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 712 |
+
"vision_tower.vision_model.encoder.layers.23.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 713 |
+
"vision_tower.vision_model.encoder.layers.23.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 714 |
+
"vision_tower.vision_model.encoder.layers.23.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 715 |
+
"vision_tower.vision_model.encoder.layers.23.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 716 |
+
"vision_tower.vision_model.encoder.layers.23.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 717 |
+
"vision_tower.vision_model.encoder.layers.23.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 718 |
+
"vision_tower.vision_model.encoder.layers.23.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 719 |
+
"vision_tower.vision_model.encoder.layers.23.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 720 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 721 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 722 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 723 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 724 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 725 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 726 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 727 |
+
"vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 728 |
+
"vision_tower.vision_model.encoder.layers.24.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 729 |
+
"vision_tower.vision_model.encoder.layers.24.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 730 |
+
"vision_tower.vision_model.encoder.layers.24.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 731 |
+
"vision_tower.vision_model.encoder.layers.24.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 732 |
+
"vision_tower.vision_model.encoder.layers.24.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 733 |
+
"vision_tower.vision_model.encoder.layers.24.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 734 |
+
"vision_tower.vision_model.encoder.layers.24.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 735 |
+
"vision_tower.vision_model.encoder.layers.24.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 736 |
+
"vision_tower.vision_model.encoder.layers.24.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 737 |
+
"vision_tower.vision_model.encoder.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 738 |
+
"vision_tower.vision_model.encoder.layers.24.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 739 |
+
"vision_tower.vision_model.encoder.layers.24.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 740 |
+
"vision_tower.vision_model.encoder.layers.24.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 741 |
+
"vision_tower.vision_model.encoder.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 742 |
+
"vision_tower.vision_model.encoder.layers.24.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 743 |
+
"vision_tower.vision_model.encoder.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 744 |
+
"vision_tower.vision_model.encoder.layers.25.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 745 |
+
"vision_tower.vision_model.encoder.layers.25.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 746 |
+
"vision_tower.vision_model.encoder.layers.25.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 747 |
+
"vision_tower.vision_model.encoder.layers.25.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 748 |
+
"vision_tower.vision_model.encoder.layers.25.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 749 |
+
"vision_tower.vision_model.encoder.layers.25.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 750 |
+
"vision_tower.vision_model.encoder.layers.25.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 751 |
+
"vision_tower.vision_model.encoder.layers.25.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 752 |
+
"vision_tower.vision_model.encoder.layers.25.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 753 |
+
"vision_tower.vision_model.encoder.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 754 |
+
"vision_tower.vision_model.encoder.layers.25.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 755 |
+
"vision_tower.vision_model.encoder.layers.25.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 756 |
+
"vision_tower.vision_model.encoder.layers.25.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 757 |
+
"vision_tower.vision_model.encoder.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 758 |
+
"vision_tower.vision_model.encoder.layers.25.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 759 |
+
"vision_tower.vision_model.encoder.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 760 |
+
"vision_tower.vision_model.encoder.layers.26.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 761 |
+
"vision_tower.vision_model.encoder.layers.26.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 762 |
+
"vision_tower.vision_model.encoder.layers.26.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 763 |
+
"vision_tower.vision_model.encoder.layers.26.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 764 |
+
"vision_tower.vision_model.encoder.layers.26.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 765 |
+
"vision_tower.vision_model.encoder.layers.26.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 766 |
+
"vision_tower.vision_model.encoder.layers.26.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 767 |
+
"vision_tower.vision_model.encoder.layers.26.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 768 |
+
"vision_tower.vision_model.encoder.layers.26.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 769 |
+
"vision_tower.vision_model.encoder.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 770 |
+
"vision_tower.vision_model.encoder.layers.26.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 771 |
+
"vision_tower.vision_model.encoder.layers.26.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 772 |
+
"vision_tower.vision_model.encoder.layers.26.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 773 |
+
"vision_tower.vision_model.encoder.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 774 |
+
"vision_tower.vision_model.encoder.layers.26.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 775 |
+
"vision_tower.vision_model.encoder.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 776 |
+
"vision_tower.vision_model.encoder.layers.3.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 777 |
+
"vision_tower.vision_model.encoder.layers.3.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 778 |
+
"vision_tower.vision_model.encoder.layers.3.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 779 |
+
"vision_tower.vision_model.encoder.layers.3.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 780 |
+
"vision_tower.vision_model.encoder.layers.3.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 781 |
+
"vision_tower.vision_model.encoder.layers.3.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 782 |
+
"vision_tower.vision_model.encoder.layers.3.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 783 |
+
"vision_tower.vision_model.encoder.layers.3.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 784 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 785 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 786 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 787 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 788 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 789 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 790 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 791 |
+
"vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 792 |
+
"vision_tower.vision_model.encoder.layers.4.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 793 |
+
"vision_tower.vision_model.encoder.layers.4.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 794 |
+
"vision_tower.vision_model.encoder.layers.4.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 795 |
+
"vision_tower.vision_model.encoder.layers.4.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 796 |
+
"vision_tower.vision_model.encoder.layers.4.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 797 |
+
"vision_tower.vision_model.encoder.layers.4.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 798 |
+
"vision_tower.vision_model.encoder.layers.4.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 799 |
+
"vision_tower.vision_model.encoder.layers.4.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 800 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 801 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 802 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 803 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 804 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 805 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 806 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 807 |
+
"vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 808 |
+
"vision_tower.vision_model.encoder.layers.5.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 809 |
+
"vision_tower.vision_model.encoder.layers.5.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 810 |
+
"vision_tower.vision_model.encoder.layers.5.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 811 |
+
"vision_tower.vision_model.encoder.layers.5.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 812 |
+
"vision_tower.vision_model.encoder.layers.5.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 813 |
+
"vision_tower.vision_model.encoder.layers.5.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 814 |
+
"vision_tower.vision_model.encoder.layers.5.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 815 |
+
"vision_tower.vision_model.encoder.layers.5.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 816 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 817 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 818 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 819 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 820 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 821 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 822 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 823 |
+
"vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 824 |
+
"vision_tower.vision_model.encoder.layers.6.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 825 |
+
"vision_tower.vision_model.encoder.layers.6.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 826 |
+
"vision_tower.vision_model.encoder.layers.6.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 827 |
+
"vision_tower.vision_model.encoder.layers.6.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 828 |
+
"vision_tower.vision_model.encoder.layers.6.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 829 |
+
"vision_tower.vision_model.encoder.layers.6.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 830 |
+
"vision_tower.vision_model.encoder.layers.6.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 831 |
+
"vision_tower.vision_model.encoder.layers.6.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 832 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 833 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 834 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 835 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 836 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 837 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 838 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 839 |
+
"vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 840 |
+
"vision_tower.vision_model.encoder.layers.7.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 841 |
+
"vision_tower.vision_model.encoder.layers.7.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 842 |
+
"vision_tower.vision_model.encoder.layers.7.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 843 |
+
"vision_tower.vision_model.encoder.layers.7.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 844 |
+
"vision_tower.vision_model.encoder.layers.7.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 845 |
+
"vision_tower.vision_model.encoder.layers.7.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 846 |
+
"vision_tower.vision_model.encoder.layers.7.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 847 |
+
"vision_tower.vision_model.encoder.layers.7.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 848 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 849 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 850 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 851 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 852 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 853 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 854 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 855 |
+
"vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 856 |
+
"vision_tower.vision_model.encoder.layers.8.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 857 |
+
"vision_tower.vision_model.encoder.layers.8.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 858 |
+
"vision_tower.vision_model.encoder.layers.8.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 859 |
+
"vision_tower.vision_model.encoder.layers.8.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 860 |
+
"vision_tower.vision_model.encoder.layers.8.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 861 |
+
"vision_tower.vision_model.encoder.layers.8.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 862 |
+
"vision_tower.vision_model.encoder.layers.8.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 863 |
+
"vision_tower.vision_model.encoder.layers.8.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 864 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 865 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 866 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 867 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 868 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 869 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 870 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 871 |
+
"vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 872 |
+
"vision_tower.vision_model.encoder.layers.9.layer_norm1.bias": "model-00001-of-00002.safetensors",
|
| 873 |
+
"vision_tower.vision_model.encoder.layers.9.layer_norm1.weight": "model-00001-of-00002.safetensors",
|
| 874 |
+
"vision_tower.vision_model.encoder.layers.9.layer_norm2.bias": "model-00001-of-00002.safetensors",
|
| 875 |
+
"vision_tower.vision_model.encoder.layers.9.layer_norm2.weight": "model-00001-of-00002.safetensors",
|
| 876 |
+
"vision_tower.vision_model.encoder.layers.9.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 877 |
+
"vision_tower.vision_model.encoder.layers.9.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 878 |
+
"vision_tower.vision_model.encoder.layers.9.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 879 |
+
"vision_tower.vision_model.encoder.layers.9.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 880 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
|
| 881 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 882 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.bias": "model-00001-of-00002.safetensors",
|
| 883 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.weight": "model-00001-of-00002.safetensors",
|
| 884 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
|
| 885 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 886 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
|
| 887 |
+
"vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 888 |
+
"vision_tower.vision_model.post_layernorm.bias": "model-00001-of-00002.safetensors",
|
| 889 |
+
"vision_tower.vision_model.post_layernorm.weight": "model-00001-of-00002.safetensors"
|
| 890 |
+
}
|
| 891 |
+
}
|
text_encoder/special_tokens_map.json
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"boi_token": "<start_of_image>",
|
| 3 |
+
"bos_token": {
|
| 4 |
+
"content": "<bos>",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false
|
| 9 |
+
},
|
| 10 |
+
"eoi_token": "<end_of_image>",
|
| 11 |
+
"eos_token": {
|
| 12 |
+
"content": "<eos>",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false
|
| 17 |
+
},
|
| 18 |
+
"image_token": "<image_soft_token>",
|
| 19 |
+
"pad_token": {
|
| 20 |
+
"content": "<pad>",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false
|
| 25 |
+
},
|
| 26 |
+
"unk_token": {
|
| 27 |
+
"content": "<unk>",
|
| 28 |
+
"lstrip": false,
|
| 29 |
+
"normalized": false,
|
| 30 |
+
"rstrip": false,
|
| 31 |
+
"single_word": false
|
| 32 |
+
}
|
| 33 |
+
}
|
text_encoder/tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4667f2089529e8e7657cfb6d1c19910ae71ff5f28aa7ab2ff2763330affad795
|
| 3 |
+
size 33384568
|
text_encoder/tokenizer.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1299c11d7cf632ef3b4e11937501358ada021bbdf7c47638d13c0ee982f2e79c
|
| 3 |
+
size 4689074
|
text_encoder/tokenizer_config.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
transformer/config.json
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model_type": "nextdit_clip",
|
| 3 |
+
"patch_size": 2,
|
| 4 |
+
"dim": 2304,
|
| 5 |
+
"n_layers": 36,
|
| 6 |
+
"n_heads": 24,
|
| 7 |
+
"n_kv_heads": 8,
|
| 8 |
+
"in_channels": 16,
|
| 9 |
+
"axes_dims": [
|
| 10 |
+
32,
|
| 11 |
+
32,
|
| 12 |
+
32
|
| 13 |
+
],
|
| 14 |
+
"axes_lens": [
|
| 15 |
+
1024,
|
| 16 |
+
512,
|
| 17 |
+
512
|
| 18 |
+
],
|
| 19 |
+
"clip_text_dim": 1024,
|
| 20 |
+
"clip_img_dim": 1024,
|
| 21 |
+
"_class_name": "NextDiT_3B_GQA_patch2_Adaln_Refiner_WHIT_CLIP"
|
| 22 |
+
}
|
transformer/diffusion_pytorch_model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b8ed0f26c0b90b70a5a2ef0f69041529af7fbfef206f773c07d6cd1d56d77ef8
|
| 3 |
+
size 6973329400
|
vae/config.json
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_class_name": "AutoencoderKL",
|
| 3 |
+
"_diffusers_version": "0.35.2",
|
| 4 |
+
"_name_or_path": "black-forest-labs/FLUX.1-dev",
|
| 5 |
+
"act_fn": "silu",
|
| 6 |
+
"block_out_channels": [
|
| 7 |
+
128,
|
| 8 |
+
256,
|
| 9 |
+
512,
|
| 10 |
+
512
|
| 11 |
+
],
|
| 12 |
+
"down_block_types": [
|
| 13 |
+
"DownEncoderBlock2D",
|
| 14 |
+
"DownEncoderBlock2D",
|
| 15 |
+
"DownEncoderBlock2D",
|
| 16 |
+
"DownEncoderBlock2D"
|
| 17 |
+
],
|
| 18 |
+
"force_upcast": true,
|
| 19 |
+
"in_channels": 3,
|
| 20 |
+
"latent_channels": 16,
|
| 21 |
+
"latents_mean": null,
|
| 22 |
+
"latents_std": null,
|
| 23 |
+
"layers_per_block": 2,
|
| 24 |
+
"mid_block_add_attention": true,
|
| 25 |
+
"norm_num_groups": 32,
|
| 26 |
+
"out_channels": 3,
|
| 27 |
+
"sample_size": 1024,
|
| 28 |
+
"scaling_factor": 0.3611,
|
| 29 |
+
"shift_factor": 0.1159,
|
| 30 |
+
"up_block_types": [
|
| 31 |
+
"UpDecoderBlock2D",
|
| 32 |
+
"UpDecoderBlock2D",
|
| 33 |
+
"UpDecoderBlock2D",
|
| 34 |
+
"UpDecoderBlock2D"
|
| 35 |
+
],
|
| 36 |
+
"use_post_quant_conv": false,
|
| 37 |
+
"use_quant_conv": false
|
| 38 |
+
}
|
vae/diffusion_pytorch_model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f5b59a26851551b67ae1fe58d32e76486e1e812def4696a4bea97f16604d40a3
|
| 3 |
+
size 167666902
|