--- license: other license_name: nvidia-open-model-license license_link: https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license/ pipeline_tag: text-generation datasets: - nvidia/Nemotron-Post-Training-Dataset-v1 - nvidia/Nemotron-Post-Training-Dataset-v2 - nvidia/Nemotron-Pretraining-Dataset-sample - nvidia/Nemotron-CC-v2 - nvidia/Nemotron-CC-Math-v1 - nvidia/Nemotron-Pretraining-SFT-v1 language: - en - es - fr - de - it - ja library_name: mlx tags: - nvidia - pytorch - mlx track_downloads: true base_model: nvidia/NVIDIA-Nemotron-Nano-12B-v2 --- # NexVeridian/NVIDIA-Nemotron-Nano-12B-v2-3bit This model [NexVeridian/NVIDIA-Nemotron-Nano-12B-v2-3bit](https://huggingface.co/NexVeridian/NVIDIA-Nemotron-Nano-12B-v2-3bit) was converted to MLX format from [nvidia/NVIDIA-Nemotron-Nano-12B-v2](https://huggingface.co/nvidia/NVIDIA-Nemotron-Nano-12B-v2) using mlx-lm version **0.27.1**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("NexVeridian/NVIDIA-Nemotron-Nano-12B-v2-3bit") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```