Upload 24 files
Browse files- .gitattributes +10 -0
- 7gen.py +184 -0
- 7gen_discriminator.pth +3 -0
- 7gen_epoch_10.png +3 -0
- 7gen_epoch_100.png +3 -0
- 7gen_epoch_20.png +3 -0
- 7gen_epoch_30.png +3 -0
- 7gen_epoch_40.png +3 -0
- 7gen_epoch_50.png +3 -0
- 7gen_epoch_60.png +3 -0
- 7gen_epoch_70.png +3 -0
- 7gen_epoch_80.png +3 -0
- 7gen_epoch_90.png +3 -0
- 7gen_generator.pth +3 -0
- 7gen_inference.py +177 -0
- digit_0_samples.png +0 -0
- digit_1_samples.png +0 -0
- digit_2_samples.png +0 -0
- digit_3_samples.png +0 -0
- digit_4_samples.png +0 -0
- digit_5_samples.png +0 -0
- digit_6_samples.png +0 -0
- digit_7_samples.png +0 -0
- digit_8_samples.png +0 -0
- digit_9_samples.png +0 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,13 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
7gen_epoch_10.png filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
7gen_epoch_100.png filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
7gen_epoch_20.png filter=lfs diff=lfs merge=lfs -text
|
| 39 |
+
7gen_epoch_30.png filter=lfs diff=lfs merge=lfs -text
|
| 40 |
+
7gen_epoch_40.png filter=lfs diff=lfs merge=lfs -text
|
| 41 |
+
7gen_epoch_50.png filter=lfs diff=lfs merge=lfs -text
|
| 42 |
+
7gen_epoch_60.png filter=lfs diff=lfs merge=lfs -text
|
| 43 |
+
7gen_epoch_70.png filter=lfs diff=lfs merge=lfs -text
|
| 44 |
+
7gen_epoch_80.png filter=lfs diff=lfs merge=lfs -text
|
| 45 |
+
7gen_epoch_90.png filter=lfs diff=lfs merge=lfs -text
|
7gen.py
ADDED
|
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# 7Gen - MNIST için Gelişmiş Üretici Model
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import torch.optim as optim
|
| 5 |
+
from torchvision import datasets, transforms
|
| 6 |
+
from torch.utils.data import DataLoader
|
| 7 |
+
import matplotlib.pyplot as plt
|
| 8 |
+
import numpy as np
|
| 9 |
+
from tqdm import tqdm
|
| 10 |
+
import os
|
| 11 |
+
|
| 12 |
+
print("🚀 7Gen - Gelişmiş MNIST Üretici Sistemi 🚀")
|
| 13 |
+
|
| 14 |
+
# Cihaz ayarları
|
| 15 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 16 |
+
print(f'Kullanılan cihaz: {device}')
|
| 17 |
+
|
| 18 |
+
# Hiperparametreler
|
| 19 |
+
batch_size = 64
|
| 20 |
+
latent_dim = 100
|
| 21 |
+
num_classes = 10
|
| 22 |
+
num_epochs = 100
|
| 23 |
+
lr = 0.0002
|
| 24 |
+
|
| 25 |
+
# Veri yükleme
|
| 26 |
+
transform = transforms.Compose([
|
| 27 |
+
transforms.ToTensor(), # Burayı düzelttim
|
| 28 |
+
transforms.Normalize([0.5], [0.5])
|
| 29 |
+
])
|
| 30 |
+
|
| 31 |
+
dataset = datasets.MNIST('./data', train=True, download=True, transform=transform)
|
| 32 |
+
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
|
| 33 |
+
|
| 34 |
+
# Generator modeli
|
| 35 |
+
class Generator(nn.Module):
|
| 36 |
+
def __init__(self):
|
| 37 |
+
super(Generator, self).__init__()
|
| 38 |
+
|
| 39 |
+
self.label_emb = nn.Embedding(num_classes, num_classes)
|
| 40 |
+
|
| 41 |
+
self.model = nn.Sequential(
|
| 42 |
+
nn.Linear(latent_dim + num_classes, 256),
|
| 43 |
+
nn.LeakyReLU(0.2),
|
| 44 |
+
nn.BatchNorm1d(256),
|
| 45 |
+
|
| 46 |
+
nn.Linear(256, 512),
|
| 47 |
+
nn.LeakyReLU(0.2),
|
| 48 |
+
nn.BatchNorm1d(512),
|
| 49 |
+
|
| 50 |
+
nn.Linear(512, 1024),
|
| 51 |
+
nn.LeakyReLU(0.2),
|
| 52 |
+
nn.BatchNorm1d(1024),
|
| 53 |
+
|
| 54 |
+
nn.Linear(1024, 784),
|
| 55 |
+
nn.Tanh()
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
def forward(self, noise, labels):
|
| 59 |
+
label_embedding = self.label_emb(labels)
|
| 60 |
+
gen_input = torch.cat((noise, label_embedding), -1)
|
| 61 |
+
img = self.model(gen_input)
|
| 62 |
+
img = img.view(img.size(0), 1, 28, 28)
|
| 63 |
+
return img
|
| 64 |
+
|
| 65 |
+
# Discriminator modeli
|
| 66 |
+
class Discriminator(nn.Module):
|
| 67 |
+
def __init__(self):
|
| 68 |
+
super(Discriminator, self).__init__()
|
| 69 |
+
|
| 70 |
+
self.label_emb = nn.Embedding(num_classes, num_classes)
|
| 71 |
+
|
| 72 |
+
self.model = nn.Sequential(
|
| 73 |
+
nn.Linear(784 + num_classes, 512),
|
| 74 |
+
nn.LeakyReLU(0.2),
|
| 75 |
+
nn.Dropout(0.3),
|
| 76 |
+
|
| 77 |
+
nn.Linear(512, 256),
|
| 78 |
+
nn.LeakyReLU(0.2),
|
| 79 |
+
nn.Dropout(0.3),
|
| 80 |
+
|
| 81 |
+
nn.Linear(256, 1),
|
| 82 |
+
nn.Sigmoid()
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
def forward(self, img, labels):
|
| 86 |
+
img_flat = img.view(img.size(0), -1)
|
| 87 |
+
label_embedding = self.label_emb(labels)
|
| 88 |
+
d_input = torch.cat((img_flat, label_embedding), -1)
|
| 89 |
+
validity = self.model(d_input)
|
| 90 |
+
return validity
|
| 91 |
+
|
| 92 |
+
# Model oluşturma
|
| 93 |
+
generator = Generator().to(device)
|
| 94 |
+
discriminator = Discriminator().to(device)
|
| 95 |
+
|
| 96 |
+
# Loss ve optimizer
|
| 97 |
+
adversarial_loss = nn.BCELoss()
|
| 98 |
+
optimizer_G = optim.Adam(generator.parameters(), lr=lr)
|
| 99 |
+
optimizer_D = optim.Adam(discriminator.parameters(), lr=lr)
|
| 100 |
+
|
| 101 |
+
# Klasör oluştur
|
| 102 |
+
os.makedirs('generated_images', exist_ok=True)
|
| 103 |
+
|
| 104 |
+
# Eğitim
|
| 105 |
+
print("\n🔥 7Gen Eğitimi Başlıyor...")
|
| 106 |
+
|
| 107 |
+
for epoch in range(num_epochs):
|
| 108 |
+
for i, (imgs, labels) in enumerate(tqdm(dataloader, desc=f"Epoch {epoch+1}/{num_epochs}")):
|
| 109 |
+
imgs = imgs.to(device)
|
| 110 |
+
labels = labels.to(device)
|
| 111 |
+
batch_size = imgs.size(0)
|
| 112 |
+
|
| 113 |
+
# Ground truth'lar
|
| 114 |
+
valid = torch.ones(batch_size, 1).to(device)
|
| 115 |
+
fake = torch.zeros(batch_size, 1).to(device)
|
| 116 |
+
|
| 117 |
+
# Generator eğitimi
|
| 118 |
+
optimizer_G.zero_grad()
|
| 119 |
+
z = torch.randn(batch_size, latent_dim).to(device)
|
| 120 |
+
gen_labels = torch.randint(0, num_classes, (batch_size,)).to(device)
|
| 121 |
+
gen_imgs = generator(z, gen_labels)
|
| 122 |
+
|
| 123 |
+
g_loss = adversarial_loss(discriminator(gen_imgs, gen_labels), valid)
|
| 124 |
+
g_loss.backward()
|
| 125 |
+
optimizer_G.step()
|
| 126 |
+
|
| 127 |
+
# Discriminator eğitimi
|
| 128 |
+
optimizer_D.zero_grad()
|
| 129 |
+
real_loss = adversarial_loss(discriminator(imgs, labels), valid)
|
| 130 |
+
fake_loss = adversarial_loss(discriminator(gen_imgs.detach(), gen_labels), fake)
|
| 131 |
+
d_loss = (real_loss + fake_loss) / 2
|
| 132 |
+
|
| 133 |
+
d_loss.backward()
|
| 134 |
+
optimizer_D.step()
|
| 135 |
+
|
| 136 |
+
print(f"Epoch {epoch+1}/{num_epochs} - D loss: {d_loss:.4f}, G loss: {g_loss:.4f}")
|
| 137 |
+
|
| 138 |
+
# Her 10 epoch'ta örnek üret
|
| 139 |
+
if (epoch + 1) % 10 == 0:
|
| 140 |
+
with torch.no_grad():
|
| 141 |
+
z = torch.randn(100, latent_dim).to(device)
|
| 142 |
+
labels = torch.tensor([i for i in range(10) for _ in range(10)]).to(device)
|
| 143 |
+
gen_imgs = generator(z, labels)
|
| 144 |
+
gen_imgs = (gen_imgs + 1) / 2
|
| 145 |
+
|
| 146 |
+
fig, axes = plt.subplots(10, 10, figsize=(10, 10))
|
| 147 |
+
for i in range(10):
|
| 148 |
+
for j in range(10):
|
| 149 |
+
idx = i * 10 + j
|
| 150 |
+
axes[i, j].imshow(gen_imgs[idx][0].cpu().numpy(), cmap='gray')
|
| 151 |
+
axes[i, j].axis('off')
|
| 152 |
+
plt.savefig(f'generated_images/7gen_epoch_{epoch+1}.png')
|
| 153 |
+
plt.close()
|
| 154 |
+
|
| 155 |
+
# Model kaydetme
|
| 156 |
+
os.makedirs('models', exist_ok=True)
|
| 157 |
+
torch.save(generator.state_dict(), 'models/7gen_generator.pth')
|
| 158 |
+
torch.save(discriminator.state_dict(), 'models/7gen_discriminator.pth')
|
| 159 |
+
|
| 160 |
+
print("\n✅ 7Gen eğitimi tamamlandı!")
|
| 161 |
+
|
| 162 |
+
# Kullanım örneği
|
| 163 |
+
def generate_digit(digit, num_samples=5):
|
| 164 |
+
generator.eval()
|
| 165 |
+
with torch.no_grad():
|
| 166 |
+
z = torch.randn(num_samples, latent_dim).to(device)
|
| 167 |
+
labels = torch.full((num_samples,), digit).to(device)
|
| 168 |
+
gen_imgs = generator(z, labels)
|
| 169 |
+
gen_imgs = (gen_imgs + 1) / 2
|
| 170 |
+
|
| 171 |
+
plt.figure(figsize=(10, 2))
|
| 172 |
+
for i in range(num_samples):
|
| 173 |
+
plt.subplot(1, num_samples, i+1)
|
| 174 |
+
plt.imshow(gen_imgs[i][0].cpu().numpy(), cmap='gray')
|
| 175 |
+
plt.axis('off')
|
| 176 |
+
plt.savefig(f'generated_images/digit_{digit}_samples.png')
|
| 177 |
+
plt.show()
|
| 178 |
+
|
| 179 |
+
# Test et
|
| 180 |
+
print("\n🎯 Test örnekleri üretiliyor...")
|
| 181 |
+
for digit in range(10):
|
| 182 |
+
generate_digit(digit, num_samples=5)
|
| 183 |
+
|
| 184 |
+
print("\n🎉 7Gen hazır! generated_images klasörüne bak.")
|
7gen_discriminator.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e8214e331ef016153c1afdfbf6538a0936523c3a5acb5a0435da4ec1d1ca0a52
|
| 3 |
+
size 2158141
|
7gen_epoch_10.png
ADDED
|
Git LFS Details
|
7gen_epoch_100.png
ADDED
|
Git LFS Details
|
7gen_epoch_20.png
ADDED
|
Git LFS Details
|
7gen_epoch_30.png
ADDED
|
Git LFS Details
|
7gen_epoch_40.png
ADDED
|
Git LFS Details
|
7gen_epoch_50.png
ADDED
|
Git LFS Details
|
7gen_epoch_60.png
ADDED
|
Git LFS Details
|
7gen_epoch_70.png
ADDED
|
Git LFS Details
|
7gen_epoch_80.png
ADDED
|
Git LFS Details
|
7gen_epoch_90.png
ADDED
|
Git LFS Details
|
7gen_generator.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0eb28f1505b52f57de9c68bec28935750a1a14cb6dfe7c1e0b04293d301f5082
|
| 3 |
+
size 5992786
|
7gen_inference.py
ADDED
|
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# 7Gen Inference - Rakam Üretme Arayüzü
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
import numpy as np
|
| 6 |
+
from PIL import Image
|
| 7 |
+
import os
|
| 8 |
+
|
| 9 |
+
# Model yapısı (eğitimde kullandığımız ile aynı olmalı)
|
| 10 |
+
class Generator(nn.Module):
|
| 11 |
+
def __init__(self):
|
| 12 |
+
super(Generator, self).__init__()
|
| 13 |
+
|
| 14 |
+
self.label_emb = nn.Embedding(10, 10)
|
| 15 |
+
|
| 16 |
+
self.model = nn.Sequential(
|
| 17 |
+
nn.Linear(100 + 10, 256),
|
| 18 |
+
nn.LeakyReLU(0.2),
|
| 19 |
+
nn.BatchNorm1d(256),
|
| 20 |
+
|
| 21 |
+
nn.Linear(256, 512),
|
| 22 |
+
nn.LeakyReLU(0.2),
|
| 23 |
+
nn.BatchNorm1d(512),
|
| 24 |
+
|
| 25 |
+
nn.Linear(512, 1024),
|
| 26 |
+
nn.LeakyReLU(0.2),
|
| 27 |
+
nn.BatchNorm1d(1024),
|
| 28 |
+
|
| 29 |
+
nn.Linear(1024, 784),
|
| 30 |
+
nn.Tanh()
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
def forward(self, noise, labels):
|
| 34 |
+
label_embedding = self.label_emb(labels)
|
| 35 |
+
gen_input = torch.cat((noise, label_embedding), -1)
|
| 36 |
+
img = self.model(gen_input)
|
| 37 |
+
img = img.view(img.size(0), 1, 28, 28)
|
| 38 |
+
return img
|
| 39 |
+
|
| 40 |
+
# 7Gen sınıfı
|
| 41 |
+
class SevenGenInference:
|
| 42 |
+
def __init__(self, model_path='models/7gen_generator.pth'):
|
| 43 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 44 |
+
self.latent_dim = 100
|
| 45 |
+
|
| 46 |
+
# Modeli yükle
|
| 47 |
+
self.generator = Generator().to(self.device)
|
| 48 |
+
self.generator.load_state_dict(torch.load(model_path, map_location=self.device))
|
| 49 |
+
self.generator.eval()
|
| 50 |
+
|
| 51 |
+
print(f"🚀 7Gen yüklendi! Cihaz: {self.device}")
|
| 52 |
+
|
| 53 |
+
def generate_digit(self, digit, count=5):
|
| 54 |
+
"""Belirli bir rakamdan istenen sayıda üret"""
|
| 55 |
+
with torch.no_grad():
|
| 56 |
+
z = torch.randn(count, self.latent_dim).to(self.device)
|
| 57 |
+
labels = torch.full((count,), digit).to(self.device)
|
| 58 |
+
|
| 59 |
+
images = self.generator(z, labels)
|
| 60 |
+
images = (images + 1) / 2 # [-1,1] -> [0,1]
|
| 61 |
+
|
| 62 |
+
return images.cpu()
|
| 63 |
+
|
| 64 |
+
def visualize_digits(self, digit, count=5, save_path=None):
|
| 65 |
+
"""Üretilen rakamları görselleştir"""
|
| 66 |
+
images = self.generate_digit(digit, count)
|
| 67 |
+
|
| 68 |
+
fig, axes = plt.subplots(1, count, figsize=(2*count, 2))
|
| 69 |
+
if count == 1:
|
| 70 |
+
axes = [axes]
|
| 71 |
+
|
| 72 |
+
for i, ax in enumerate(axes):
|
| 73 |
+
ax.imshow(images[i][0], cmap='gray')
|
| 74 |
+
ax.axis('off')
|
| 75 |
+
ax.set_title(f'Digit: {digit}')
|
| 76 |
+
|
| 77 |
+
plt.tight_layout()
|
| 78 |
+
|
| 79 |
+
if save_path:
|
| 80 |
+
plt.savefig(save_path, dpi=300, bbox_inches='tight')
|
| 81 |
+
print(f"💾 Görsel kaydedildi: {save_path}")
|
| 82 |
+
|
| 83 |
+
plt.show()
|
| 84 |
+
|
| 85 |
+
def generate_grid(self, samples_per_digit=10, save_path=None):
|
| 86 |
+
"""Her rakamdan örneklerle 10x10 grid oluştur"""
|
| 87 |
+
all_images = []
|
| 88 |
+
|
| 89 |
+
for digit in range(10):
|
| 90 |
+
images = self.generate_digit(digit, samples_per_digit)
|
| 91 |
+
all_images.append(images)
|
| 92 |
+
|
| 93 |
+
all_images = torch.cat(all_images, dim=0)
|
| 94 |
+
|
| 95 |
+
fig, axes = plt.subplots(10, samples_per_digit, figsize=(15, 15))
|
| 96 |
+
|
| 97 |
+
for i in range(10):
|
| 98 |
+
for j in range(samples_per_digit):
|
| 99 |
+
idx = i * samples_per_digit + j
|
| 100 |
+
axes[i, j].imshow(all_images[idx][0], cmap='gray')
|
| 101 |
+
axes[i, j].axis('off')
|
| 102 |
+
|
| 103 |
+
if j == 0:
|
| 104 |
+
axes[i, j].set_ylabel(f'{i}', rotation=0, size=20, labelpad=20)
|
| 105 |
+
|
| 106 |
+
plt.suptitle('7Gen - Üretilen Rakamlar', size=20)
|
| 107 |
+
plt.tight_layout()
|
| 108 |
+
|
| 109 |
+
if save_path:
|
| 110 |
+
plt.savefig(save_path, dpi=300, bbox_inches='tight')
|
| 111 |
+
print(f"💾 Grid kaydedildi: {save_path}")
|
| 112 |
+
|
| 113 |
+
plt.show()
|
| 114 |
+
|
| 115 |
+
def save_as_png(self, digit, count=1, output_dir='output'):
|
| 116 |
+
"""Tekil PNG dosyaları olarak kaydet"""
|
| 117 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 118 |
+
|
| 119 |
+
images = self.generate_digit(digit, count)
|
| 120 |
+
|
| 121 |
+
for i in range(count):
|
| 122 |
+
img = images[i][0].numpy()
|
| 123 |
+
img = (img * 255).astype(np.uint8)
|
| 124 |
+
|
| 125 |
+
pil_img = Image.fromarray(img)
|
| 126 |
+
filename = f"{output_dir}/digit_{digit}_{i+1}.png"
|
| 127 |
+
pil_img.save(filename)
|
| 128 |
+
|
| 129 |
+
print(f"💾 Kaydedildi: {filename}")
|
| 130 |
+
|
| 131 |
+
def interactive_generate(self):
|
| 132 |
+
"""İnteraktif kullanım"""
|
| 133 |
+
print("\n🎮 7Gen İnteraktif Mod")
|
| 134 |
+
print("Çıkmak için 'q' yazın")
|
| 135 |
+
|
| 136 |
+
while True:
|
| 137 |
+
try:
|
| 138 |
+
digit_input = input("\nHangi rakamı üretmek istersin? (0-9): ")
|
| 139 |
+
|
| 140 |
+
if digit_input.lower() == 'q':
|
| 141 |
+
print("👋 Görüşürüz!")
|
| 142 |
+
break
|
| 143 |
+
|
| 144 |
+
digit = int(digit_input)
|
| 145 |
+
if 0 <= digit <= 9:
|
| 146 |
+
count = int(input("Kaç tane üreteyim? (1-20): "))
|
| 147 |
+
if 1 <= count <= 20:
|
| 148 |
+
self.visualize_digits(digit, count)
|
| 149 |
+
else:
|
| 150 |
+
print("❌ 1-20 arası bir sayı gir!")
|
| 151 |
+
else:
|
| 152 |
+
print("❌ 0-9 arası bir rakam gir!")
|
| 153 |
+
|
| 154 |
+
except ValueError:
|
| 155 |
+
print("❌ Geçerli bir sayı gir!")
|
| 156 |
+
except KeyboardInterrupt:
|
| 157 |
+
print("\n👋 Görüşürüz!")
|
| 158 |
+
break
|
| 159 |
+
|
| 160 |
+
# Ana kullanım
|
| 161 |
+
if __name__ == "__main__":
|
| 162 |
+
# 7Gen'i başlat
|
| 163 |
+
seven_gen = SevenGenInference()
|
| 164 |
+
|
| 165 |
+
# Örnekler
|
| 166 |
+
print("\n📝 Örnek kullanımlar:")
|
| 167 |
+
print("1. Tekil rakam üret")
|
| 168 |
+
seven_gen.visualize_digits(digit=7, count=5)
|
| 169 |
+
|
| 170 |
+
print("\n2. Grid oluştur")
|
| 171 |
+
seven_gen.generate_grid(samples_per_digit=10, save_path='7gen_showcase.png')
|
| 172 |
+
|
| 173 |
+
print("\n3. PNG olarak kaydet")
|
| 174 |
+
seven_gen.save_as_png(digit=5, count=3, output_dir='output')
|
| 175 |
+
|
| 176 |
+
print("\n4. İnteraktif mod")
|
| 177 |
+
seven_gen.interactive_generate()
|
digit_0_samples.png
ADDED
|
digit_1_samples.png
ADDED
|
digit_2_samples.png
ADDED
|
digit_3_samples.png
ADDED
|
digit_4_samples.png
ADDED
|
digit_5_samples.png
ADDED
|
digit_6_samples.png
ADDED
|
digit_7_samples.png
ADDED
|
digit_8_samples.png
ADDED
|
digit_9_samples.png
ADDED
|