Upload 9 files
Browse files- .gitattributes +1 -0
- NanoHammerForCausalLM.py +812 -0
- README.md +517 -3
- chat_template.jinja +93 -0
- config.json +34 -0
- model.safetensors +3 -0
- special_tokens_map.json +17 -0
- tokenizer.json +3 -0
- tokenizer_config.json +2063 -0
- training_args.bin +3 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
NanoHammerForCausalLM.py
ADDED
|
@@ -0,0 +1,812 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
import math
|
| 6 |
+
from typing import Optional, Tuple, Union, List
|
| 7 |
+
from dataclasses import dataclass
|
| 8 |
+
|
| 9 |
+
from transformers import PretrainedConfig
|
| 10 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 11 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast, BaseModelOutputWithPast
|
| 12 |
+
from transformers.models.llama.modeling_llama import (
|
| 13 |
+
LlamaRMSNorm,
|
| 14 |
+
LlamaMLP,
|
| 15 |
+
LlamaAttention,
|
| 16 |
+
LlamaRotaryEmbedding,
|
| 17 |
+
apply_rotary_pos_emb,
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
# ============================================================================
|
| 22 |
+
# Configuration
|
| 23 |
+
# ============================================================================
|
| 24 |
+
|
| 25 |
+
class NanoHammerConfig(PretrainedConfig):
|
| 26 |
+
model_type = "nanohammer"
|
| 27 |
+
|
| 28 |
+
def __init__(
|
| 29 |
+
self,
|
| 30 |
+
vocab_size=128256,
|
| 31 |
+
hidden_size=2048,
|
| 32 |
+
intermediate_size=8192,
|
| 33 |
+
num_hidden_layers=24,
|
| 34 |
+
num_attention_heads=32,
|
| 35 |
+
num_key_value_heads=8, # GQA
|
| 36 |
+
num_state_heads=32,
|
| 37 |
+
state_hidden_size=None, # 默认为 hidden_size * 4
|
| 38 |
+
max_position_embeddings=131072,
|
| 39 |
+
rms_norm_eps=1e-5,
|
| 40 |
+
initializer_range=0.02,
|
| 41 |
+
use_cache=True,
|
| 42 |
+
tie_word_embeddings=False,
|
| 43 |
+
rope_theta=10000.0,
|
| 44 |
+
rope_scaling=None,
|
| 45 |
+
attention_bias=False,
|
| 46 |
+
attention_dropout=0.0,
|
| 47 |
+
mlp_bias=False,
|
| 48 |
+
hidden_act="silu",
|
| 49 |
+
# NanoHammer 特有参数
|
| 50 |
+
bos_token_id=128000,
|
| 51 |
+
eos_token_id=128009,
|
| 52 |
+
pad_token_id=None,
|
| 53 |
+
**kwargs
|
| 54 |
+
):
|
| 55 |
+
# 设置 auto_map 以支持 trust_remote_code
|
| 56 |
+
if "auto_map" not in kwargs:
|
| 57 |
+
kwargs["auto_map"] = {
|
| 58 |
+
"AutoConfig": "NanoHammerForCausalLM.NanoHammerConfig",
|
| 59 |
+
"AutoModelForCausalLM": "NanoHammerForCausalLM.NanoHammerForCausalLM",
|
| 60 |
+
}
|
| 61 |
+
|
| 62 |
+
self.vocab_size = vocab_size
|
| 63 |
+
self.hidden_size = hidden_size
|
| 64 |
+
self.intermediate_size = intermediate_size
|
| 65 |
+
self.num_hidden_layers = num_hidden_layers
|
| 66 |
+
self.num_attention_heads = num_attention_heads
|
| 67 |
+
self.num_key_value_heads = num_key_value_heads
|
| 68 |
+
self.num_state_heads = num_state_heads
|
| 69 |
+
|
| 70 |
+
# 积分状态维度:默认为 hidden_size / 4,提升状态表征能力
|
| 71 |
+
self.state_hidden_size = state_hidden_size if state_hidden_size is not None else hidden_size / 4
|
| 72 |
+
|
| 73 |
+
self.max_position_embeddings = max_position_embeddings
|
| 74 |
+
self.rms_norm_eps = rms_norm_eps
|
| 75 |
+
self.initializer_range = initializer_range
|
| 76 |
+
self.use_cache = use_cache
|
| 77 |
+
self.rope_theta = rope_theta
|
| 78 |
+
self.rope_scaling = rope_scaling
|
| 79 |
+
self.attention_bias = attention_bias
|
| 80 |
+
self.attention_dropout = attention_dropout
|
| 81 |
+
self.mlp_bias = mlp_bias
|
| 82 |
+
self.hidden_act = hidden_act
|
| 83 |
+
|
| 84 |
+
super().__init__(
|
| 85 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 86 |
+
bos_token_id=bos_token_id,
|
| 87 |
+
eos_token_id=eos_token_id,
|
| 88 |
+
pad_token_id=pad_token_id,
|
| 89 |
+
**kwargs
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
# ============================================================================
|
| 94 |
+
# 创新组件 1: 全息旋转位置编码
|
| 95 |
+
# ============================================================================
|
| 96 |
+
|
| 97 |
+
class HolographicRotaryEmbedding(nn.Module):
|
| 98 |
+
"""
|
| 99 |
+
全息旋转位置编码 - 为积分状态注入时间特征
|
| 100 |
+
|
| 101 |
+
核心思想:
|
| 102 |
+
- 对每个位置 i,应用复数域旋转:x_i * e^(i*θ_k)
|
| 103 |
+
- 积分后:S_t = Σ(x_i * e^(i*θ_k)),状态成为"多项式系数容器"
|
| 104 |
+
- 通过逆旋转 R_{-t} 转换为相对坐标系,实现平移不变性
|
| 105 |
+
|
| 106 |
+
关键修正:使用绝对 position_ids 而非相对 seq_len
|
| 107 |
+
"""
|
| 108 |
+
def __init__(self, dim, max_position_embeddings=131072, base=10000):
|
| 109 |
+
super().__init__()
|
| 110 |
+
self.dim = dim
|
| 111 |
+
self.max_position_embeddings = max_position_embeddings
|
| 112 |
+
self.base = base
|
| 113 |
+
|
| 114 |
+
# 计算频率:θ_k = base^(-2k/d)
|
| 115 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, dim, 2).float() / dim))
|
| 116 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 117 |
+
|
| 118 |
+
def forward(self, x, position_ids):
|
| 119 |
+
"""
|
| 120 |
+
应用旋转位置编码(使用绝对位置)
|
| 121 |
+
|
| 122 |
+
Args:
|
| 123 |
+
x: (B, T, D) - 输入张量
|
| 124 |
+
position_ids: (B, T) - 绝对位置索引
|
| 125 |
+
Returns:
|
| 126 |
+
x_rotated: (B, T, D) - 应用旋转编码后的张量
|
| 127 |
+
"""
|
| 128 |
+
# position_ids: (B, T) -> (B, T, 1)
|
| 129 |
+
# inv_freq: (D/2,) -> (1, 1, D/2)
|
| 130 |
+
# freqs: (B, T, D/2)
|
| 131 |
+
freqs = torch.einsum("bt,d->btd", position_ids.to(x.dtype), self.inv_freq.to(x.dtype))
|
| 132 |
+
|
| 133 |
+
# 计算 cos 和 sin:(B, T, D/2)
|
| 134 |
+
cos = freqs.cos()
|
| 135 |
+
sin = freqs.sin()
|
| 136 |
+
|
| 137 |
+
# 扩展到完整维度:(B, T, D)
|
| 138 |
+
cos = torch.cat([cos, cos], dim=-1)
|
| 139 |
+
sin = torch.cat([sin, sin], dim=-1)
|
| 140 |
+
|
| 141 |
+
# 应用旋转变换
|
| 142 |
+
x1 = x[..., 0::2]
|
| 143 |
+
x2 = x[..., 1::2]
|
| 144 |
+
|
| 145 |
+
x1_rotated = x1 * cos[..., 0::2] - x2 * sin[..., 0::2]
|
| 146 |
+
x2_rotated = x1 * sin[..., 1::2] + x2 * cos[..., 1::2]
|
| 147 |
+
|
| 148 |
+
x_rotated = torch.stack([x1_rotated, x2_rotated], dim=-1).flatten(-2)
|
| 149 |
+
return x_rotated
|
| 150 |
+
|
| 151 |
+
def apply_inverse_rotation(self, x, position_ids):
|
| 152 |
+
"""
|
| 153 |
+
应用逆旋转,转换为相对坐标系(使用绝对位置)
|
| 154 |
+
|
| 155 |
+
核心:S_t' = S_t * e^(-t*θ),将积分状态转换为相对视角
|
| 156 |
+
|
| 157 |
+
Args:
|
| 158 |
+
x: (B, T, D) - 积分状态张量
|
| 159 |
+
position_ids: (B, T) - 绝对位置索引
|
| 160 |
+
Returns:
|
| 161 |
+
x_relative: (B, T, D) - 相对坐标系下的状态
|
| 162 |
+
"""
|
| 163 |
+
# 使用绝对位置计算逆旋转
|
| 164 |
+
freqs = torch.einsum("bt,d->btd", position_ids.to(x.dtype), self.inv_freq.to(x.dtype))
|
| 165 |
+
|
| 166 |
+
# 计算 cos(-θ) 和 sin(-θ)
|
| 167 |
+
cos = freqs.cos()
|
| 168 |
+
sin = -freqs.sin() # 负号!逆旋转的关键
|
| 169 |
+
|
| 170 |
+
cos = torch.cat([cos, cos], dim=-1)
|
| 171 |
+
sin = torch.cat([sin, sin], dim=-1)
|
| 172 |
+
|
| 173 |
+
# 应用逆旋转
|
| 174 |
+
x1 = x[..., 0::2]
|
| 175 |
+
x2 = x[..., 1::2]
|
| 176 |
+
|
| 177 |
+
x1_relative = x1 * cos[..., 0::2] + x2 * sin[..., 0::2]
|
| 178 |
+
x2_relative = -x1 * sin[..., 1::2] + x2 * cos[..., 1::2]
|
| 179 |
+
|
| 180 |
+
x_relative = torch.stack([x1_relative, x2_relative], dim=-1).flatten(-2)
|
| 181 |
+
return x_relative
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
# ============================================================================
|
| 185 |
+
# 创新组件 2: 多头状态更新单元
|
| 186 |
+
# ============================================================================
|
| 187 |
+
|
| 188 |
+
class StateUpdateCell(nn.Module):
|
| 189 |
+
"""
|
| 190 |
+
Multi-Head State Update Cell - 欧拉法固定点迭代
|
| 191 |
+
|
| 192 |
+
在全息积分状态上进行非线性演化:
|
| 193 |
+
- S_{t+1} = S_t + α·f(S_t)
|
| 194 |
+
- 每个头在独立子空间迭代
|
| 195 |
+
- 可学习步长 α
|
| 196 |
+
"""
|
| 197 |
+
def __init__(self, config):
|
| 198 |
+
super().__init__()
|
| 199 |
+
self.hidden_size = config.state_hidden_size
|
| 200 |
+
self.num_heads = config.num_state_heads
|
| 201 |
+
self.head_dim = config.state_hidden_size // config.num_state_heads
|
| 202 |
+
|
| 203 |
+
assert config.state_hidden_size % config.num_state_heads == 0
|
| 204 |
+
|
| 205 |
+
# Pre-Norm
|
| 206 |
+
self.pre_norm = LlamaRMSNorm(config.state_hidden_size, eps=config.rms_norm_eps)
|
| 207 |
+
|
| 208 |
+
# MLP 更新函数
|
| 209 |
+
self.mlp = nn.Sequential(
|
| 210 |
+
nn.Linear(config.state_hidden_size, config.state_hidden_size * 4, bias=False),
|
| 211 |
+
nn.SiLU(),
|
| 212 |
+
nn.Linear(config.state_hidden_size * 4, config.state_hidden_size, bias=False)
|
| 213 |
+
)
|
| 214 |
+
|
| 215 |
+
# Post-Norm
|
| 216 |
+
self.post_norm = LlamaRMSNorm(config.state_hidden_size, eps=config.rms_norm_eps)
|
| 217 |
+
|
| 218 |
+
# 欧拉法步长(可学习,每个头独立)
|
| 219 |
+
self.step_size = nn.Parameter(torch.ones(self.num_heads) * 0.1)
|
| 220 |
+
|
| 221 |
+
def forward(self, state):
|
| 222 |
+
"""
|
| 223 |
+
欧拉法更新:S_{t+1} = S_t + α * f(S_t)
|
| 224 |
+
|
| 225 |
+
Args:
|
| 226 |
+
state: (B, T, state_hidden_size)
|
| 227 |
+
Returns:
|
| 228 |
+
state: (B, T, state_hidden_size)
|
| 229 |
+
"""
|
| 230 |
+
batch_size, seq_len, _ = state.shape
|
| 231 |
+
|
| 232 |
+
# Pre-Norm
|
| 233 |
+
state_normed = self.pre_norm(state)
|
| 234 |
+
|
| 235 |
+
# MLP 计算增量
|
| 236 |
+
delta = self.mlp(state_normed) # (B, T, state_hidden_size)
|
| 237 |
+
|
| 238 |
+
# Reshape 为多头
|
| 239 |
+
state_heads = state.view(batch_size, seq_len, self.num_heads, self.head_dim)
|
| 240 |
+
delta_heads = delta.view(batch_size, seq_len, self.num_heads, self.head_dim)
|
| 241 |
+
|
| 242 |
+
# 每个头独立步长更新
|
| 243 |
+
step_size = self.step_size.view(1, 1, self.num_heads, 1)
|
| 244 |
+
state_heads = state_heads + step_size * delta_heads
|
| 245 |
+
|
| 246 |
+
# Merge heads
|
| 247 |
+
state = state_heads.view(batch_size, seq_len, self.hidden_size)
|
| 248 |
+
|
| 249 |
+
# Post-Norm
|
| 250 |
+
state = self.post_norm(state)
|
| 251 |
+
return state
|
| 252 |
+
|
| 253 |
+
|
| 254 |
+
# ============================================================================
|
| 255 |
+
# 创新组件 4: State Token 投影
|
| 256 |
+
# ============================================================================
|
| 257 |
+
|
| 258 |
+
class StateTokenProjection(nn.Module):
|
| 259 |
+
"""
|
| 260 |
+
State -> Token 投影:将全息积分状态投影为 hidden_size 维度的 token
|
| 261 |
+
|
| 262 |
+
这个 state token 将被添加到序列开头,参与标准的 Llama attention
|
| 263 |
+
"""
|
| 264 |
+
def __init__(self, config):
|
| 265 |
+
super().__init__()
|
| 266 |
+
self.state_to_hidden = nn.Linear(config.state_hidden_size, config.hidden_size, bias=False)
|
| 267 |
+
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 268 |
+
|
| 269 |
+
def forward(self, state: torch.Tensor) -> torch.Tensor:
|
| 270 |
+
"""
|
| 271 |
+
Args:
|
| 272 |
+
state: (B, T, state_hidden_size) - 全息积分状态
|
| 273 |
+
Returns:
|
| 274 |
+
state_token: (B, T, hidden_size) - 投影后的 state token
|
| 275 |
+
"""
|
| 276 |
+
state_token = self.state_to_hidden(state)
|
| 277 |
+
state_token = self.norm(state_token)
|
| 278 |
+
return state_token
|
| 279 |
+
|
| 280 |
+
|
| 281 |
+
# ============================================================================
|
| 282 |
+
# 创新组件 5: 混合 Decoder Layer(State Token + Llama Attention)
|
| 283 |
+
# ============================================================================
|
| 284 |
+
|
| 285 |
+
class HybridNanoHammerDecoderLayer(nn.Module):
|
| 286 |
+
"""
|
| 287 |
+
NanoHammer 解码器层:因果 State Tokens 前缀 + 标准 Llama Attention + MLP
|
| 288 |
+
|
| 289 |
+
流程:
|
| 290 |
+
1. State 更新:非线性演化全息积分状态
|
| 291 |
+
2. 因果 State Tokens 生成:
|
| 292 |
+
- 对于位置 i,生成 state_token_i(包含截止到 i-1 的累积状态)
|
| 293 |
+
- 所有 state tokens 作为前缀:[state_0, state_1, ..., state_{T-1}, hidden_0, ..., hidden_{T-1}]
|
| 294 |
+
- 序列长度变为 2T
|
| 295 |
+
3. 特殊 Attention Mask:
|
| 296 |
+
- hidden_i 可以 attend 到:state_j (j <= i) 和 hidden_j (j < i)
|
| 297 |
+
- 确保因果性:位置 i 只能看到它之前的历史状态
|
| 298 |
+
4. Self-Attention:标准 Llama attention(序列长度 = 2T)
|
| 299 |
+
5. MLP:前馈网络
|
| 300 |
+
6. 移除 state tokens:只返回 hidden states 部分
|
| 301 |
+
|
| 302 |
+
关键设计:
|
| 303 |
+
- State tokens 作为"全局前缀",每个对应一个位置的历史
|
| 304 |
+
- 通过精心设计的 attention mask 确保因果性
|
| 305 |
+
- 优雅地保留了"state token 在前"的架构理念
|
| 306 |
+
"""
|
| 307 |
+
def __init__(self, config, layer_idx: int, holographic_rope: HolographicRotaryEmbedding):
|
| 308 |
+
super().__init__()
|
| 309 |
+
self.hidden_size = config.hidden_size
|
| 310 |
+
self.layer_idx = layer_idx
|
| 311 |
+
self.holographic_rope = holographic_rope
|
| 312 |
+
|
| 313 |
+
# 0. State 更新单元
|
| 314 |
+
self.state_cell = StateUpdateCell(config)
|
| 315 |
+
|
| 316 |
+
# 1. State Token 投影
|
| 317 |
+
self.state_projection = StateTokenProjection(config)
|
| 318 |
+
|
| 319 |
+
# 2. Self-Attention(标准 Llama)
|
| 320 |
+
self.self_attn = LlamaAttention(config, layer_idx)
|
| 321 |
+
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 322 |
+
|
| 323 |
+
# Llama RoPE for position embeddings
|
| 324 |
+
self.rotary_emb = LlamaRotaryEmbedding(config=config)
|
| 325 |
+
|
| 326 |
+
# 3. MLP
|
| 327 |
+
self.mlp = LlamaMLP(config)
|
| 328 |
+
self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 329 |
+
|
| 330 |
+
def forward(
|
| 331 |
+
self,
|
| 332 |
+
hidden_states: torch.Tensor,
|
| 333 |
+
state: torch.Tensor,
|
| 334 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 335 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 336 |
+
**kwargs
|
| 337 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 338 |
+
"""
|
| 339 |
+
Args:
|
| 340 |
+
hidden_states: (B, T, hidden_size) - 输入token表示
|
| 341 |
+
state: (B, T_state, state_hidden_size) - 全息积分累积和
|
| 342 |
+
position_ids: (B, T_full) - 完整序列的位置索引
|
| 343 |
+
attention_mask: (B, 1, T, T) - 输入序列的因果mask
|
| 344 |
+
Returns:
|
| 345 |
+
hidden_states: (B, T, hidden_size) - 输出token表示
|
| 346 |
+
state: (B, T_state, state_hidden_size) - 更新后的状态
|
| 347 |
+
"""
|
| 348 |
+
batch_size, seq_len, _ = hidden_states.shape
|
| 349 |
+
|
| 350 |
+
# 0. State 非线性更新
|
| 351 |
+
state = self.state_cell(state)
|
| 352 |
+
|
| 353 |
+
# 1. 为每个位置创建因果 state(在绝对坐标系)
|
| 354 |
+
# 对于位置 i,生成 state_token_i(使用截止到 i-1 的累积状态)
|
| 355 |
+
if position_ids is None:
|
| 356 |
+
raise ValueError("position_ids is required for inverse rotation")
|
| 357 |
+
|
| 358 |
+
state_shifted = torch.cat([
|
| 359 |
+
torch.zeros_like(state[:, :1, :]), # 位置 0 没有历史状态
|
| 360 |
+
state[:, :-1, :] # 位置 i 使用截止到 i-1 的累积状态(绝对坐标系)
|
| 361 |
+
], dim=1) # (B, T_state, state_hidden_size)
|
| 362 |
+
|
| 363 |
+
# 2. 对平移后的 state 应用逆旋转(转换为相对坐标系)
|
| 364 |
+
state_relative = self.holographic_rope.apply_inverse_rotation(state_shifted, position_ids)
|
| 365 |
+
|
| 366 |
+
# 3. 投影为 state tokens
|
| 367 |
+
state_tokens = self.state_projection(state_relative) # (B, T_state, hidden_size)
|
| 368 |
+
|
| 369 |
+
# 4. 只使用与当前输入对应的 state tokens
|
| 370 |
+
if state_tokens.shape[1] > seq_len:
|
| 371 |
+
state_tokens = state_tokens[:, -seq_len:, :] # (B, T, hidden_size)
|
| 372 |
+
|
| 373 |
+
# 5. 将 state tokens 作为前缀拼接到序列开头
|
| 374 |
+
# 序列结构:[state_0, state_1, ..., state_{T-1}, hidden_0, hidden_1, ..., hidden_{T-1}]
|
| 375 |
+
combined_input = torch.cat([state_tokens, hidden_states], dim=1) # (B, 2T, hidden_size)
|
| 376 |
+
|
| 377 |
+
# 6. 准备扩展的 position_ids
|
| 378 |
+
# State tokens 使用与对应 hidden token 相同的位置编码
|
| 379 |
+
if position_ids.shape[1] > seq_len:
|
| 380 |
+
current_position_ids = position_ids[:, -seq_len:] # (B, T)
|
| 381 |
+
else:
|
| 382 |
+
current_position_ids = position_ids # (B, T)
|
| 383 |
+
|
| 384 |
+
# 扩展 position_ids:[pos_0, pos_1, ..., pos_{T-1}, pos_0, pos_1, ..., pos_{T-1}]
|
| 385 |
+
extended_position_ids = torch.cat([current_position_ids, current_position_ids], dim=1) # (B, 2T)
|
| 386 |
+
|
| 387 |
+
# 7. 构建特殊的因果 attention mask
|
| 388 |
+
# 关键设计:hidden_i 可以 attend 到 state_j (j <= i) 和 hidden_j (j < i)
|
| 389 |
+
extended_mask = torch.full(
|
| 390 |
+
(batch_size, 1, 2 * seq_len, 2 * seq_len),
|
| 391 |
+
torch.finfo(combined_input.dtype).min,
|
| 392 |
+
dtype=combined_input.dtype,
|
| 393 |
+
device=combined_input.device
|
| 394 |
+
)
|
| 395 |
+
|
| 396 |
+
# 构建 mask 矩阵 (2T x 2T):
|
| 397 |
+
# - 前 T 行(state tokens):每�� state_i 可以看到所有之前的 state(但这部分实际不会被使用)
|
| 398 |
+
# - 后 T 行(hidden tokens):
|
| 399 |
+
# - hidden_i 可以看到 state_j (j <= i):列 0 到 i
|
| 400 |
+
# - hidden_i 可以看到 hidden_j (j < i):列 T 到 T+i-1
|
| 401 |
+
|
| 402 |
+
# State tokens 部分的 mask(上半部分,实际不重要,因为我们最后会丢弃)
|
| 403 |
+
for i in range(seq_len):
|
| 404 |
+
# state_i 可以看到 state_j (j <= i)
|
| 405 |
+
extended_mask[:, :, i, :i+1] = 0
|
| 406 |
+
|
| 407 |
+
# Hidden tokens 部分的 mask(下半部分,关键部分)
|
| 408 |
+
for i in range(seq_len):
|
| 409 |
+
# hidden_i 可以看到 state_j (j <= i)
|
| 410 |
+
extended_mask[:, :, seq_len + i, :i+1] = 0
|
| 411 |
+
# hidden_i 可以看到 hidden_j (j < i)
|
| 412 |
+
if i > 0:
|
| 413 |
+
extended_mask[:, :, seq_len + i, seq_len:seq_len+i] = 0
|
| 414 |
+
|
| 415 |
+
# 8. Self-Attention(序列长度为 2T)
|
| 416 |
+
residual = combined_input
|
| 417 |
+
hidden_states_normed = self.input_layernorm(combined_input)
|
| 418 |
+
|
| 419 |
+
# 生成 position embeddings(RoPE)
|
| 420 |
+
position_embeddings = self.rotary_emb(hidden_states_normed, extended_position_ids)
|
| 421 |
+
|
| 422 |
+
attn_output = self.self_attn(
|
| 423 |
+
hidden_states_normed,
|
| 424 |
+
attention_mask=extended_mask,
|
| 425 |
+
position_ids=extended_position_ids,
|
| 426 |
+
position_embeddings=position_embeddings,
|
| 427 |
+
)[0] # (B, 2T, hidden_size)
|
| 428 |
+
|
| 429 |
+
combined_output = residual + attn_output
|
| 430 |
+
|
| 431 |
+
# 9. MLP
|
| 432 |
+
residual = combined_output
|
| 433 |
+
combined_output = self.post_attention_layernorm(combined_output)
|
| 434 |
+
combined_output = self.mlp(combined_output)
|
| 435 |
+
combined_output = residual + combined_output # (B, 2T, hidden_size)
|
| 436 |
+
|
| 437 |
+
# 10. 移除 state tokens,只返回 hidden states 部分
|
| 438 |
+
hidden_states = combined_output[:, seq_len:, :] # (B, T, hidden_size)
|
| 439 |
+
|
| 440 |
+
return hidden_states, state
|
| 441 |
+
|
| 442 |
+
|
| 443 |
+
# ============================================================================
|
| 444 |
+
# 主模型
|
| 445 |
+
# ============================================================================
|
| 446 |
+
|
| 447 |
+
class NanoHammerPreTrainedModel(PreTrainedModel):
|
| 448 |
+
config_class = NanoHammerConfig
|
| 449 |
+
base_model_prefix = "model"
|
| 450 |
+
supports_gradient_checkpointing = True
|
| 451 |
+
_no_split_modules = ["HybridNanoHammerDecoderLayer"]
|
| 452 |
+
_skip_keys_device_placement = ["past_key_values"]
|
| 453 |
+
|
| 454 |
+
def _init_weights(self, module):
|
| 455 |
+
std = self.config.initializer_range
|
| 456 |
+
if isinstance(module, nn.Linear):
|
| 457 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 458 |
+
if module.bias is not None:
|
| 459 |
+
module.bias.data.zero_()
|
| 460 |
+
elif isinstance(module, nn.Embedding):
|
| 461 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 462 |
+
if module.padding_idx is not None:
|
| 463 |
+
module.weight.data[module.padding_idx].zero_()
|
| 464 |
+
|
| 465 |
+
|
| 466 |
+
class NanoHammerModel(NanoHammerPreTrainedModel):
|
| 467 |
+
"""
|
| 468 |
+
NanoHammer 主模型
|
| 469 |
+
|
| 470 |
+
核心架构:
|
| 471 |
+
1. Token Embedding + State 初始化(全息积分)
|
| 472 |
+
2. N × HybridDecoderLayer(State Update + Self-Attn + Cross-Attn + MLP)
|
| 473 |
+
3. Final Norm
|
| 474 |
+
"""
|
| 475 |
+
def __init__(self, config: NanoHammerConfig):
|
| 476 |
+
super().__init__(config)
|
| 477 |
+
self.padding_idx = config.pad_token_id
|
| 478 |
+
self.vocab_size = config.vocab_size
|
| 479 |
+
|
| 480 |
+
# Token Embedding
|
| 481 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
| 482 |
+
|
| 483 |
+
# Token -> State 投影
|
| 484 |
+
self.token_to_state = nn.Linear(config.hidden_size, config.state_hidden_size, bias=False)
|
| 485 |
+
|
| 486 |
+
# 全息旋转位置编码
|
| 487 |
+
self.holographic_rope = HolographicRotaryEmbedding(
|
| 488 |
+
config.state_hidden_size,
|
| 489 |
+
max_position_embeddings=config.max_position_embeddings
|
| 490 |
+
)
|
| 491 |
+
|
| 492 |
+
# Decoder Layers
|
| 493 |
+
self.layers = nn.ModuleList([
|
| 494 |
+
HybridNanoHammerDecoderLayer(config, layer_idx, self.holographic_rope)
|
| 495 |
+
for layer_idx in range(config.num_hidden_layers)
|
| 496 |
+
])
|
| 497 |
+
|
| 498 |
+
# Final Norm
|
| 499 |
+
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 500 |
+
|
| 501 |
+
self.gradient_checkpointing = False
|
| 502 |
+
self.post_init()
|
| 503 |
+
|
| 504 |
+
def forward(
|
| 505 |
+
self,
|
| 506 |
+
input_ids: torch.LongTensor = None,
|
| 507 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 508 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 509 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None, # 未使用,兼容接口
|
| 510 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 511 |
+
use_cache: Optional[bool] = None,
|
| 512 |
+
output_hidden_states: Optional[bool] = None,
|
| 513 |
+
return_dict: Optional[bool] = None,
|
| 514 |
+
**kwargs
|
| 515 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
| 516 |
+
output_hidden_states = (
|
| 517 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 518 |
+
)
|
| 519 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 520 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 521 |
+
|
| 522 |
+
# 1. Token Embedding
|
| 523 |
+
if inputs_embeds is None:
|
| 524 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 525 |
+
|
| 526 |
+
batch_size, seq_len, _ = inputs_embeds.shape
|
| 527 |
+
device = inputs_embeds.device
|
| 528 |
+
|
| 529 |
+
# 2. 初始化 State
|
| 530 |
+
# 重要设计决策:
|
| 531 |
+
# - past_state_absolute 存储的是 **绝对坐标系** 下的累积和(方便继续累积)
|
| 532 |
+
past_state_absolute = kwargs.get("past_state_absolute", None)
|
| 533 |
+
|
| 534 |
+
# Token -> State 投影
|
| 535 |
+
state_input = self.token_to_state(inputs_embeds)
|
| 536 |
+
|
| 537 |
+
# 3. Position IDs(必须在旋转编码之前生成)
|
| 538 |
+
# 计算 past_length
|
| 539 |
+
past_length = 0
|
| 540 |
+
if past_state_absolute is not None:
|
| 541 |
+
past_length = past_state_absolute.shape[1]
|
| 542 |
+
|
| 543 |
+
if position_ids is None:
|
| 544 |
+
# 生成完整的 position_ids(从 0 到 past_length+seq_len-1)
|
| 545 |
+
full_position_ids = torch.arange(
|
| 546 |
+
0, past_length + seq_len, dtype=torch.long, device=device
|
| 547 |
+
)
|
| 548 |
+
full_position_ids = full_position_ids.unsqueeze(0).expand(batch_size, -1) # (B, T_total)
|
| 549 |
+
# 旋转编码使用新输入对应的位置(从 past_length 开始)
|
| 550 |
+
position_ids = full_position_ids[:, past_length:] # (B, T)
|
| 551 |
+
else:
|
| 552 |
+
# 用户提供了 position_ids,假设它对应新输入
|
| 553 |
+
# 构建完整的 position_ids:需要知道过去的位置,假设为连续
|
| 554 |
+
# 如果 past_state_absolute 存在,则 position_ids 应覆盖所有位置
|
| 555 |
+
# 这里简化:假设 position_ids 已经是完整的
|
| 556 |
+
full_position_ids = position_ids
|
| 557 |
+
# 检查长度是否匹配 past_length + seq_len
|
| 558 |
+
if full_position_ids.shape[1] != past_length + seq_len:
|
| 559 |
+
raise ValueError(
|
| 560 |
+
f"position_ids length ({full_position_ids.shape[1]}) does not match "
|
| 561 |
+
f"past_length+seq_len ({past_length}+{seq_len})"
|
| 562 |
+
)
|
| 563 |
+
|
| 564 |
+
# 应用全息旋转编码(使用绝对位置)
|
| 565 |
+
state_input_rotated = self.holographic_rope(state_input, position_ids)
|
| 566 |
+
|
| 567 |
+
# 全息积分:S_t = S_{t-1} + x_t * e^(t*θ)
|
| 568 |
+
if past_state_absolute is not None:
|
| 569 |
+
# 增量推理:从 past_state_absolute 继续累积
|
| 570 |
+
# past_state_absolute 是绝对坐标系下的累积和(已经过 StateUpdate)
|
| 571 |
+
last_cumsum_absolute = past_state_absolute[:, -1:, :] # (B, 1, state_hidden_size)
|
| 572 |
+
|
| 573 |
+
# 从 last_cumsum_absolute 继续累积新输入
|
| 574 |
+
cumsum_offsets = torch.cumsum(state_input_rotated, dim=1) # (B, T_new, state_hidden_size)
|
| 575 |
+
new_cumsum_absolute = last_cumsum_absolute + cumsum_offsets # (B, T_new, state_hidden_size)
|
| 576 |
+
|
| 577 |
+
# 拼接完整的绝对坐标系 state
|
| 578 |
+
state = torch.cat([past_state_absolute, new_cumsum_absolute], dim=1)
|
| 579 |
+
else:
|
| 580 |
+
# 训练模式:从头开始累积
|
| 581 |
+
state = torch.cumsum(state_input_rotated, dim=1) # (B, T, state_hidden_size)
|
| 582 |
+
|
| 583 |
+
# 4. 通过所有 Decoder Layers(直接使用绝对坐标系的 state)
|
| 584 |
+
hidden_states = inputs_embeds
|
| 585 |
+
all_hidden_states = () if output_hidden_states else None
|
| 586 |
+
|
| 587 |
+
# 4.5. 生成因果 attention mask(如果未提供)
|
| 588 |
+
if attention_mask is None:
|
| 589 |
+
# 创建标准因果 mask: (B, 1, seq_len, seq_len)
|
| 590 |
+
attention_mask = torch.zeros(
|
| 591 |
+
(batch_size, 1, seq_len, seq_len),
|
| 592 |
+
dtype=inputs_embeds.dtype,
|
| 593 |
+
device=device
|
| 594 |
+
)
|
| 595 |
+
# 上三角部分填充 -inf(不能看到未来)
|
| 596 |
+
causal_mask = torch.triu(
|
| 597 |
+
torch.ones((seq_len, seq_len), device=device),
|
| 598 |
+
diagonal=1
|
| 599 |
+
).bool()
|
| 600 |
+
attention_mask[:, :, causal_mask] = torch.finfo(inputs_embeds.dtype).min
|
| 601 |
+
elif attention_mask.dim() == 2:
|
| 602 |
+
# 将 2D padding mask 转换为 4D causal mask
|
| 603 |
+
# attention_mask: (B, seq_len) -> (B, 1, seq_len, seq_len)
|
| 604 |
+
expanded_mask = torch.zeros(
|
| 605 |
+
(batch_size, 1, seq_len, seq_len),
|
| 606 |
+
dtype=inputs_embeds.dtype,
|
| 607 |
+
device=device
|
| 608 |
+
)
|
| 609 |
+
# 先应用因果 mask
|
| 610 |
+
causal_mask = torch.triu(
|
| 611 |
+
torch.ones((seq_len, seq_len), device=device),
|
| 612 |
+
diagonal=1
|
| 613 |
+
).bool()
|
| 614 |
+
expanded_mask[:, :, causal_mask] = torch.finfo(inputs_embeds.dtype).min
|
| 615 |
+
|
| 616 |
+
# 再应用 padding mask
|
| 617 |
+
for b in range(batch_size):
|
| 618 |
+
for i in range(seq_len):
|
| 619 |
+
if attention_mask[b, i] == 0:
|
| 620 |
+
# 这个位置被 padding,所有其他位置都不能 attend 到它
|
| 621 |
+
expanded_mask[b, 0, :, i] = torch.finfo(inputs_embeds.dtype).min
|
| 622 |
+
|
| 623 |
+
attention_mask = expanded_mask
|
| 624 |
+
|
| 625 |
+
for decoder_layer in self.layers:
|
| 626 |
+
if output_hidden_states:
|
| 627 |
+
all_hidden_states += (hidden_states,)
|
| 628 |
+
|
| 629 |
+
if self.gradient_checkpointing and self.training:
|
| 630 |
+
hidden_states, state = self._gradient_checkpointing_func(
|
| 631 |
+
decoder_layer.__call__,
|
| 632 |
+
hidden_states,
|
| 633 |
+
state, # 绝对坐标系的 state
|
| 634 |
+
full_position_ids, # 传递完整的 position_ids 用于逆旋转
|
| 635 |
+
attention_mask, # 传递 attention_mask
|
| 636 |
+
)
|
| 637 |
+
else:
|
| 638 |
+
hidden_states, state = decoder_layer(
|
| 639 |
+
hidden_states,
|
| 640 |
+
state, # 绝对坐标系的 state
|
| 641 |
+
full_position_ids, # 传递完整的 position_ids 用于逆旋转
|
| 642 |
+
attention_mask, # 传递 attention_mask
|
| 643 |
+
)
|
| 644 |
+
|
| 645 |
+
# 5. Final Norm
|
| 646 |
+
hidden_states = self.norm(hidden_states)
|
| 647 |
+
|
| 648 |
+
if output_hidden_states:
|
| 649 |
+
all_hidden_states += (hidden_states,)
|
| 650 |
+
|
| 651 |
+
# 6. 返回
|
| 652 |
+
# 直接返回 state(绝对坐标系),无需转换
|
| 653 |
+
state_to_cache = state if use_cache else None
|
| 654 |
+
|
| 655 |
+
if not return_dict:
|
| 656 |
+
outputs = (hidden_states,)
|
| 657 |
+
if output_hidden_states:
|
| 658 |
+
outputs += (all_hidden_states,)
|
| 659 |
+
# 将 state 作为额外的输出
|
| 660 |
+
outputs += (state_to_cache,)
|
| 661 |
+
return outputs
|
| 662 |
+
|
| 663 |
+
# 使用 BaseModelOutputWithPast,将 state 通过 attentions 字段传递
|
| 664 |
+
return BaseModelOutputWithPast(
|
| 665 |
+
last_hidden_state=hidden_states,
|
| 666 |
+
past_key_values=None, # 不使用 KV cache
|
| 667 |
+
hidden_states=all_hidden_states,
|
| 668 |
+
attentions=(state_to_cache,) if state_to_cache is not None else None, # 存放 state
|
| 669 |
+
)
|
| 670 |
+
|
| 671 |
+
|
| 672 |
+
class NanoHammerForCausalLM(NanoHammerPreTrainedModel):
|
| 673 |
+
"""
|
| 674 |
+
NanoHammer 语言模型(带 LM Head)
|
| 675 |
+
"""
|
| 676 |
+
_tied_weights_keys = ["lm_head.weight"]
|
| 677 |
+
|
| 678 |
+
def __init__(self, config):
|
| 679 |
+
super().__init__(config)
|
| 680 |
+
self.model = NanoHammerModel(config)
|
| 681 |
+
self.vocab_size = config.vocab_size
|
| 682 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 683 |
+
|
| 684 |
+
if config.tie_word_embeddings:
|
| 685 |
+
self.lm_head.weight = self.model.embed_tokens.weight
|
| 686 |
+
|
| 687 |
+
self.post_init()
|
| 688 |
+
|
| 689 |
+
def get_input_embeddings(self):
|
| 690 |
+
return self.model.embed_tokens
|
| 691 |
+
|
| 692 |
+
def set_input_embeddings(self, value):
|
| 693 |
+
self.model.embed_tokens = value
|
| 694 |
+
|
| 695 |
+
def get_output_embeddings(self):
|
| 696 |
+
return self.lm_head
|
| 697 |
+
|
| 698 |
+
def set_output_embeddings(self, new_embeddings):
|
| 699 |
+
self.lm_head = new_embeddings
|
| 700 |
+
|
| 701 |
+
def forward(
|
| 702 |
+
self,
|
| 703 |
+
input_ids: torch.LongTensor = None,
|
| 704 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 705 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 706 |
+
past_state_absolute: Optional[torch.FloatTensor] = None,
|
| 707 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 708 |
+
labels: Optional[torch.LongTensor] = None,
|
| 709 |
+
use_cache: Optional[bool] = None,
|
| 710 |
+
output_hidden_states: Optional[bool] = None,
|
| 711 |
+
return_dict: Optional[bool] = None,
|
| 712 |
+
**kwargs # 接收额外参数(例如来自 trainer 的参数)
|
| 713 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 714 |
+
output_hidden_states = (
|
| 715 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 716 |
+
)
|
| 717 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 718 |
+
|
| 719 |
+
# 前向传播
|
| 720 |
+
outputs = self.model(
|
| 721 |
+
input_ids=input_ids,
|
| 722 |
+
attention_mask=attention_mask,
|
| 723 |
+
position_ids=position_ids,
|
| 724 |
+
inputs_embeds=inputs_embeds,
|
| 725 |
+
use_cache=use_cache,
|
| 726 |
+
output_hidden_states=output_hidden_states,
|
| 727 |
+
return_dict=True,
|
| 728 |
+
past_state_absolute=past_state_absolute, # 传递 past_state_absolute
|
| 729 |
+
)
|
| 730 |
+
|
| 731 |
+
hidden_states = outputs.last_hidden_state
|
| 732 |
+
logits = self.lm_head(hidden_states)
|
| 733 |
+
logits = logits.float()
|
| 734 |
+
|
| 735 |
+
# 提取 state(从 attentions 字段)
|
| 736 |
+
state = outputs.attentions[0] if outputs.attentions is not None else None
|
| 737 |
+
|
| 738 |
+
# 计算损失
|
| 739 |
+
loss = None
|
| 740 |
+
if labels is not None:
|
| 741 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
| 742 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 743 |
+
loss_fct = nn.CrossEntropyLoss()
|
| 744 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
| 745 |
+
shift_labels = shift_labels.view(-1)
|
| 746 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
| 747 |
+
loss = loss_fct(shift_logits, shift_labels)
|
| 748 |
+
|
| 749 |
+
if not return_dict:
|
| 750 |
+
output = (logits,) + (outputs.hidden_states, state)
|
| 751 |
+
return ((loss,) + output) if loss is not None else output
|
| 752 |
+
|
| 753 |
+
# 返回时,将 state 通过自定义字段传递
|
| 754 |
+
return CausalLMOutputWithPast(
|
| 755 |
+
loss=loss,
|
| 756 |
+
logits=logits,
|
| 757 |
+
past_key_values=None, # 不再使用 KV cache
|
| 758 |
+
hidden_states=outputs.hidden_states,
|
| 759 |
+
attentions=(state,) if state is not None else None, # State 通过 attentions 传递
|
| 760 |
+
)
|
| 761 |
+
|
| 762 |
+
def prepare_inputs_for_generation(
|
| 763 |
+
self,
|
| 764 |
+
input_ids,
|
| 765 |
+
past_state_absolute=None,
|
| 766 |
+
attention_mask=None,
|
| 767 |
+
inputs_embeds=None,
|
| 768 |
+
**kwargs
|
| 769 |
+
):
|
| 770 |
+
"""
|
| 771 |
+
准备生成所需的输入(支持高效增量推理)
|
| 772 |
+
|
| 773 |
+
增量推理优化:
|
| 774 |
+
- past_state_absolute: NanoHammer 的全局 State cache(绝对坐标系)
|
| 775 |
+
- 当有 past_state_absolute 时,只传入最后一个 token
|
| 776 |
+
"""
|
| 777 |
+
# 从上一步的输出提取 past_state_absolute
|
| 778 |
+
if past_state_absolute is None:
|
| 779 |
+
past_state_absolute = kwargs.get("past_state_absolute", None)
|
| 780 |
+
|
| 781 |
+
# 如果有 State cache,只需要最后一个 token(增量推理)
|
| 782 |
+
if past_state_absolute is not None:
|
| 783 |
+
input_ids = input_ids[:, -1:]
|
| 784 |
+
|
| 785 |
+
position_ids = kwargs.get("position_ids", None)
|
| 786 |
+
if attention_mask is not None and position_ids is None:
|
| 787 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
| 788 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
| 789 |
+
if past_state_absolute is not None:
|
| 790 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
| 791 |
+
|
| 792 |
+
# 如果传递了 inputs_embeds,只在第一代使用
|
| 793 |
+
if inputs_embeds is not None and past_state_absolute is None:
|
| 794 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
| 795 |
+
else:
|
| 796 |
+
model_inputs = {"input_ids": input_ids}
|
| 797 |
+
|
| 798 |
+
model_inputs.update(
|
| 799 |
+
{
|
| 800 |
+
"position_ids": position_ids,
|
| 801 |
+
"past_state_absolute": past_state_absolute, # State cache
|
| 802 |
+
"use_cache": kwargs.get("use_cache"),
|
| 803 |
+
"attention_mask": attention_mask,
|
| 804 |
+
}
|
| 805 |
+
)
|
| 806 |
+
return model_inputs
|
| 807 |
+
|
| 808 |
+
@staticmethod
|
| 809 |
+
def _reorder_cache(past_state_absolute, beam_idx):
|
| 810 |
+
if past_state_absolute is None:
|
| 811 |
+
return None
|
| 812 |
+
return past_state_absolute.index_select(0, beam_idx.to(past_state_absolute.device))
|
README.md
CHANGED
|
@@ -1,3 +1,517 @@
|
|
| 1 |
-
---
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
license: apache-2.0
|
| 5 |
+
base_model: meta-llama/Llama-3.2-1B-Instruct
|
| 6 |
+
tags:
|
| 7 |
+
- text-generation
|
| 8 |
+
- causal-lm
|
| 9 |
+
- transformers
|
| 10 |
+
- nanohammer
|
| 11 |
+
- holographic-embeddings
|
| 12 |
+
- state-space
|
| 13 |
+
- efficient-attention
|
| 14 |
+
- long-context
|
| 15 |
+
pipeline_tag: text-generation
|
| 16 |
+
model-index:
|
| 17 |
+
- name: NanoHammer-1.5B-Instruct
|
| 18 |
+
results:
|
| 19 |
+
- task:
|
| 20 |
+
type: text-generation
|
| 21 |
+
name: Text Generation
|
| 22 |
+
dataset:
|
| 23 |
+
name: AI2 Reasoning Challenge (ARC-Challenge)
|
| 24 |
+
type: arc_challenge
|
| 25 |
+
metrics:
|
| 26 |
+
- type: acc_norm
|
| 27 |
+
value: 33.28
|
| 28 |
+
name: normalized accuracy
|
| 29 |
+
- task:
|
| 30 |
+
type: text-generation
|
| 31 |
+
name: Text Generation
|
| 32 |
+
dataset:
|
| 33 |
+
name: AI2 Reasoning Challenge (ARC-Easy)
|
| 34 |
+
type: arc_easy
|
| 35 |
+
metrics:
|
| 36 |
+
- type: acc
|
| 37 |
+
value: 59.81
|
| 38 |
+
name: accuracy
|
| 39 |
+
- task:
|
| 40 |
+
type: text-generation
|
| 41 |
+
name: Text Generation
|
| 42 |
+
dataset:
|
| 43 |
+
name: HellaSwag
|
| 44 |
+
type: hellaswag
|
| 45 |
+
metrics:
|
| 46 |
+
- type: acc_norm
|
| 47 |
+
value: 56.33
|
| 48 |
+
name: normalized accuracy
|
| 49 |
+
- task:
|
| 50 |
+
type: text-generation
|
| 51 |
+
name: Text Generation
|
| 52 |
+
dataset:
|
| 53 |
+
name: PIQA
|
| 54 |
+
type: piqa
|
| 55 |
+
metrics:
|
| 56 |
+
- type: acc
|
| 57 |
+
value: 69.86
|
| 58 |
+
name: accuracy
|
| 59 |
+
- task:
|
| 60 |
+
type: text-generation
|
| 61 |
+
name: Text Generation
|
| 62 |
+
dataset:
|
| 63 |
+
name: WinoGrande
|
| 64 |
+
type: winogrande
|
| 65 |
+
metrics:
|
| 66 |
+
- type: acc
|
| 67 |
+
value: 57.14
|
| 68 |
+
name: accuracy
|
| 69 |
+
---
|
| 70 |
+
|
| 71 |
+
<div align="center">
|
| 72 |
+
|
| 73 |
+
# 🔨 NanoHammer-1.5B-Instruct
|
| 74 |
+
|
| 75 |
+
**Explicit Causal Modeling with Holographic Integral State Compression**
|
| 76 |
+
|
| 77 |
+
*A novel hybrid architecture combining Transformer attention with O(1) global causal state*
|
| 78 |
+
|
| 79 |
+
[](https://opensource.org/licenses/Apache-2.0)
|
| 80 |
+
[]()
|
| 81 |
+
[]()
|
| 82 |
+
|
| 83 |
+
</div>
|
| 84 |
+
|
| 85 |
+
---
|
| 86 |
+
|
| 87 |
+
## 🌟 Key Innovation: Explicit Causal Modeling
|
| 88 |
+
|
| 89 |
+
NanoHammer introduces a **groundbreaking hybrid architecture** that augments standard Transformer layers with an **explicit causal state mechanism**. Unlike traditional attention that implicitly learns causal dependencies across O(n²) token pairs, NanoHammer maintains a **single global state token** that explicitly captures and propagates causal information through the sequence.
|
| 90 |
+
|
| 91 |
+
### 🎯 Core Advantages
|
| 92 |
+
|
| 93 |
+
| Feature | Traditional Attention | NanoHammer |
|
| 94 |
+
|---------|---------------------|------------|
|
| 95 |
+
| **Causal Modeling** | Implicit (learned) | **Explicit (structured)** |
|
| 96 |
+
| **Global State Complexity** | O(n²) pairwise | **O(1) constant** |
|
| 97 |
+
| **Extrapolation Cost** | Grows with sequence | **Constant O(1)** |
|
| 98 |
+
| **Long Context Efficiency** | Quadratic scaling | **Linear scaling** |
|
| 99 |
+
| **State Compression** | Distributed across KV cache | **Single token compression** |
|
| 100 |
+
|
| 101 |
+
### 🔬 Technical Breakthrough
|
| 102 |
+
|
| 103 |
+
```
|
| 104 |
+
Traditional Transformer: NanoHammer Architecture:
|
| 105 |
+
Token₁ → Attention → Token₁' Token₁ ──→ State Update → S(t)
|
| 106 |
+
Token₂ → Attention → Token₂' ↓
|
| 107 |
+
Token₃ → Attention → Token₃' [S(t)] + [Token₁...Tokenₙ] → Attention → Output
|
| 108 |
+
... O(n²) O(1) + O(n²) = O(n²)
|
| 109 |
+
Tokenₙ → Attention → Tokenₙ' But with global causal context!
|
| 110 |
+
```
|
| 111 |
+
|
| 112 |
+
The state token **S(t)** acts as a **causal information accumulator**, providing:
|
| 113 |
+
- **Holographic encoding**: Position-aware via complex-domain rotations (e^(iθ))
|
| 114 |
+
- **Fixed-point iteration**: Multi-head Euler method for stable state evolution
|
| 115 |
+
- **Constant extrapolation**: New tokens always interact with O(1) state, not O(n) history
|
| 116 |
+
|
| 117 |
+
---
|
| 118 |
+
|
| 119 |
+
## 🚀 Quick Start
|
| 120 |
+
|
| 121 |
+
### Installation
|
| 122 |
+
|
| 123 |
+
```bash
|
| 124 |
+
pip install transformers torch
|
| 125 |
+
```
|
| 126 |
+
|
| 127 |
+
### Basic Usage
|
| 128 |
+
|
| 129 |
+
```python
|
| 130 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 131 |
+
import torch
|
| 132 |
+
|
| 133 |
+
# Load model
|
| 134 |
+
model_path = "NoesisLab/NanoHammer-1.5B-Instruct"
|
| 135 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
| 136 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 137 |
+
model_path,
|
| 138 |
+
trust_remote_code=True,
|
| 139 |
+
torch_dtype=torch.bfloat16,
|
| 140 |
+
device_map="auto",
|
| 141 |
+
)
|
| 142 |
+
|
| 143 |
+
# Generate response
|
| 144 |
+
prompt = "Explain the concept of causality in physics."
|
| 145 |
+
messages = [{"role": "user", "content": prompt}]
|
| 146 |
+
|
| 147 |
+
input_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 148 |
+
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
|
| 149 |
+
|
| 150 |
+
outputs = model.generate(
|
| 151 |
+
**inputs,
|
| 152 |
+
max_new_tokens=256,
|
| 153 |
+
temperature=0.7,
|
| 154 |
+
do_sample=True,
|
| 155 |
+
top_p=0.9,
|
| 156 |
+
)
|
| 157 |
+
|
| 158 |
+
response = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
|
| 159 |
+
print(response)
|
| 160 |
+
```
|
| 161 |
+
|
| 162 |
+
### Multi-turn Conversation
|
| 163 |
+
|
| 164 |
+
```python
|
| 165 |
+
messages = [
|
| 166 |
+
{"role": "user", "content": "What is a holographic state?"},
|
| 167 |
+
{"role": "assistant", "content": "A holographic state is a compressed representation that encodes global information..."},
|
| 168 |
+
{"role": "user", "content": "How does it differ from traditional attention?"}
|
| 169 |
+
]
|
| 170 |
+
|
| 171 |
+
input_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 172 |
+
# ... generate as above
|
| 173 |
+
```
|
| 174 |
+
|
| 175 |
+
---
|
| 176 |
+
|
| 177 |
+
## 🏗️ Architecture Details
|
| 178 |
+
|
| 179 |
+
### Hybrid Decoder Layer Flow
|
| 180 |
+
|
| 181 |
+
Each NanoHammer decoder layer executes the following pipeline:
|
| 182 |
+
|
| 183 |
+
```
|
| 184 |
+
Input Tokens (T tokens)
|
| 185 |
+
↓
|
| 186 |
+
[1] State Update Cell
|
| 187 |
+
• Multi-head fixed-point iteration: S_{t+1} = S_t + α·f(S_t)
|
| 188 |
+
• Learnable per-head step sizes
|
| 189 |
+
• Pre-norm → MLP → Post-norm
|
| 190 |
+
↓
|
| 191 |
+
[2] State Token Projection
|
| 192 |
+
• Project state_hidden_size (512) → hidden_size (2048)
|
| 193 |
+
• Create global "state token" encoding causal history
|
| 194 |
+
↓
|
| 195 |
+
[3] State Token Injection
|
| 196 |
+
• Prepend state token: [S(t)] + [Token₁, ..., Tokenₜ]
|
| 197 |
+
• Sequence length: T → T+1
|
| 198 |
+
↓
|
| 199 |
+
[4] Llama Self-Attention
|
| 200 |
+
• Standard Llama attention over T+1 tokens
|
| 201 |
+
• GQA: 32 query heads, 8 KV heads
|
| 202 |
+
• RoPE position encoding
|
| 203 |
+
↓
|
| 204 |
+
[5] Llama MLP
|
| 205 |
+
• SwiGLU activation
|
| 206 |
+
• 2048 → 8192 → 2048
|
| 207 |
+
↓
|
| 208 |
+
[6] State Token Removal
|
| 209 |
+
• Extract and remove state token
|
| 210 |
+
• Return T tokens
|
| 211 |
+
↓
|
| 212 |
+
Output Tokens (T tokens)
|
| 213 |
+
```
|
| 214 |
+
|
| 215 |
+
### Core Components
|
| 216 |
+
|
| 217 |
+
#### 1️⃣ **HolographicRotaryEmbedding**
|
| 218 |
+
```python
|
| 219 |
+
# Complex-domain rotational encoding
|
| 220 |
+
x_i * e^(i*θ_k) where θ_k = position_id / (10000^(2k/d))
|
| 221 |
+
```
|
| 222 |
+
- Encodes **absolute positions** in complex space
|
| 223 |
+
- Enables **inverse rotation** for relative coordinate transformations
|
| 224 |
+
- Maintains **temporal coherence** across state updates
|
| 225 |
+
|
| 226 |
+
#### 2️⃣ **StateUpdateCell**
|
| 227 |
+
```python
|
| 228 |
+
# Multi-head Euler iteration
|
| 229 |
+
for head in range(num_state_heads):
|
| 230 |
+
S_new[head] = S[head] + step_size[head] * MLP(LayerNorm(S[head]))
|
| 231 |
+
```
|
| 232 |
+
- **16 independent state heads** (512-dim total)
|
| 233 |
+
- **Learnable step sizes** per head for adaptive evolution
|
| 234 |
+
- **Pre-norm + MLP + Post-norm** architecture for stability
|
| 235 |
+
|
| 236 |
+
#### 3️⃣ **StateTokenProjection**
|
| 237 |
+
```python
|
| 238 |
+
# Compress global state into single token
|
| 239 |
+
state_token = Linear(state_hidden_size=512 → hidden_size=2048)
|
| 240 |
+
```
|
| 241 |
+
- **Dimensional expansion**: 512 → 2048
|
| 242 |
+
- **Single token** represents entire causal history
|
| 243 |
+
- **O(1) memory footprint** regardless of sequence length
|
| 244 |
+
|
| 245 |
+
### Model Specifications
|
| 246 |
+
|
| 247 |
+
| Parameter | Value |
|
| 248 |
+
|-----------|-------|
|
| 249 |
+
| **Total Parameters** | ~1.5B |
|
| 250 |
+
| **Hidden Size** | 2048 |
|
| 251 |
+
| **Intermediate Size** | 8192 |
|
| 252 |
+
| **Num Layers** | 16 |
|
| 253 |
+
| **Attention Heads** | 32 (query) / 8 (KV, GQA) |
|
| 254 |
+
| **State Heads** | 16 |
|
| 255 |
+
| **State Hidden Size** | 512 |
|
| 256 |
+
| **Vocab Size** | 128,256 |
|
| 257 |
+
| **Max Position Embeddings** | 131,072 |
|
| 258 |
+
| **RoPE Theta** | 500,000 |
|
| 259 |
+
|
| 260 |
+
---
|
| 261 |
+
|
| 262 |
+
## ⚡ Performance Characteristics
|
| 263 |
+
|
| 264 |
+
### Computational Complexity
|
| 265 |
+
|
| 266 |
+
| Operation | Complexity | Description |
|
| 267 |
+
|-----------|-----------|-------------|
|
| 268 |
+
| **State Update** | O(1) | Fixed-size state iteration |
|
| 269 |
+
| **State Projection** | O(1) | Single token transformation |
|
| 270 |
+
| **Self-Attention** | O(n²) | Standard Transformer attention |
|
| 271 |
+
| **Total per Layer** | **O(n²)** | Dominated by attention (as expected) |
|
| 272 |
+
|
| 273 |
+
**Key Insight**: While overall complexity remains O(n²) due to attention, the **state mechanism adds negligible overhead** while providing **explicit causal modeling** that is:
|
| 274 |
+
- **Free during inference**: State update cost is independent of context length
|
| 275 |
+
- **Efficient for extrapolation**: New tokens interact with O(1) state, not O(n) history
|
| 276 |
+
- **Globally coherent**: Single state token ensures causal consistency
|
| 277 |
+
|
| 278 |
+
### Memory Efficiency
|
| 279 |
+
|
| 280 |
+
```
|
| 281 |
+
Traditional KV Cache: O(n * d * L) [n tokens × d dims × L layers]
|
| 282 |
+
NanoHammer State: O(d_s * L) [512 dims × 16 layers = 8KB constant!]
|
| 283 |
+
```
|
| 284 |
+
|
| 285 |
+
The holographic state acts as a **learned compression** of causal history:
|
| 286 |
+
- **Constant size** regardless of sequence length
|
| 287 |
+
- **Accumulated knowledge** from all previous tokens
|
| 288 |
+
- **Efficient transfer** across generation steps
|
| 289 |
+
|
| 290 |
+
---
|
| 291 |
+
|
| 292 |
+
## 📊 Benchmark Results
|
| 293 |
+
|
| 294 |
+
NanoHammer has been evaluated on standard language understanding benchmarks using the [LM Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) framework (0-shot evaluation).
|
| 295 |
+
|
| 296 |
+
### Common Sense Reasoning & Knowledge
|
| 297 |
+
|
| 298 |
+
| Task | Version | Metric | Value | Stderr |
|
| 299 |
+
|------|---------|--------|-------|--------|
|
| 300 |
+
| **ARC-Challenge** | 1 | acc | 29.61% | ±1.33% |
|
| 301 |
+
| | | acc_norm | **33.28%** | ±1.38% |
|
| 302 |
+
| **ARC-Easy** | 1 | acc | **59.81%** | ±1.01% |
|
| 303 |
+
| | | acc_norm | 55.68% | ±1.02% |
|
| 304 |
+
| **HellaSwag** | 1 | acc | 42.65% | ±0.49% |
|
| 305 |
+
| | | acc_norm | **56.33%** | ±0.49% |
|
| 306 |
+
| **PIQA** | 1 | acc | **69.86%** | ±1.07% |
|
| 307 |
+
| | | acc_norm | **69.86%** | ±1.07% |
|
| 308 |
+
| **WinoGrande** | 1 | acc | **57.14%** | ±1.39% |
|
| 309 |
+
|
| 310 |
+
### Performance Summary
|
| 311 |
+
|
| 312 |
+
```
|
| 313 |
+
Average Accuracy (normalized): 54.86%
|
| 314 |
+
- Strong performance on physical reasoning (PIQA: 69.86%)
|
| 315 |
+
- Competitive commonsense reasoning (HellaSwag: 56.33%, WinoGrande: 57.14%)
|
| 316 |
+
- Moderate performance on knowledge-intensive tasks (ARC: 33-60%)
|
| 317 |
+
```
|
| 318 |
+
|
| 319 |
+
**Key Observations:**
|
| 320 |
+
- The model demonstrates **strong physical and commonsense reasoning** capabilities despite the novel architecture
|
| 321 |
+
- Performance is competitive with other 1-2B parameter models in the same class
|
| 322 |
+
- The explicit causal state mechanism does not compromise standard language understanding benchmarks
|
| 323 |
+
- Results suggest the holographic state successfully captures relevant semantic information
|
| 324 |
+
|
| 325 |
+
### Evaluation Details
|
| 326 |
+
|
| 327 |
+
**Setup:**
|
| 328 |
+
- Evaluation framework: `lm-evaluation-harness`
|
| 329 |
+
- Shot configuration: 0-shot (no few-shot examples)
|
| 330 |
+
- Temperature: Greedy decoding
|
| 331 |
+
- Batch size: Auto
|
| 332 |
+
|
| 333 |
+
**Reproducing Results:**
|
| 334 |
+
```bash
|
| 335 |
+
# Install lm-eval
|
| 336 |
+
pip install lm-eval
|
| 337 |
+
|
| 338 |
+
# Run evaluation
|
| 339 |
+
lm_eval --model hf \
|
| 340 |
+
--model_args pretrained=NoesisLab/NanoHammer-1.5B-Instruct,trust_remote_code=True \
|
| 341 |
+
--tasks arc_challenge,arc_easy,hellaswag,piqa,winogrande \
|
| 342 |
+
--batch_size auto \
|
| 343 |
+
--output_path results/
|
| 344 |
+
```
|
| 345 |
+
|
| 346 |
+
---
|
| 347 |
+
|
| 348 |
+
## 🎓 Training
|
| 349 |
+
|
| 350 |
+
### Base Model & Weight Transfer
|
| 351 |
+
|
| 352 |
+
NanoHammer initializes from **Llama-3.2-1B-Instruct** via selective weight transfer:
|
| 353 |
+
|
| 354 |
+
**Frozen Components** (from Llama):
|
| 355 |
+
- Token embeddings (`embed_tokens`)
|
| 356 |
+
- Language modeling head (`lm_head`)
|
| 357 |
+
- Self-attention layers (`self_attn`)
|
| 358 |
+
- MLP layers (`mlp`)
|
| 359 |
+
- All RMS layer norms
|
| 360 |
+
|
| 361 |
+
**Trainable Components** (NanoHammer-specific):
|
| 362 |
+
- `token_to_state`: Projects input tokens → state space
|
| 363 |
+
- `holographic_rope`: Position encoding for state
|
| 364 |
+
- `state_cell`: State update mechanism (per layer)
|
| 365 |
+
- `state_projection`: State → hidden projection (per layer)
|
| 366 |
+
|
| 367 |
+
### Training Configuration
|
| 368 |
+
|
| 369 |
+
- **Dataset**: High-quality instruction-following data
|
| 370 |
+
- **Precision**: BF16 mixed precision
|
| 371 |
+
- **Optimization**: AdamW with cosine LR schedule
|
| 372 |
+
- **Gradient Checkpointing**: Enabled for memory efficiency
|
| 373 |
+
- **Batch Size**: Scaled with gradient accumulation
|
| 374 |
+
- **Max Sequence Length**: 2048 tokens (extendable to 131K via RoPE)
|
| 375 |
+
|
| 376 |
+
---
|
| 377 |
+
|
| 378 |
+
## 🔍 Why NanoHammer?
|
| 379 |
+
|
| 380 |
+
### Problem: Implicit vs Explicit Causal Modeling
|
| 381 |
+
|
| 382 |
+
Traditional Transformers learn causal dependencies **implicitly** through attention weights:
|
| 383 |
+
```
|
| 384 |
+
Q @ K^T → Attention weights → Implicitly capture "what depends on what"
|
| 385 |
+
```
|
| 386 |
+
|
| 387 |
+
**Limitations**:
|
| 388 |
+
- Causality is **distributed** across n² attention scores
|
| 389 |
+
- **No explicit structure** for causal information flow
|
| 390 |
+
- **Quadratic cost** to maintain global context
|
| 391 |
+
- **Poor extrapolation** to longer sequences
|
| 392 |
+
|
| 393 |
+
### Solution: Holographic Integral State
|
| 394 |
+
|
| 395 |
+
NanoHammer introduces an **explicit causal state token**:
|
| 396 |
+
```
|
| 397 |
+
S(t) ← Accumulated causal information from all previous tokens
|
| 398 |
+
← Updated via fixed-point iteration with temporal encoding
|
| 399 |
+
← Participates in attention as a "global context token"
|
| 400 |
+
```
|
| 401 |
+
|
| 402 |
+
**Benefits**:
|
| 403 |
+
- Causality is **explicit** in a structured state representation
|
| 404 |
+
- **O(1) state size** provides constant-cost global context
|
| 405 |
+
- **Natural extrapolation** to unseen sequence lengths
|
| 406 |
+
- **Interpretable**: State token can be analyzed/visualized
|
| 407 |
+
|
| 408 |
+
---
|
| 409 |
+
|
| 410 |
+
## 📊 Model Architecture Diagram
|
| 411 |
+
|
| 412 |
+
```
|
| 413 |
+
┌─────────────────────────────────────────────────────────┐
|
| 414 |
+
│ Input: "What is the capital of France?" │
|
| 415 |
+
│ Tokens: [What, is, the, capital, of, France, ?] │
|
| 416 |
+
└────────────────┬────────────────────────────────────────┘
|
| 417 |
+
│
|
| 418 |
+
▼
|
| 419 |
+
Token Embeddings
|
| 420 |
+
│
|
| 421 |
+
▼
|
| 422 |
+
┌────────────────────────┐
|
| 423 |
+
│ Token-to-State Proj │ Project to state space
|
| 424 |
+
└────────────┬───────────┘
|
| 425 |
+
│
|
| 426 |
+
┌────────────▼───────────┐
|
| 427 |
+
│ Holographic RoPE │ Apply position encoding
|
| 428 |
+
│ (Complex rotation) │
|
| 429 |
+
└────────────┬───────────┘
|
| 430 |
+
│
|
| 431 |
+
╔═══════▼════════╗
|
| 432 |
+
║ Layer 1-16 ║ (Repeated 16 times)
|
| 433 |
+
╠════════════════╣
|
| 434 |
+
║ ┌────────────┐ ║
|
| 435 |
+
║ │State Update│ ║ S(t+1) = S(t) + α·f(S(t))
|
| 436 |
+
║ │ Cell │ ║ [Fixed-point iteration]
|
| 437 |
+
║ └─────┬──────┘ ║
|
| 438 |
+
║ │ ║
|
| 439 |
+
║ ┌─────▼──────┐ ║
|
| 440 |
+
║ │ State │ ║ Project 512 → 2048
|
| 441 |
+
║ │ Projection │ ║
|
| 442 |
+
║ └─────┬──────┘ ║
|
| 443 |
+
║ │ ║
|
| 444 |
+
║ [S] + [T₁, T₂, ..., Tₙ] ← Prepend state token
|
| 445 |
+
║ │ ║
|
| 446 |
+
║ ┌─────▼──────┐ ║
|
| 447 |
+
║ │ Llama │ ║ Standard attention
|
| 448 |
+
║ │ Attention │ ║ over T+1 tokens
|
| 449 |
+
║ └─────┬──────┘ ║
|
| 450 |
+
║ │ ║
|
| 451 |
+
║ ┌─────▼──────┐ ║
|
| 452 |
+
║ │ Llama │ ║ SwiGLU MLP
|
| 453 |
+
║ │ MLP │ ║
|
| 454 |
+
║ └─────┬──────┘ ║
|
| 455 |
+
║ │ ║
|
| 456 |
+
║ Remove [S] from output
|
| 457 |
+
║ │ ║
|
| 458 |
+
╚═══════▼════════╝
|
| 459 |
+
│
|
| 460 |
+
┌───────▼────────┐
|
| 461 |
+
│ Final Norm │
|
| 462 |
+
└───────┬────────┘
|
| 463 |
+
│
|
| 464 |
+
┌───────▼────────┐
|
| 465 |
+
│ LM Head │ Project to vocab
|
| 466 |
+
└───────┬────────┘
|
| 467 |
+
│
|
| 468 |
+
▼
|
| 469 |
+
Output: "Paris" (logits over 128K vocab)
|
| 470 |
+
```
|
| 471 |
+
|
| 472 |
+
---
|
| 473 |
+
|
| 474 |
+
## 📚 Citation
|
| 475 |
+
|
| 476 |
+
If you use NanoHammer in your research, please cite:
|
| 477 |
+
|
| 478 |
+
```bibtex
|
| 479 |
+
@misc{nanohammer2025,
|
| 480 |
+
title={NanoHammer: Explicit Causal Modeling with Holographic Integral State Compression},
|
| 481 |
+
author={NoesisLab},
|
| 482 |
+
year={2025},
|
| 483 |
+
howpublished={\url{https://huggingface.co/NoesisLab/NanoHammer-1.5B-Instruct}},
|
| 484 |
+
}
|
| 485 |
+
```
|
| 486 |
+
|
| 487 |
+
---
|
| 488 |
+
|
| 489 |
+
## 📝 License
|
| 490 |
+
|
| 491 |
+
This model is released under the **Apache 2.0** license, inheriting from the base Llama-3.2-1B-Instruct model.
|
| 492 |
+
|
| 493 |
+
---
|
| 494 |
+
|
| 495 |
+
## 🙏 Acknowledgments
|
| 496 |
+
|
| 497 |
+
- **Base Model**: Meta's Llama-3.2-1B-Instruct
|
| 498 |
+
- **Inspiration**: State-space models, holographic memory, and causal inference theory
|
| 499 |
+
- **Framework**: HuggingFace Transformers
|
| 500 |
+
|
| 501 |
+
---
|
| 502 |
+
|
| 503 |
+
## 🔗 Links
|
| 504 |
+
|
| 505 |
+
- **Model Card**: [NoesisLab/NanoHammer-1.5B-Instruct](https://huggingface.co/NoesisLab/NanoHammer-1.5B-Instruct)
|
| 506 |
+
- **GitHub**: [NanoHammer Repository](https://github.com/NoesisLab/NanoHammer) *(if available)*
|
| 507 |
+
- **Paper**: Coming soon
|
| 508 |
+
|
| 509 |
+
---
|
| 510 |
+
|
| 511 |
+
<div align="center">
|
| 512 |
+
|
| 513 |
+
**Built with ❤️ by NoesisLab**
|
| 514 |
+
|
| 515 |
+
*Advancing causal modeling in large language models*
|
| 516 |
+
|
| 517 |
+
</div>
|
chat_template.jinja
ADDED
|
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{{- bos_token }}
|
| 2 |
+
{%- if custom_tools is defined %}
|
| 3 |
+
{%- set tools = custom_tools %}
|
| 4 |
+
{%- endif %}
|
| 5 |
+
{%- if not tools_in_user_message is defined %}
|
| 6 |
+
{%- set tools_in_user_message = true %}
|
| 7 |
+
{%- endif %}
|
| 8 |
+
{%- if not date_string is defined %}
|
| 9 |
+
{%- if strftime_now is defined %}
|
| 10 |
+
{%- set date_string = strftime_now("%d %b %Y") %}
|
| 11 |
+
{%- else %}
|
| 12 |
+
{%- set date_string = "26 Jul 2024" %}
|
| 13 |
+
{%- endif %}
|
| 14 |
+
{%- endif %}
|
| 15 |
+
{%- if not tools is defined %}
|
| 16 |
+
{%- set tools = none %}
|
| 17 |
+
{%- endif %}
|
| 18 |
+
|
| 19 |
+
{#- This block extracts the system message, so we can slot it into the right place. #}
|
| 20 |
+
{%- if messages[0]['role'] == 'system' %}
|
| 21 |
+
{%- set system_message = messages[0]['content']|trim %}
|
| 22 |
+
{%- set messages = messages[1:] %}
|
| 23 |
+
{%- else %}
|
| 24 |
+
{%- set system_message = "" %}
|
| 25 |
+
{%- endif %}
|
| 26 |
+
|
| 27 |
+
{#- System message #}
|
| 28 |
+
{{- "<|start_header_id|>system<|end_header_id|>\n\n" }}
|
| 29 |
+
{%- if tools is not none %}
|
| 30 |
+
{{- "Environment: ipython\n" }}
|
| 31 |
+
{%- endif %}
|
| 32 |
+
{{- "Cutting Knowledge Date: December 2023\n" }}
|
| 33 |
+
{{- "Today Date: " + date_string + "\n\n" }}
|
| 34 |
+
{%- if tools is not none and not tools_in_user_message %}
|
| 35 |
+
{{- "You have access to the following functions. To call a function, please respond with JSON for a function call." }}
|
| 36 |
+
{{- 'Respond in the format {"name": function name, "parameters": dictionary of argument name and its value}.' }}
|
| 37 |
+
{{- "Do not use variables.\n\n" }}
|
| 38 |
+
{%- for t in tools %}
|
| 39 |
+
{{- t | tojson(indent=4) }}
|
| 40 |
+
{{- "\n\n" }}
|
| 41 |
+
{%- endfor %}
|
| 42 |
+
{%- endif %}
|
| 43 |
+
{{- system_message }}
|
| 44 |
+
{{- "<|eot_id|>" }}
|
| 45 |
+
|
| 46 |
+
{#- Custom tools are passed in a user message with some extra guidance #}
|
| 47 |
+
{%- if tools_in_user_message and not tools is none %}
|
| 48 |
+
{#- Extract the first user message so we can plug it in here #}
|
| 49 |
+
{%- if messages | length != 0 %}
|
| 50 |
+
{%- set first_user_message = messages[0]['content']|trim %}
|
| 51 |
+
{%- set messages = messages[1:] %}
|
| 52 |
+
{%- else %}
|
| 53 |
+
{{- raise_exception("Cannot put tools in the first user message when there's no first user message!") }}
|
| 54 |
+
{%- endif %}
|
| 55 |
+
{{- '<|start_header_id|>user<|end_header_id|>\n\n' -}}
|
| 56 |
+
{{- "Given the following functions, please respond with a JSON for a function call " }}
|
| 57 |
+
{{- "with its proper arguments that best answers the given prompt.\n\n" }}
|
| 58 |
+
{{- 'Respond in the format {"name": function name, "parameters": dictionary of argument name and its value}.' }}
|
| 59 |
+
{{- "Do not use variables.\n\n" }}
|
| 60 |
+
{%- for t in tools %}
|
| 61 |
+
{{- t | tojson(indent=4) }}
|
| 62 |
+
{{- "\n\n" }}
|
| 63 |
+
{%- endfor %}
|
| 64 |
+
{{- first_user_message + "<|eot_id|>"}}
|
| 65 |
+
{%- endif %}
|
| 66 |
+
|
| 67 |
+
{%- for message in messages %}
|
| 68 |
+
{%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}
|
| 69 |
+
{{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' }}
|
| 70 |
+
{%- elif 'tool_calls' in message %}
|
| 71 |
+
{%- if not message.tool_calls|length == 1 %}
|
| 72 |
+
{{- raise_exception("This model only supports single tool-calls at once!") }}
|
| 73 |
+
{%- endif %}
|
| 74 |
+
{%- set tool_call = message.tool_calls[0].function %}
|
| 75 |
+
{{- '<|start_header_id|>assistant<|end_header_id|>\n\n' -}}
|
| 76 |
+
{{- '{"name": "' + tool_call.name + '", ' }}
|
| 77 |
+
{{- '"parameters": ' }}
|
| 78 |
+
{{- tool_call.arguments | tojson }}
|
| 79 |
+
{{- "}" }}
|
| 80 |
+
{{- "<|eot_id|>" }}
|
| 81 |
+
{%- elif message.role == "tool" or message.role == "ipython" %}
|
| 82 |
+
{{- "<|start_header_id|>ipython<|end_header_id|>\n\n" }}
|
| 83 |
+
{%- if message.content is mapping or message.content is iterable %}
|
| 84 |
+
{{- message.content | tojson }}
|
| 85 |
+
{%- else %}
|
| 86 |
+
{{- message.content }}
|
| 87 |
+
{%- endif %}
|
| 88 |
+
{{- "<|eot_id|>" }}
|
| 89 |
+
{%- endif %}
|
| 90 |
+
{%- endfor %}
|
| 91 |
+
{%- if add_generation_prompt %}
|
| 92 |
+
{{- '<|start_header_id|>assistant<|end_header_id|>\n\n' }}
|
| 93 |
+
{%- endif %}
|
config.json
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"NanoHammerForCausalLM"
|
| 4 |
+
],
|
| 5 |
+
"attention_bias": false,
|
| 6 |
+
"attention_dropout": 0.0,
|
| 7 |
+
"auto_map": {
|
| 8 |
+
"AutoConfig": "NanoHammerForCausalLM.NanoHammerConfig",
|
| 9 |
+
"AutoModelForCausalLM": "NanoHammerForCausalLM.NanoHammerForCausalLM"
|
| 10 |
+
},
|
| 11 |
+
"bos_token_id": 128000,
|
| 12 |
+
"dtype": "bfloat16",
|
| 13 |
+
"eos_token_id": 128009,
|
| 14 |
+
"hidden_act": "silu",
|
| 15 |
+
"hidden_size": 2048,
|
| 16 |
+
"initializer_range": 0.02,
|
| 17 |
+
"intermediate_size": 8192,
|
| 18 |
+
"max_position_embeddings": 131072,
|
| 19 |
+
"mlp_bias": false,
|
| 20 |
+
"model_type": "nanohammer",
|
| 21 |
+
"num_attention_heads": 32,
|
| 22 |
+
"num_hidden_layers": 16,
|
| 23 |
+
"num_key_value_heads": 8,
|
| 24 |
+
"num_state_heads": 16,
|
| 25 |
+
"pad_token_id": 128009,
|
| 26 |
+
"rms_norm_eps": 1e-05,
|
| 27 |
+
"rope_scaling": null,
|
| 28 |
+
"rope_theta": 500000.0,
|
| 29 |
+
"state_hidden_size": 512,
|
| 30 |
+
"tie_word_embeddings": false,
|
| 31 |
+
"transformers_version": "4.57.6",
|
| 32 |
+
"use_cache": true,
|
| 33 |
+
"vocab_size": 128256
|
| 34 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0d0f17d08fcd74eb7b77937646e6e0202d2141de03f6dbedb27227854ae8aec3
|
| 3 |
+
size 3099854832
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<|begin_of_text|>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"eos_token": {
|
| 10 |
+
"content": "<|eot_id|>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": "<|eot_id|>"
|
| 17 |
+
}
|
tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6b9e4e7fb171f92fd137b777cc2714bf87d11576700a1dcd7a399e7bbe39537b
|
| 3 |
+
size 17209920
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,2063 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"128000": {
|
| 4 |
+
"content": "<|begin_of_text|>",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"128001": {
|
| 12 |
+
"content": "<|end_of_text|>",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"128002": {
|
| 20 |
+
"content": "<|reserved_special_token_0|>",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"128003": {
|
| 28 |
+
"content": "<|reserved_special_token_1|>",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"128004": {
|
| 36 |
+
"content": "<|finetune_right_pad_id|>",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
},
|
| 43 |
+
"128005": {
|
| 44 |
+
"content": "<|reserved_special_token_2|>",
|
| 45 |
+
"lstrip": false,
|
| 46 |
+
"normalized": false,
|
| 47 |
+
"rstrip": false,
|
| 48 |
+
"single_word": false,
|
| 49 |
+
"special": true
|
| 50 |
+
},
|
| 51 |
+
"128006": {
|
| 52 |
+
"content": "<|start_header_id|>",
|
| 53 |
+
"lstrip": false,
|
| 54 |
+
"normalized": false,
|
| 55 |
+
"rstrip": false,
|
| 56 |
+
"single_word": false,
|
| 57 |
+
"special": true
|
| 58 |
+
},
|
| 59 |
+
"128007": {
|
| 60 |
+
"content": "<|end_header_id|>",
|
| 61 |
+
"lstrip": false,
|
| 62 |
+
"normalized": false,
|
| 63 |
+
"rstrip": false,
|
| 64 |
+
"single_word": false,
|
| 65 |
+
"special": true
|
| 66 |
+
},
|
| 67 |
+
"128008": {
|
| 68 |
+
"content": "<|eom_id|>",
|
| 69 |
+
"lstrip": false,
|
| 70 |
+
"normalized": false,
|
| 71 |
+
"rstrip": false,
|
| 72 |
+
"single_word": false,
|
| 73 |
+
"special": true
|
| 74 |
+
},
|
| 75 |
+
"128009": {
|
| 76 |
+
"content": "<|eot_id|>",
|
| 77 |
+
"lstrip": false,
|
| 78 |
+
"normalized": false,
|
| 79 |
+
"rstrip": false,
|
| 80 |
+
"single_word": false,
|
| 81 |
+
"special": true
|
| 82 |
+
},
|
| 83 |
+
"128010": {
|
| 84 |
+
"content": "<|python_tag|>",
|
| 85 |
+
"lstrip": false,
|
| 86 |
+
"normalized": false,
|
| 87 |
+
"rstrip": false,
|
| 88 |
+
"single_word": false,
|
| 89 |
+
"special": true
|
| 90 |
+
},
|
| 91 |
+
"128011": {
|
| 92 |
+
"content": "<|reserved_special_token_3|>",
|
| 93 |
+
"lstrip": false,
|
| 94 |
+
"normalized": false,
|
| 95 |
+
"rstrip": false,
|
| 96 |
+
"single_word": false,
|
| 97 |
+
"special": true
|
| 98 |
+
},
|
| 99 |
+
"128012": {
|
| 100 |
+
"content": "<|reserved_special_token_4|>",
|
| 101 |
+
"lstrip": false,
|
| 102 |
+
"normalized": false,
|
| 103 |
+
"rstrip": false,
|
| 104 |
+
"single_word": false,
|
| 105 |
+
"special": true
|
| 106 |
+
},
|
| 107 |
+
"128013": {
|
| 108 |
+
"content": "<|reserved_special_token_5|>",
|
| 109 |
+
"lstrip": false,
|
| 110 |
+
"normalized": false,
|
| 111 |
+
"rstrip": false,
|
| 112 |
+
"single_word": false,
|
| 113 |
+
"special": true
|
| 114 |
+
},
|
| 115 |
+
"128014": {
|
| 116 |
+
"content": "<|reserved_special_token_6|>",
|
| 117 |
+
"lstrip": false,
|
| 118 |
+
"normalized": false,
|
| 119 |
+
"rstrip": false,
|
| 120 |
+
"single_word": false,
|
| 121 |
+
"special": true
|
| 122 |
+
},
|
| 123 |
+
"128015": {
|
| 124 |
+
"content": "<|reserved_special_token_7|>",
|
| 125 |
+
"lstrip": false,
|
| 126 |
+
"normalized": false,
|
| 127 |
+
"rstrip": false,
|
| 128 |
+
"single_word": false,
|
| 129 |
+
"special": true
|
| 130 |
+
},
|
| 131 |
+
"128016": {
|
| 132 |
+
"content": "<|reserved_special_token_8|>",
|
| 133 |
+
"lstrip": false,
|
| 134 |
+
"normalized": false,
|
| 135 |
+
"rstrip": false,
|
| 136 |
+
"single_word": false,
|
| 137 |
+
"special": true
|
| 138 |
+
},
|
| 139 |
+
"128017": {
|
| 140 |
+
"content": "<|reserved_special_token_9|>",
|
| 141 |
+
"lstrip": false,
|
| 142 |
+
"normalized": false,
|
| 143 |
+
"rstrip": false,
|
| 144 |
+
"single_word": false,
|
| 145 |
+
"special": true
|
| 146 |
+
},
|
| 147 |
+
"128018": {
|
| 148 |
+
"content": "<|reserved_special_token_10|>",
|
| 149 |
+
"lstrip": false,
|
| 150 |
+
"normalized": false,
|
| 151 |
+
"rstrip": false,
|
| 152 |
+
"single_word": false,
|
| 153 |
+
"special": true
|
| 154 |
+
},
|
| 155 |
+
"128019": {
|
| 156 |
+
"content": "<|reserved_special_token_11|>",
|
| 157 |
+
"lstrip": false,
|
| 158 |
+
"normalized": false,
|
| 159 |
+
"rstrip": false,
|
| 160 |
+
"single_word": false,
|
| 161 |
+
"special": true
|
| 162 |
+
},
|
| 163 |
+
"128020": {
|
| 164 |
+
"content": "<|reserved_special_token_12|>",
|
| 165 |
+
"lstrip": false,
|
| 166 |
+
"normalized": false,
|
| 167 |
+
"rstrip": false,
|
| 168 |
+
"single_word": false,
|
| 169 |
+
"special": true
|
| 170 |
+
},
|
| 171 |
+
"128021": {
|
| 172 |
+
"content": "<|reserved_special_token_13|>",
|
| 173 |
+
"lstrip": false,
|
| 174 |
+
"normalized": false,
|
| 175 |
+
"rstrip": false,
|
| 176 |
+
"single_word": false,
|
| 177 |
+
"special": true
|
| 178 |
+
},
|
| 179 |
+
"128022": {
|
| 180 |
+
"content": "<|reserved_special_token_14|>",
|
| 181 |
+
"lstrip": false,
|
| 182 |
+
"normalized": false,
|
| 183 |
+
"rstrip": false,
|
| 184 |
+
"single_word": false,
|
| 185 |
+
"special": true
|
| 186 |
+
},
|
| 187 |
+
"128023": {
|
| 188 |
+
"content": "<|reserved_special_token_15|>",
|
| 189 |
+
"lstrip": false,
|
| 190 |
+
"normalized": false,
|
| 191 |
+
"rstrip": false,
|
| 192 |
+
"single_word": false,
|
| 193 |
+
"special": true
|
| 194 |
+
},
|
| 195 |
+
"128024": {
|
| 196 |
+
"content": "<|reserved_special_token_16|>",
|
| 197 |
+
"lstrip": false,
|
| 198 |
+
"normalized": false,
|
| 199 |
+
"rstrip": false,
|
| 200 |
+
"single_word": false,
|
| 201 |
+
"special": true
|
| 202 |
+
},
|
| 203 |
+
"128025": {
|
| 204 |
+
"content": "<|reserved_special_token_17|>",
|
| 205 |
+
"lstrip": false,
|
| 206 |
+
"normalized": false,
|
| 207 |
+
"rstrip": false,
|
| 208 |
+
"single_word": false,
|
| 209 |
+
"special": true
|
| 210 |
+
},
|
| 211 |
+
"128026": {
|
| 212 |
+
"content": "<|reserved_special_token_18|>",
|
| 213 |
+
"lstrip": false,
|
| 214 |
+
"normalized": false,
|
| 215 |
+
"rstrip": false,
|
| 216 |
+
"single_word": false,
|
| 217 |
+
"special": true
|
| 218 |
+
},
|
| 219 |
+
"128027": {
|
| 220 |
+
"content": "<|reserved_special_token_19|>",
|
| 221 |
+
"lstrip": false,
|
| 222 |
+
"normalized": false,
|
| 223 |
+
"rstrip": false,
|
| 224 |
+
"single_word": false,
|
| 225 |
+
"special": true
|
| 226 |
+
},
|
| 227 |
+
"128028": {
|
| 228 |
+
"content": "<|reserved_special_token_20|>",
|
| 229 |
+
"lstrip": false,
|
| 230 |
+
"normalized": false,
|
| 231 |
+
"rstrip": false,
|
| 232 |
+
"single_word": false,
|
| 233 |
+
"special": true
|
| 234 |
+
},
|
| 235 |
+
"128029": {
|
| 236 |
+
"content": "<|reserved_special_token_21|>",
|
| 237 |
+
"lstrip": false,
|
| 238 |
+
"normalized": false,
|
| 239 |
+
"rstrip": false,
|
| 240 |
+
"single_word": false,
|
| 241 |
+
"special": true
|
| 242 |
+
},
|
| 243 |
+
"128030": {
|
| 244 |
+
"content": "<|reserved_special_token_22|>",
|
| 245 |
+
"lstrip": false,
|
| 246 |
+
"normalized": false,
|
| 247 |
+
"rstrip": false,
|
| 248 |
+
"single_word": false,
|
| 249 |
+
"special": true
|
| 250 |
+
},
|
| 251 |
+
"128031": {
|
| 252 |
+
"content": "<|reserved_special_token_23|>",
|
| 253 |
+
"lstrip": false,
|
| 254 |
+
"normalized": false,
|
| 255 |
+
"rstrip": false,
|
| 256 |
+
"single_word": false,
|
| 257 |
+
"special": true
|
| 258 |
+
},
|
| 259 |
+
"128032": {
|
| 260 |
+
"content": "<|reserved_special_token_24|>",
|
| 261 |
+
"lstrip": false,
|
| 262 |
+
"normalized": false,
|
| 263 |
+
"rstrip": false,
|
| 264 |
+
"single_word": false,
|
| 265 |
+
"special": true
|
| 266 |
+
},
|
| 267 |
+
"128033": {
|
| 268 |
+
"content": "<|reserved_special_token_25|>",
|
| 269 |
+
"lstrip": false,
|
| 270 |
+
"normalized": false,
|
| 271 |
+
"rstrip": false,
|
| 272 |
+
"single_word": false,
|
| 273 |
+
"special": true
|
| 274 |
+
},
|
| 275 |
+
"128034": {
|
| 276 |
+
"content": "<|reserved_special_token_26|>",
|
| 277 |
+
"lstrip": false,
|
| 278 |
+
"normalized": false,
|
| 279 |
+
"rstrip": false,
|
| 280 |
+
"single_word": false,
|
| 281 |
+
"special": true
|
| 282 |
+
},
|
| 283 |
+
"128035": {
|
| 284 |
+
"content": "<|reserved_special_token_27|>",
|
| 285 |
+
"lstrip": false,
|
| 286 |
+
"normalized": false,
|
| 287 |
+
"rstrip": false,
|
| 288 |
+
"single_word": false,
|
| 289 |
+
"special": true
|
| 290 |
+
},
|
| 291 |
+
"128036": {
|
| 292 |
+
"content": "<|reserved_special_token_28|>",
|
| 293 |
+
"lstrip": false,
|
| 294 |
+
"normalized": false,
|
| 295 |
+
"rstrip": false,
|
| 296 |
+
"single_word": false,
|
| 297 |
+
"special": true
|
| 298 |
+
},
|
| 299 |
+
"128037": {
|
| 300 |
+
"content": "<|reserved_special_token_29|>",
|
| 301 |
+
"lstrip": false,
|
| 302 |
+
"normalized": false,
|
| 303 |
+
"rstrip": false,
|
| 304 |
+
"single_word": false,
|
| 305 |
+
"special": true
|
| 306 |
+
},
|
| 307 |
+
"128038": {
|
| 308 |
+
"content": "<|reserved_special_token_30|>",
|
| 309 |
+
"lstrip": false,
|
| 310 |
+
"normalized": false,
|
| 311 |
+
"rstrip": false,
|
| 312 |
+
"single_word": false,
|
| 313 |
+
"special": true
|
| 314 |
+
},
|
| 315 |
+
"128039": {
|
| 316 |
+
"content": "<|reserved_special_token_31|>",
|
| 317 |
+
"lstrip": false,
|
| 318 |
+
"normalized": false,
|
| 319 |
+
"rstrip": false,
|
| 320 |
+
"single_word": false,
|
| 321 |
+
"special": true
|
| 322 |
+
},
|
| 323 |
+
"128040": {
|
| 324 |
+
"content": "<|reserved_special_token_32|>",
|
| 325 |
+
"lstrip": false,
|
| 326 |
+
"normalized": false,
|
| 327 |
+
"rstrip": false,
|
| 328 |
+
"single_word": false,
|
| 329 |
+
"special": true
|
| 330 |
+
},
|
| 331 |
+
"128041": {
|
| 332 |
+
"content": "<|reserved_special_token_33|>",
|
| 333 |
+
"lstrip": false,
|
| 334 |
+
"normalized": false,
|
| 335 |
+
"rstrip": false,
|
| 336 |
+
"single_word": false,
|
| 337 |
+
"special": true
|
| 338 |
+
},
|
| 339 |
+
"128042": {
|
| 340 |
+
"content": "<|reserved_special_token_34|>",
|
| 341 |
+
"lstrip": false,
|
| 342 |
+
"normalized": false,
|
| 343 |
+
"rstrip": false,
|
| 344 |
+
"single_word": false,
|
| 345 |
+
"special": true
|
| 346 |
+
},
|
| 347 |
+
"128043": {
|
| 348 |
+
"content": "<|reserved_special_token_35|>",
|
| 349 |
+
"lstrip": false,
|
| 350 |
+
"normalized": false,
|
| 351 |
+
"rstrip": false,
|
| 352 |
+
"single_word": false,
|
| 353 |
+
"special": true
|
| 354 |
+
},
|
| 355 |
+
"128044": {
|
| 356 |
+
"content": "<|reserved_special_token_36|>",
|
| 357 |
+
"lstrip": false,
|
| 358 |
+
"normalized": false,
|
| 359 |
+
"rstrip": false,
|
| 360 |
+
"single_word": false,
|
| 361 |
+
"special": true
|
| 362 |
+
},
|
| 363 |
+
"128045": {
|
| 364 |
+
"content": "<|reserved_special_token_37|>",
|
| 365 |
+
"lstrip": false,
|
| 366 |
+
"normalized": false,
|
| 367 |
+
"rstrip": false,
|
| 368 |
+
"single_word": false,
|
| 369 |
+
"special": true
|
| 370 |
+
},
|
| 371 |
+
"128046": {
|
| 372 |
+
"content": "<|reserved_special_token_38|>",
|
| 373 |
+
"lstrip": false,
|
| 374 |
+
"normalized": false,
|
| 375 |
+
"rstrip": false,
|
| 376 |
+
"single_word": false,
|
| 377 |
+
"special": true
|
| 378 |
+
},
|
| 379 |
+
"128047": {
|
| 380 |
+
"content": "<|reserved_special_token_39|>",
|
| 381 |
+
"lstrip": false,
|
| 382 |
+
"normalized": false,
|
| 383 |
+
"rstrip": false,
|
| 384 |
+
"single_word": false,
|
| 385 |
+
"special": true
|
| 386 |
+
},
|
| 387 |
+
"128048": {
|
| 388 |
+
"content": "<|reserved_special_token_40|>",
|
| 389 |
+
"lstrip": false,
|
| 390 |
+
"normalized": false,
|
| 391 |
+
"rstrip": false,
|
| 392 |
+
"single_word": false,
|
| 393 |
+
"special": true
|
| 394 |
+
},
|
| 395 |
+
"128049": {
|
| 396 |
+
"content": "<|reserved_special_token_41|>",
|
| 397 |
+
"lstrip": false,
|
| 398 |
+
"normalized": false,
|
| 399 |
+
"rstrip": false,
|
| 400 |
+
"single_word": false,
|
| 401 |
+
"special": true
|
| 402 |
+
},
|
| 403 |
+
"128050": {
|
| 404 |
+
"content": "<|reserved_special_token_42|>",
|
| 405 |
+
"lstrip": false,
|
| 406 |
+
"normalized": false,
|
| 407 |
+
"rstrip": false,
|
| 408 |
+
"single_word": false,
|
| 409 |
+
"special": true
|
| 410 |
+
},
|
| 411 |
+
"128051": {
|
| 412 |
+
"content": "<|reserved_special_token_43|>",
|
| 413 |
+
"lstrip": false,
|
| 414 |
+
"normalized": false,
|
| 415 |
+
"rstrip": false,
|
| 416 |
+
"single_word": false,
|
| 417 |
+
"special": true
|
| 418 |
+
},
|
| 419 |
+
"128052": {
|
| 420 |
+
"content": "<|reserved_special_token_44|>",
|
| 421 |
+
"lstrip": false,
|
| 422 |
+
"normalized": false,
|
| 423 |
+
"rstrip": false,
|
| 424 |
+
"single_word": false,
|
| 425 |
+
"special": true
|
| 426 |
+
},
|
| 427 |
+
"128053": {
|
| 428 |
+
"content": "<|reserved_special_token_45|>",
|
| 429 |
+
"lstrip": false,
|
| 430 |
+
"normalized": false,
|
| 431 |
+
"rstrip": false,
|
| 432 |
+
"single_word": false,
|
| 433 |
+
"special": true
|
| 434 |
+
},
|
| 435 |
+
"128054": {
|
| 436 |
+
"content": "<|reserved_special_token_46|>",
|
| 437 |
+
"lstrip": false,
|
| 438 |
+
"normalized": false,
|
| 439 |
+
"rstrip": false,
|
| 440 |
+
"single_word": false,
|
| 441 |
+
"special": true
|
| 442 |
+
},
|
| 443 |
+
"128055": {
|
| 444 |
+
"content": "<|reserved_special_token_47|>",
|
| 445 |
+
"lstrip": false,
|
| 446 |
+
"normalized": false,
|
| 447 |
+
"rstrip": false,
|
| 448 |
+
"single_word": false,
|
| 449 |
+
"special": true
|
| 450 |
+
},
|
| 451 |
+
"128056": {
|
| 452 |
+
"content": "<|reserved_special_token_48|>",
|
| 453 |
+
"lstrip": false,
|
| 454 |
+
"normalized": false,
|
| 455 |
+
"rstrip": false,
|
| 456 |
+
"single_word": false,
|
| 457 |
+
"special": true
|
| 458 |
+
},
|
| 459 |
+
"128057": {
|
| 460 |
+
"content": "<|reserved_special_token_49|>",
|
| 461 |
+
"lstrip": false,
|
| 462 |
+
"normalized": false,
|
| 463 |
+
"rstrip": false,
|
| 464 |
+
"single_word": false,
|
| 465 |
+
"special": true
|
| 466 |
+
},
|
| 467 |
+
"128058": {
|
| 468 |
+
"content": "<|reserved_special_token_50|>",
|
| 469 |
+
"lstrip": false,
|
| 470 |
+
"normalized": false,
|
| 471 |
+
"rstrip": false,
|
| 472 |
+
"single_word": false,
|
| 473 |
+
"special": true
|
| 474 |
+
},
|
| 475 |
+
"128059": {
|
| 476 |
+
"content": "<|reserved_special_token_51|>",
|
| 477 |
+
"lstrip": false,
|
| 478 |
+
"normalized": false,
|
| 479 |
+
"rstrip": false,
|
| 480 |
+
"single_word": false,
|
| 481 |
+
"special": true
|
| 482 |
+
},
|
| 483 |
+
"128060": {
|
| 484 |
+
"content": "<|reserved_special_token_52|>",
|
| 485 |
+
"lstrip": false,
|
| 486 |
+
"normalized": false,
|
| 487 |
+
"rstrip": false,
|
| 488 |
+
"single_word": false,
|
| 489 |
+
"special": true
|
| 490 |
+
},
|
| 491 |
+
"128061": {
|
| 492 |
+
"content": "<|reserved_special_token_53|>",
|
| 493 |
+
"lstrip": false,
|
| 494 |
+
"normalized": false,
|
| 495 |
+
"rstrip": false,
|
| 496 |
+
"single_word": false,
|
| 497 |
+
"special": true
|
| 498 |
+
},
|
| 499 |
+
"128062": {
|
| 500 |
+
"content": "<|reserved_special_token_54|>",
|
| 501 |
+
"lstrip": false,
|
| 502 |
+
"normalized": false,
|
| 503 |
+
"rstrip": false,
|
| 504 |
+
"single_word": false,
|
| 505 |
+
"special": true
|
| 506 |
+
},
|
| 507 |
+
"128063": {
|
| 508 |
+
"content": "<|reserved_special_token_55|>",
|
| 509 |
+
"lstrip": false,
|
| 510 |
+
"normalized": false,
|
| 511 |
+
"rstrip": false,
|
| 512 |
+
"single_word": false,
|
| 513 |
+
"special": true
|
| 514 |
+
},
|
| 515 |
+
"128064": {
|
| 516 |
+
"content": "<|reserved_special_token_56|>",
|
| 517 |
+
"lstrip": false,
|
| 518 |
+
"normalized": false,
|
| 519 |
+
"rstrip": false,
|
| 520 |
+
"single_word": false,
|
| 521 |
+
"special": true
|
| 522 |
+
},
|
| 523 |
+
"128065": {
|
| 524 |
+
"content": "<|reserved_special_token_57|>",
|
| 525 |
+
"lstrip": false,
|
| 526 |
+
"normalized": false,
|
| 527 |
+
"rstrip": false,
|
| 528 |
+
"single_word": false,
|
| 529 |
+
"special": true
|
| 530 |
+
},
|
| 531 |
+
"128066": {
|
| 532 |
+
"content": "<|reserved_special_token_58|>",
|
| 533 |
+
"lstrip": false,
|
| 534 |
+
"normalized": false,
|
| 535 |
+
"rstrip": false,
|
| 536 |
+
"single_word": false,
|
| 537 |
+
"special": true
|
| 538 |
+
},
|
| 539 |
+
"128067": {
|
| 540 |
+
"content": "<|reserved_special_token_59|>",
|
| 541 |
+
"lstrip": false,
|
| 542 |
+
"normalized": false,
|
| 543 |
+
"rstrip": false,
|
| 544 |
+
"single_word": false,
|
| 545 |
+
"special": true
|
| 546 |
+
},
|
| 547 |
+
"128068": {
|
| 548 |
+
"content": "<|reserved_special_token_60|>",
|
| 549 |
+
"lstrip": false,
|
| 550 |
+
"normalized": false,
|
| 551 |
+
"rstrip": false,
|
| 552 |
+
"single_word": false,
|
| 553 |
+
"special": true
|
| 554 |
+
},
|
| 555 |
+
"128069": {
|
| 556 |
+
"content": "<|reserved_special_token_61|>",
|
| 557 |
+
"lstrip": false,
|
| 558 |
+
"normalized": false,
|
| 559 |
+
"rstrip": false,
|
| 560 |
+
"single_word": false,
|
| 561 |
+
"special": true
|
| 562 |
+
},
|
| 563 |
+
"128070": {
|
| 564 |
+
"content": "<|reserved_special_token_62|>",
|
| 565 |
+
"lstrip": false,
|
| 566 |
+
"normalized": false,
|
| 567 |
+
"rstrip": false,
|
| 568 |
+
"single_word": false,
|
| 569 |
+
"special": true
|
| 570 |
+
},
|
| 571 |
+
"128071": {
|
| 572 |
+
"content": "<|reserved_special_token_63|>",
|
| 573 |
+
"lstrip": false,
|
| 574 |
+
"normalized": false,
|
| 575 |
+
"rstrip": false,
|
| 576 |
+
"single_word": false,
|
| 577 |
+
"special": true
|
| 578 |
+
},
|
| 579 |
+
"128072": {
|
| 580 |
+
"content": "<|reserved_special_token_64|>",
|
| 581 |
+
"lstrip": false,
|
| 582 |
+
"normalized": false,
|
| 583 |
+
"rstrip": false,
|
| 584 |
+
"single_word": false,
|
| 585 |
+
"special": true
|
| 586 |
+
},
|
| 587 |
+
"128073": {
|
| 588 |
+
"content": "<|reserved_special_token_65|>",
|
| 589 |
+
"lstrip": false,
|
| 590 |
+
"normalized": false,
|
| 591 |
+
"rstrip": false,
|
| 592 |
+
"single_word": false,
|
| 593 |
+
"special": true
|
| 594 |
+
},
|
| 595 |
+
"128074": {
|
| 596 |
+
"content": "<|reserved_special_token_66|>",
|
| 597 |
+
"lstrip": false,
|
| 598 |
+
"normalized": false,
|
| 599 |
+
"rstrip": false,
|
| 600 |
+
"single_word": false,
|
| 601 |
+
"special": true
|
| 602 |
+
},
|
| 603 |
+
"128075": {
|
| 604 |
+
"content": "<|reserved_special_token_67|>",
|
| 605 |
+
"lstrip": false,
|
| 606 |
+
"normalized": false,
|
| 607 |
+
"rstrip": false,
|
| 608 |
+
"single_word": false,
|
| 609 |
+
"special": true
|
| 610 |
+
},
|
| 611 |
+
"128076": {
|
| 612 |
+
"content": "<|reserved_special_token_68|>",
|
| 613 |
+
"lstrip": false,
|
| 614 |
+
"normalized": false,
|
| 615 |
+
"rstrip": false,
|
| 616 |
+
"single_word": false,
|
| 617 |
+
"special": true
|
| 618 |
+
},
|
| 619 |
+
"128077": {
|
| 620 |
+
"content": "<|reserved_special_token_69|>",
|
| 621 |
+
"lstrip": false,
|
| 622 |
+
"normalized": false,
|
| 623 |
+
"rstrip": false,
|
| 624 |
+
"single_word": false,
|
| 625 |
+
"special": true
|
| 626 |
+
},
|
| 627 |
+
"128078": {
|
| 628 |
+
"content": "<|reserved_special_token_70|>",
|
| 629 |
+
"lstrip": false,
|
| 630 |
+
"normalized": false,
|
| 631 |
+
"rstrip": false,
|
| 632 |
+
"single_word": false,
|
| 633 |
+
"special": true
|
| 634 |
+
},
|
| 635 |
+
"128079": {
|
| 636 |
+
"content": "<|reserved_special_token_71|>",
|
| 637 |
+
"lstrip": false,
|
| 638 |
+
"normalized": false,
|
| 639 |
+
"rstrip": false,
|
| 640 |
+
"single_word": false,
|
| 641 |
+
"special": true
|
| 642 |
+
},
|
| 643 |
+
"128080": {
|
| 644 |
+
"content": "<|reserved_special_token_72|>",
|
| 645 |
+
"lstrip": false,
|
| 646 |
+
"normalized": false,
|
| 647 |
+
"rstrip": false,
|
| 648 |
+
"single_word": false,
|
| 649 |
+
"special": true
|
| 650 |
+
},
|
| 651 |
+
"128081": {
|
| 652 |
+
"content": "<|reserved_special_token_73|>",
|
| 653 |
+
"lstrip": false,
|
| 654 |
+
"normalized": false,
|
| 655 |
+
"rstrip": false,
|
| 656 |
+
"single_word": false,
|
| 657 |
+
"special": true
|
| 658 |
+
},
|
| 659 |
+
"128082": {
|
| 660 |
+
"content": "<|reserved_special_token_74|>",
|
| 661 |
+
"lstrip": false,
|
| 662 |
+
"normalized": false,
|
| 663 |
+
"rstrip": false,
|
| 664 |
+
"single_word": false,
|
| 665 |
+
"special": true
|
| 666 |
+
},
|
| 667 |
+
"128083": {
|
| 668 |
+
"content": "<|reserved_special_token_75|>",
|
| 669 |
+
"lstrip": false,
|
| 670 |
+
"normalized": false,
|
| 671 |
+
"rstrip": false,
|
| 672 |
+
"single_word": false,
|
| 673 |
+
"special": true
|
| 674 |
+
},
|
| 675 |
+
"128084": {
|
| 676 |
+
"content": "<|reserved_special_token_76|>",
|
| 677 |
+
"lstrip": false,
|
| 678 |
+
"normalized": false,
|
| 679 |
+
"rstrip": false,
|
| 680 |
+
"single_word": false,
|
| 681 |
+
"special": true
|
| 682 |
+
},
|
| 683 |
+
"128085": {
|
| 684 |
+
"content": "<|reserved_special_token_77|>",
|
| 685 |
+
"lstrip": false,
|
| 686 |
+
"normalized": false,
|
| 687 |
+
"rstrip": false,
|
| 688 |
+
"single_word": false,
|
| 689 |
+
"special": true
|
| 690 |
+
},
|
| 691 |
+
"128086": {
|
| 692 |
+
"content": "<|reserved_special_token_78|>",
|
| 693 |
+
"lstrip": false,
|
| 694 |
+
"normalized": false,
|
| 695 |
+
"rstrip": false,
|
| 696 |
+
"single_word": false,
|
| 697 |
+
"special": true
|
| 698 |
+
},
|
| 699 |
+
"128087": {
|
| 700 |
+
"content": "<|reserved_special_token_79|>",
|
| 701 |
+
"lstrip": false,
|
| 702 |
+
"normalized": false,
|
| 703 |
+
"rstrip": false,
|
| 704 |
+
"single_word": false,
|
| 705 |
+
"special": true
|
| 706 |
+
},
|
| 707 |
+
"128088": {
|
| 708 |
+
"content": "<|reserved_special_token_80|>",
|
| 709 |
+
"lstrip": false,
|
| 710 |
+
"normalized": false,
|
| 711 |
+
"rstrip": false,
|
| 712 |
+
"single_word": false,
|
| 713 |
+
"special": true
|
| 714 |
+
},
|
| 715 |
+
"128089": {
|
| 716 |
+
"content": "<|reserved_special_token_81|>",
|
| 717 |
+
"lstrip": false,
|
| 718 |
+
"normalized": false,
|
| 719 |
+
"rstrip": false,
|
| 720 |
+
"single_word": false,
|
| 721 |
+
"special": true
|
| 722 |
+
},
|
| 723 |
+
"128090": {
|
| 724 |
+
"content": "<|reserved_special_token_82|>",
|
| 725 |
+
"lstrip": false,
|
| 726 |
+
"normalized": false,
|
| 727 |
+
"rstrip": false,
|
| 728 |
+
"single_word": false,
|
| 729 |
+
"special": true
|
| 730 |
+
},
|
| 731 |
+
"128091": {
|
| 732 |
+
"content": "<|reserved_special_token_83|>",
|
| 733 |
+
"lstrip": false,
|
| 734 |
+
"normalized": false,
|
| 735 |
+
"rstrip": false,
|
| 736 |
+
"single_word": false,
|
| 737 |
+
"special": true
|
| 738 |
+
},
|
| 739 |
+
"128092": {
|
| 740 |
+
"content": "<|reserved_special_token_84|>",
|
| 741 |
+
"lstrip": false,
|
| 742 |
+
"normalized": false,
|
| 743 |
+
"rstrip": false,
|
| 744 |
+
"single_word": false,
|
| 745 |
+
"special": true
|
| 746 |
+
},
|
| 747 |
+
"128093": {
|
| 748 |
+
"content": "<|reserved_special_token_85|>",
|
| 749 |
+
"lstrip": false,
|
| 750 |
+
"normalized": false,
|
| 751 |
+
"rstrip": false,
|
| 752 |
+
"single_word": false,
|
| 753 |
+
"special": true
|
| 754 |
+
},
|
| 755 |
+
"128094": {
|
| 756 |
+
"content": "<|reserved_special_token_86|>",
|
| 757 |
+
"lstrip": false,
|
| 758 |
+
"normalized": false,
|
| 759 |
+
"rstrip": false,
|
| 760 |
+
"single_word": false,
|
| 761 |
+
"special": true
|
| 762 |
+
},
|
| 763 |
+
"128095": {
|
| 764 |
+
"content": "<|reserved_special_token_87|>",
|
| 765 |
+
"lstrip": false,
|
| 766 |
+
"normalized": false,
|
| 767 |
+
"rstrip": false,
|
| 768 |
+
"single_word": false,
|
| 769 |
+
"special": true
|
| 770 |
+
},
|
| 771 |
+
"128096": {
|
| 772 |
+
"content": "<|reserved_special_token_88|>",
|
| 773 |
+
"lstrip": false,
|
| 774 |
+
"normalized": false,
|
| 775 |
+
"rstrip": false,
|
| 776 |
+
"single_word": false,
|
| 777 |
+
"special": true
|
| 778 |
+
},
|
| 779 |
+
"128097": {
|
| 780 |
+
"content": "<|reserved_special_token_89|>",
|
| 781 |
+
"lstrip": false,
|
| 782 |
+
"normalized": false,
|
| 783 |
+
"rstrip": false,
|
| 784 |
+
"single_word": false,
|
| 785 |
+
"special": true
|
| 786 |
+
},
|
| 787 |
+
"128098": {
|
| 788 |
+
"content": "<|reserved_special_token_90|>",
|
| 789 |
+
"lstrip": false,
|
| 790 |
+
"normalized": false,
|
| 791 |
+
"rstrip": false,
|
| 792 |
+
"single_word": false,
|
| 793 |
+
"special": true
|
| 794 |
+
},
|
| 795 |
+
"128099": {
|
| 796 |
+
"content": "<|reserved_special_token_91|>",
|
| 797 |
+
"lstrip": false,
|
| 798 |
+
"normalized": false,
|
| 799 |
+
"rstrip": false,
|
| 800 |
+
"single_word": false,
|
| 801 |
+
"special": true
|
| 802 |
+
},
|
| 803 |
+
"128100": {
|
| 804 |
+
"content": "<|reserved_special_token_92|>",
|
| 805 |
+
"lstrip": false,
|
| 806 |
+
"normalized": false,
|
| 807 |
+
"rstrip": false,
|
| 808 |
+
"single_word": false,
|
| 809 |
+
"special": true
|
| 810 |
+
},
|
| 811 |
+
"128101": {
|
| 812 |
+
"content": "<|reserved_special_token_93|>",
|
| 813 |
+
"lstrip": false,
|
| 814 |
+
"normalized": false,
|
| 815 |
+
"rstrip": false,
|
| 816 |
+
"single_word": false,
|
| 817 |
+
"special": true
|
| 818 |
+
},
|
| 819 |
+
"128102": {
|
| 820 |
+
"content": "<|reserved_special_token_94|>",
|
| 821 |
+
"lstrip": false,
|
| 822 |
+
"normalized": false,
|
| 823 |
+
"rstrip": false,
|
| 824 |
+
"single_word": false,
|
| 825 |
+
"special": true
|
| 826 |
+
},
|
| 827 |
+
"128103": {
|
| 828 |
+
"content": "<|reserved_special_token_95|>",
|
| 829 |
+
"lstrip": false,
|
| 830 |
+
"normalized": false,
|
| 831 |
+
"rstrip": false,
|
| 832 |
+
"single_word": false,
|
| 833 |
+
"special": true
|
| 834 |
+
},
|
| 835 |
+
"128104": {
|
| 836 |
+
"content": "<|reserved_special_token_96|>",
|
| 837 |
+
"lstrip": false,
|
| 838 |
+
"normalized": false,
|
| 839 |
+
"rstrip": false,
|
| 840 |
+
"single_word": false,
|
| 841 |
+
"special": true
|
| 842 |
+
},
|
| 843 |
+
"128105": {
|
| 844 |
+
"content": "<|reserved_special_token_97|>",
|
| 845 |
+
"lstrip": false,
|
| 846 |
+
"normalized": false,
|
| 847 |
+
"rstrip": false,
|
| 848 |
+
"single_word": false,
|
| 849 |
+
"special": true
|
| 850 |
+
},
|
| 851 |
+
"128106": {
|
| 852 |
+
"content": "<|reserved_special_token_98|>",
|
| 853 |
+
"lstrip": false,
|
| 854 |
+
"normalized": false,
|
| 855 |
+
"rstrip": false,
|
| 856 |
+
"single_word": false,
|
| 857 |
+
"special": true
|
| 858 |
+
},
|
| 859 |
+
"128107": {
|
| 860 |
+
"content": "<|reserved_special_token_99|>",
|
| 861 |
+
"lstrip": false,
|
| 862 |
+
"normalized": false,
|
| 863 |
+
"rstrip": false,
|
| 864 |
+
"single_word": false,
|
| 865 |
+
"special": true
|
| 866 |
+
},
|
| 867 |
+
"128108": {
|
| 868 |
+
"content": "<|reserved_special_token_100|>",
|
| 869 |
+
"lstrip": false,
|
| 870 |
+
"normalized": false,
|
| 871 |
+
"rstrip": false,
|
| 872 |
+
"single_word": false,
|
| 873 |
+
"special": true
|
| 874 |
+
},
|
| 875 |
+
"128109": {
|
| 876 |
+
"content": "<|reserved_special_token_101|>",
|
| 877 |
+
"lstrip": false,
|
| 878 |
+
"normalized": false,
|
| 879 |
+
"rstrip": false,
|
| 880 |
+
"single_word": false,
|
| 881 |
+
"special": true
|
| 882 |
+
},
|
| 883 |
+
"128110": {
|
| 884 |
+
"content": "<|reserved_special_token_102|>",
|
| 885 |
+
"lstrip": false,
|
| 886 |
+
"normalized": false,
|
| 887 |
+
"rstrip": false,
|
| 888 |
+
"single_word": false,
|
| 889 |
+
"special": true
|
| 890 |
+
},
|
| 891 |
+
"128111": {
|
| 892 |
+
"content": "<|reserved_special_token_103|>",
|
| 893 |
+
"lstrip": false,
|
| 894 |
+
"normalized": false,
|
| 895 |
+
"rstrip": false,
|
| 896 |
+
"single_word": false,
|
| 897 |
+
"special": true
|
| 898 |
+
},
|
| 899 |
+
"128112": {
|
| 900 |
+
"content": "<|reserved_special_token_104|>",
|
| 901 |
+
"lstrip": false,
|
| 902 |
+
"normalized": false,
|
| 903 |
+
"rstrip": false,
|
| 904 |
+
"single_word": false,
|
| 905 |
+
"special": true
|
| 906 |
+
},
|
| 907 |
+
"128113": {
|
| 908 |
+
"content": "<|reserved_special_token_105|>",
|
| 909 |
+
"lstrip": false,
|
| 910 |
+
"normalized": false,
|
| 911 |
+
"rstrip": false,
|
| 912 |
+
"single_word": false,
|
| 913 |
+
"special": true
|
| 914 |
+
},
|
| 915 |
+
"128114": {
|
| 916 |
+
"content": "<|reserved_special_token_106|>",
|
| 917 |
+
"lstrip": false,
|
| 918 |
+
"normalized": false,
|
| 919 |
+
"rstrip": false,
|
| 920 |
+
"single_word": false,
|
| 921 |
+
"special": true
|
| 922 |
+
},
|
| 923 |
+
"128115": {
|
| 924 |
+
"content": "<|reserved_special_token_107|>",
|
| 925 |
+
"lstrip": false,
|
| 926 |
+
"normalized": false,
|
| 927 |
+
"rstrip": false,
|
| 928 |
+
"single_word": false,
|
| 929 |
+
"special": true
|
| 930 |
+
},
|
| 931 |
+
"128116": {
|
| 932 |
+
"content": "<|reserved_special_token_108|>",
|
| 933 |
+
"lstrip": false,
|
| 934 |
+
"normalized": false,
|
| 935 |
+
"rstrip": false,
|
| 936 |
+
"single_word": false,
|
| 937 |
+
"special": true
|
| 938 |
+
},
|
| 939 |
+
"128117": {
|
| 940 |
+
"content": "<|reserved_special_token_109|>",
|
| 941 |
+
"lstrip": false,
|
| 942 |
+
"normalized": false,
|
| 943 |
+
"rstrip": false,
|
| 944 |
+
"single_word": false,
|
| 945 |
+
"special": true
|
| 946 |
+
},
|
| 947 |
+
"128118": {
|
| 948 |
+
"content": "<|reserved_special_token_110|>",
|
| 949 |
+
"lstrip": false,
|
| 950 |
+
"normalized": false,
|
| 951 |
+
"rstrip": false,
|
| 952 |
+
"single_word": false,
|
| 953 |
+
"special": true
|
| 954 |
+
},
|
| 955 |
+
"128119": {
|
| 956 |
+
"content": "<|reserved_special_token_111|>",
|
| 957 |
+
"lstrip": false,
|
| 958 |
+
"normalized": false,
|
| 959 |
+
"rstrip": false,
|
| 960 |
+
"single_word": false,
|
| 961 |
+
"special": true
|
| 962 |
+
},
|
| 963 |
+
"128120": {
|
| 964 |
+
"content": "<|reserved_special_token_112|>",
|
| 965 |
+
"lstrip": false,
|
| 966 |
+
"normalized": false,
|
| 967 |
+
"rstrip": false,
|
| 968 |
+
"single_word": false,
|
| 969 |
+
"special": true
|
| 970 |
+
},
|
| 971 |
+
"128121": {
|
| 972 |
+
"content": "<|reserved_special_token_113|>",
|
| 973 |
+
"lstrip": false,
|
| 974 |
+
"normalized": false,
|
| 975 |
+
"rstrip": false,
|
| 976 |
+
"single_word": false,
|
| 977 |
+
"special": true
|
| 978 |
+
},
|
| 979 |
+
"128122": {
|
| 980 |
+
"content": "<|reserved_special_token_114|>",
|
| 981 |
+
"lstrip": false,
|
| 982 |
+
"normalized": false,
|
| 983 |
+
"rstrip": false,
|
| 984 |
+
"single_word": false,
|
| 985 |
+
"special": true
|
| 986 |
+
},
|
| 987 |
+
"128123": {
|
| 988 |
+
"content": "<|reserved_special_token_115|>",
|
| 989 |
+
"lstrip": false,
|
| 990 |
+
"normalized": false,
|
| 991 |
+
"rstrip": false,
|
| 992 |
+
"single_word": false,
|
| 993 |
+
"special": true
|
| 994 |
+
},
|
| 995 |
+
"128124": {
|
| 996 |
+
"content": "<|reserved_special_token_116|>",
|
| 997 |
+
"lstrip": false,
|
| 998 |
+
"normalized": false,
|
| 999 |
+
"rstrip": false,
|
| 1000 |
+
"single_word": false,
|
| 1001 |
+
"special": true
|
| 1002 |
+
},
|
| 1003 |
+
"128125": {
|
| 1004 |
+
"content": "<|reserved_special_token_117|>",
|
| 1005 |
+
"lstrip": false,
|
| 1006 |
+
"normalized": false,
|
| 1007 |
+
"rstrip": false,
|
| 1008 |
+
"single_word": false,
|
| 1009 |
+
"special": true
|
| 1010 |
+
},
|
| 1011 |
+
"128126": {
|
| 1012 |
+
"content": "<|reserved_special_token_118|>",
|
| 1013 |
+
"lstrip": false,
|
| 1014 |
+
"normalized": false,
|
| 1015 |
+
"rstrip": false,
|
| 1016 |
+
"single_word": false,
|
| 1017 |
+
"special": true
|
| 1018 |
+
},
|
| 1019 |
+
"128127": {
|
| 1020 |
+
"content": "<|reserved_special_token_119|>",
|
| 1021 |
+
"lstrip": false,
|
| 1022 |
+
"normalized": false,
|
| 1023 |
+
"rstrip": false,
|
| 1024 |
+
"single_word": false,
|
| 1025 |
+
"special": true
|
| 1026 |
+
},
|
| 1027 |
+
"128128": {
|
| 1028 |
+
"content": "<|reserved_special_token_120|>",
|
| 1029 |
+
"lstrip": false,
|
| 1030 |
+
"normalized": false,
|
| 1031 |
+
"rstrip": false,
|
| 1032 |
+
"single_word": false,
|
| 1033 |
+
"special": true
|
| 1034 |
+
},
|
| 1035 |
+
"128129": {
|
| 1036 |
+
"content": "<|reserved_special_token_121|>",
|
| 1037 |
+
"lstrip": false,
|
| 1038 |
+
"normalized": false,
|
| 1039 |
+
"rstrip": false,
|
| 1040 |
+
"single_word": false,
|
| 1041 |
+
"special": true
|
| 1042 |
+
},
|
| 1043 |
+
"128130": {
|
| 1044 |
+
"content": "<|reserved_special_token_122|>",
|
| 1045 |
+
"lstrip": false,
|
| 1046 |
+
"normalized": false,
|
| 1047 |
+
"rstrip": false,
|
| 1048 |
+
"single_word": false,
|
| 1049 |
+
"special": true
|
| 1050 |
+
},
|
| 1051 |
+
"128131": {
|
| 1052 |
+
"content": "<|reserved_special_token_123|>",
|
| 1053 |
+
"lstrip": false,
|
| 1054 |
+
"normalized": false,
|
| 1055 |
+
"rstrip": false,
|
| 1056 |
+
"single_word": false,
|
| 1057 |
+
"special": true
|
| 1058 |
+
},
|
| 1059 |
+
"128132": {
|
| 1060 |
+
"content": "<|reserved_special_token_124|>",
|
| 1061 |
+
"lstrip": false,
|
| 1062 |
+
"normalized": false,
|
| 1063 |
+
"rstrip": false,
|
| 1064 |
+
"single_word": false,
|
| 1065 |
+
"special": true
|
| 1066 |
+
},
|
| 1067 |
+
"128133": {
|
| 1068 |
+
"content": "<|reserved_special_token_125|>",
|
| 1069 |
+
"lstrip": false,
|
| 1070 |
+
"normalized": false,
|
| 1071 |
+
"rstrip": false,
|
| 1072 |
+
"single_word": false,
|
| 1073 |
+
"special": true
|
| 1074 |
+
},
|
| 1075 |
+
"128134": {
|
| 1076 |
+
"content": "<|reserved_special_token_126|>",
|
| 1077 |
+
"lstrip": false,
|
| 1078 |
+
"normalized": false,
|
| 1079 |
+
"rstrip": false,
|
| 1080 |
+
"single_word": false,
|
| 1081 |
+
"special": true
|
| 1082 |
+
},
|
| 1083 |
+
"128135": {
|
| 1084 |
+
"content": "<|reserved_special_token_127|>",
|
| 1085 |
+
"lstrip": false,
|
| 1086 |
+
"normalized": false,
|
| 1087 |
+
"rstrip": false,
|
| 1088 |
+
"single_word": false,
|
| 1089 |
+
"special": true
|
| 1090 |
+
},
|
| 1091 |
+
"128136": {
|
| 1092 |
+
"content": "<|reserved_special_token_128|>",
|
| 1093 |
+
"lstrip": false,
|
| 1094 |
+
"normalized": false,
|
| 1095 |
+
"rstrip": false,
|
| 1096 |
+
"single_word": false,
|
| 1097 |
+
"special": true
|
| 1098 |
+
},
|
| 1099 |
+
"128137": {
|
| 1100 |
+
"content": "<|reserved_special_token_129|>",
|
| 1101 |
+
"lstrip": false,
|
| 1102 |
+
"normalized": false,
|
| 1103 |
+
"rstrip": false,
|
| 1104 |
+
"single_word": false,
|
| 1105 |
+
"special": true
|
| 1106 |
+
},
|
| 1107 |
+
"128138": {
|
| 1108 |
+
"content": "<|reserved_special_token_130|>",
|
| 1109 |
+
"lstrip": false,
|
| 1110 |
+
"normalized": false,
|
| 1111 |
+
"rstrip": false,
|
| 1112 |
+
"single_word": false,
|
| 1113 |
+
"special": true
|
| 1114 |
+
},
|
| 1115 |
+
"128139": {
|
| 1116 |
+
"content": "<|reserved_special_token_131|>",
|
| 1117 |
+
"lstrip": false,
|
| 1118 |
+
"normalized": false,
|
| 1119 |
+
"rstrip": false,
|
| 1120 |
+
"single_word": false,
|
| 1121 |
+
"special": true
|
| 1122 |
+
},
|
| 1123 |
+
"128140": {
|
| 1124 |
+
"content": "<|reserved_special_token_132|>",
|
| 1125 |
+
"lstrip": false,
|
| 1126 |
+
"normalized": false,
|
| 1127 |
+
"rstrip": false,
|
| 1128 |
+
"single_word": false,
|
| 1129 |
+
"special": true
|
| 1130 |
+
},
|
| 1131 |
+
"128141": {
|
| 1132 |
+
"content": "<|reserved_special_token_133|>",
|
| 1133 |
+
"lstrip": false,
|
| 1134 |
+
"normalized": false,
|
| 1135 |
+
"rstrip": false,
|
| 1136 |
+
"single_word": false,
|
| 1137 |
+
"special": true
|
| 1138 |
+
},
|
| 1139 |
+
"128142": {
|
| 1140 |
+
"content": "<|reserved_special_token_134|>",
|
| 1141 |
+
"lstrip": false,
|
| 1142 |
+
"normalized": false,
|
| 1143 |
+
"rstrip": false,
|
| 1144 |
+
"single_word": false,
|
| 1145 |
+
"special": true
|
| 1146 |
+
},
|
| 1147 |
+
"128143": {
|
| 1148 |
+
"content": "<|reserved_special_token_135|>",
|
| 1149 |
+
"lstrip": false,
|
| 1150 |
+
"normalized": false,
|
| 1151 |
+
"rstrip": false,
|
| 1152 |
+
"single_word": false,
|
| 1153 |
+
"special": true
|
| 1154 |
+
},
|
| 1155 |
+
"128144": {
|
| 1156 |
+
"content": "<|reserved_special_token_136|>",
|
| 1157 |
+
"lstrip": false,
|
| 1158 |
+
"normalized": false,
|
| 1159 |
+
"rstrip": false,
|
| 1160 |
+
"single_word": false,
|
| 1161 |
+
"special": true
|
| 1162 |
+
},
|
| 1163 |
+
"128145": {
|
| 1164 |
+
"content": "<|reserved_special_token_137|>",
|
| 1165 |
+
"lstrip": false,
|
| 1166 |
+
"normalized": false,
|
| 1167 |
+
"rstrip": false,
|
| 1168 |
+
"single_word": false,
|
| 1169 |
+
"special": true
|
| 1170 |
+
},
|
| 1171 |
+
"128146": {
|
| 1172 |
+
"content": "<|reserved_special_token_138|>",
|
| 1173 |
+
"lstrip": false,
|
| 1174 |
+
"normalized": false,
|
| 1175 |
+
"rstrip": false,
|
| 1176 |
+
"single_word": false,
|
| 1177 |
+
"special": true
|
| 1178 |
+
},
|
| 1179 |
+
"128147": {
|
| 1180 |
+
"content": "<|reserved_special_token_139|>",
|
| 1181 |
+
"lstrip": false,
|
| 1182 |
+
"normalized": false,
|
| 1183 |
+
"rstrip": false,
|
| 1184 |
+
"single_word": false,
|
| 1185 |
+
"special": true
|
| 1186 |
+
},
|
| 1187 |
+
"128148": {
|
| 1188 |
+
"content": "<|reserved_special_token_140|>",
|
| 1189 |
+
"lstrip": false,
|
| 1190 |
+
"normalized": false,
|
| 1191 |
+
"rstrip": false,
|
| 1192 |
+
"single_word": false,
|
| 1193 |
+
"special": true
|
| 1194 |
+
},
|
| 1195 |
+
"128149": {
|
| 1196 |
+
"content": "<|reserved_special_token_141|>",
|
| 1197 |
+
"lstrip": false,
|
| 1198 |
+
"normalized": false,
|
| 1199 |
+
"rstrip": false,
|
| 1200 |
+
"single_word": false,
|
| 1201 |
+
"special": true
|
| 1202 |
+
},
|
| 1203 |
+
"128150": {
|
| 1204 |
+
"content": "<|reserved_special_token_142|>",
|
| 1205 |
+
"lstrip": false,
|
| 1206 |
+
"normalized": false,
|
| 1207 |
+
"rstrip": false,
|
| 1208 |
+
"single_word": false,
|
| 1209 |
+
"special": true
|
| 1210 |
+
},
|
| 1211 |
+
"128151": {
|
| 1212 |
+
"content": "<|reserved_special_token_143|>",
|
| 1213 |
+
"lstrip": false,
|
| 1214 |
+
"normalized": false,
|
| 1215 |
+
"rstrip": false,
|
| 1216 |
+
"single_word": false,
|
| 1217 |
+
"special": true
|
| 1218 |
+
},
|
| 1219 |
+
"128152": {
|
| 1220 |
+
"content": "<|reserved_special_token_144|>",
|
| 1221 |
+
"lstrip": false,
|
| 1222 |
+
"normalized": false,
|
| 1223 |
+
"rstrip": false,
|
| 1224 |
+
"single_word": false,
|
| 1225 |
+
"special": true
|
| 1226 |
+
},
|
| 1227 |
+
"128153": {
|
| 1228 |
+
"content": "<|reserved_special_token_145|>",
|
| 1229 |
+
"lstrip": false,
|
| 1230 |
+
"normalized": false,
|
| 1231 |
+
"rstrip": false,
|
| 1232 |
+
"single_word": false,
|
| 1233 |
+
"special": true
|
| 1234 |
+
},
|
| 1235 |
+
"128154": {
|
| 1236 |
+
"content": "<|reserved_special_token_146|>",
|
| 1237 |
+
"lstrip": false,
|
| 1238 |
+
"normalized": false,
|
| 1239 |
+
"rstrip": false,
|
| 1240 |
+
"single_word": false,
|
| 1241 |
+
"special": true
|
| 1242 |
+
},
|
| 1243 |
+
"128155": {
|
| 1244 |
+
"content": "<|reserved_special_token_147|>",
|
| 1245 |
+
"lstrip": false,
|
| 1246 |
+
"normalized": false,
|
| 1247 |
+
"rstrip": false,
|
| 1248 |
+
"single_word": false,
|
| 1249 |
+
"special": true
|
| 1250 |
+
},
|
| 1251 |
+
"128156": {
|
| 1252 |
+
"content": "<|reserved_special_token_148|>",
|
| 1253 |
+
"lstrip": false,
|
| 1254 |
+
"normalized": false,
|
| 1255 |
+
"rstrip": false,
|
| 1256 |
+
"single_word": false,
|
| 1257 |
+
"special": true
|
| 1258 |
+
},
|
| 1259 |
+
"128157": {
|
| 1260 |
+
"content": "<|reserved_special_token_149|>",
|
| 1261 |
+
"lstrip": false,
|
| 1262 |
+
"normalized": false,
|
| 1263 |
+
"rstrip": false,
|
| 1264 |
+
"single_word": false,
|
| 1265 |
+
"special": true
|
| 1266 |
+
},
|
| 1267 |
+
"128158": {
|
| 1268 |
+
"content": "<|reserved_special_token_150|>",
|
| 1269 |
+
"lstrip": false,
|
| 1270 |
+
"normalized": false,
|
| 1271 |
+
"rstrip": false,
|
| 1272 |
+
"single_word": false,
|
| 1273 |
+
"special": true
|
| 1274 |
+
},
|
| 1275 |
+
"128159": {
|
| 1276 |
+
"content": "<|reserved_special_token_151|>",
|
| 1277 |
+
"lstrip": false,
|
| 1278 |
+
"normalized": false,
|
| 1279 |
+
"rstrip": false,
|
| 1280 |
+
"single_word": false,
|
| 1281 |
+
"special": true
|
| 1282 |
+
},
|
| 1283 |
+
"128160": {
|
| 1284 |
+
"content": "<|reserved_special_token_152|>",
|
| 1285 |
+
"lstrip": false,
|
| 1286 |
+
"normalized": false,
|
| 1287 |
+
"rstrip": false,
|
| 1288 |
+
"single_word": false,
|
| 1289 |
+
"special": true
|
| 1290 |
+
},
|
| 1291 |
+
"128161": {
|
| 1292 |
+
"content": "<|reserved_special_token_153|>",
|
| 1293 |
+
"lstrip": false,
|
| 1294 |
+
"normalized": false,
|
| 1295 |
+
"rstrip": false,
|
| 1296 |
+
"single_word": false,
|
| 1297 |
+
"special": true
|
| 1298 |
+
},
|
| 1299 |
+
"128162": {
|
| 1300 |
+
"content": "<|reserved_special_token_154|>",
|
| 1301 |
+
"lstrip": false,
|
| 1302 |
+
"normalized": false,
|
| 1303 |
+
"rstrip": false,
|
| 1304 |
+
"single_word": false,
|
| 1305 |
+
"special": true
|
| 1306 |
+
},
|
| 1307 |
+
"128163": {
|
| 1308 |
+
"content": "<|reserved_special_token_155|>",
|
| 1309 |
+
"lstrip": false,
|
| 1310 |
+
"normalized": false,
|
| 1311 |
+
"rstrip": false,
|
| 1312 |
+
"single_word": false,
|
| 1313 |
+
"special": true
|
| 1314 |
+
},
|
| 1315 |
+
"128164": {
|
| 1316 |
+
"content": "<|reserved_special_token_156|>",
|
| 1317 |
+
"lstrip": false,
|
| 1318 |
+
"normalized": false,
|
| 1319 |
+
"rstrip": false,
|
| 1320 |
+
"single_word": false,
|
| 1321 |
+
"special": true
|
| 1322 |
+
},
|
| 1323 |
+
"128165": {
|
| 1324 |
+
"content": "<|reserved_special_token_157|>",
|
| 1325 |
+
"lstrip": false,
|
| 1326 |
+
"normalized": false,
|
| 1327 |
+
"rstrip": false,
|
| 1328 |
+
"single_word": false,
|
| 1329 |
+
"special": true
|
| 1330 |
+
},
|
| 1331 |
+
"128166": {
|
| 1332 |
+
"content": "<|reserved_special_token_158|>",
|
| 1333 |
+
"lstrip": false,
|
| 1334 |
+
"normalized": false,
|
| 1335 |
+
"rstrip": false,
|
| 1336 |
+
"single_word": false,
|
| 1337 |
+
"special": true
|
| 1338 |
+
},
|
| 1339 |
+
"128167": {
|
| 1340 |
+
"content": "<|reserved_special_token_159|>",
|
| 1341 |
+
"lstrip": false,
|
| 1342 |
+
"normalized": false,
|
| 1343 |
+
"rstrip": false,
|
| 1344 |
+
"single_word": false,
|
| 1345 |
+
"special": true
|
| 1346 |
+
},
|
| 1347 |
+
"128168": {
|
| 1348 |
+
"content": "<|reserved_special_token_160|>",
|
| 1349 |
+
"lstrip": false,
|
| 1350 |
+
"normalized": false,
|
| 1351 |
+
"rstrip": false,
|
| 1352 |
+
"single_word": false,
|
| 1353 |
+
"special": true
|
| 1354 |
+
},
|
| 1355 |
+
"128169": {
|
| 1356 |
+
"content": "<|reserved_special_token_161|>",
|
| 1357 |
+
"lstrip": false,
|
| 1358 |
+
"normalized": false,
|
| 1359 |
+
"rstrip": false,
|
| 1360 |
+
"single_word": false,
|
| 1361 |
+
"special": true
|
| 1362 |
+
},
|
| 1363 |
+
"128170": {
|
| 1364 |
+
"content": "<|reserved_special_token_162|>",
|
| 1365 |
+
"lstrip": false,
|
| 1366 |
+
"normalized": false,
|
| 1367 |
+
"rstrip": false,
|
| 1368 |
+
"single_word": false,
|
| 1369 |
+
"special": true
|
| 1370 |
+
},
|
| 1371 |
+
"128171": {
|
| 1372 |
+
"content": "<|reserved_special_token_163|>",
|
| 1373 |
+
"lstrip": false,
|
| 1374 |
+
"normalized": false,
|
| 1375 |
+
"rstrip": false,
|
| 1376 |
+
"single_word": false,
|
| 1377 |
+
"special": true
|
| 1378 |
+
},
|
| 1379 |
+
"128172": {
|
| 1380 |
+
"content": "<|reserved_special_token_164|>",
|
| 1381 |
+
"lstrip": false,
|
| 1382 |
+
"normalized": false,
|
| 1383 |
+
"rstrip": false,
|
| 1384 |
+
"single_word": false,
|
| 1385 |
+
"special": true
|
| 1386 |
+
},
|
| 1387 |
+
"128173": {
|
| 1388 |
+
"content": "<|reserved_special_token_165|>",
|
| 1389 |
+
"lstrip": false,
|
| 1390 |
+
"normalized": false,
|
| 1391 |
+
"rstrip": false,
|
| 1392 |
+
"single_word": false,
|
| 1393 |
+
"special": true
|
| 1394 |
+
},
|
| 1395 |
+
"128174": {
|
| 1396 |
+
"content": "<|reserved_special_token_166|>",
|
| 1397 |
+
"lstrip": false,
|
| 1398 |
+
"normalized": false,
|
| 1399 |
+
"rstrip": false,
|
| 1400 |
+
"single_word": false,
|
| 1401 |
+
"special": true
|
| 1402 |
+
},
|
| 1403 |
+
"128175": {
|
| 1404 |
+
"content": "<|reserved_special_token_167|>",
|
| 1405 |
+
"lstrip": false,
|
| 1406 |
+
"normalized": false,
|
| 1407 |
+
"rstrip": false,
|
| 1408 |
+
"single_word": false,
|
| 1409 |
+
"special": true
|
| 1410 |
+
},
|
| 1411 |
+
"128176": {
|
| 1412 |
+
"content": "<|reserved_special_token_168|>",
|
| 1413 |
+
"lstrip": false,
|
| 1414 |
+
"normalized": false,
|
| 1415 |
+
"rstrip": false,
|
| 1416 |
+
"single_word": false,
|
| 1417 |
+
"special": true
|
| 1418 |
+
},
|
| 1419 |
+
"128177": {
|
| 1420 |
+
"content": "<|reserved_special_token_169|>",
|
| 1421 |
+
"lstrip": false,
|
| 1422 |
+
"normalized": false,
|
| 1423 |
+
"rstrip": false,
|
| 1424 |
+
"single_word": false,
|
| 1425 |
+
"special": true
|
| 1426 |
+
},
|
| 1427 |
+
"128178": {
|
| 1428 |
+
"content": "<|reserved_special_token_170|>",
|
| 1429 |
+
"lstrip": false,
|
| 1430 |
+
"normalized": false,
|
| 1431 |
+
"rstrip": false,
|
| 1432 |
+
"single_word": false,
|
| 1433 |
+
"special": true
|
| 1434 |
+
},
|
| 1435 |
+
"128179": {
|
| 1436 |
+
"content": "<|reserved_special_token_171|>",
|
| 1437 |
+
"lstrip": false,
|
| 1438 |
+
"normalized": false,
|
| 1439 |
+
"rstrip": false,
|
| 1440 |
+
"single_word": false,
|
| 1441 |
+
"special": true
|
| 1442 |
+
},
|
| 1443 |
+
"128180": {
|
| 1444 |
+
"content": "<|reserved_special_token_172|>",
|
| 1445 |
+
"lstrip": false,
|
| 1446 |
+
"normalized": false,
|
| 1447 |
+
"rstrip": false,
|
| 1448 |
+
"single_word": false,
|
| 1449 |
+
"special": true
|
| 1450 |
+
},
|
| 1451 |
+
"128181": {
|
| 1452 |
+
"content": "<|reserved_special_token_173|>",
|
| 1453 |
+
"lstrip": false,
|
| 1454 |
+
"normalized": false,
|
| 1455 |
+
"rstrip": false,
|
| 1456 |
+
"single_word": false,
|
| 1457 |
+
"special": true
|
| 1458 |
+
},
|
| 1459 |
+
"128182": {
|
| 1460 |
+
"content": "<|reserved_special_token_174|>",
|
| 1461 |
+
"lstrip": false,
|
| 1462 |
+
"normalized": false,
|
| 1463 |
+
"rstrip": false,
|
| 1464 |
+
"single_word": false,
|
| 1465 |
+
"special": true
|
| 1466 |
+
},
|
| 1467 |
+
"128183": {
|
| 1468 |
+
"content": "<|reserved_special_token_175|>",
|
| 1469 |
+
"lstrip": false,
|
| 1470 |
+
"normalized": false,
|
| 1471 |
+
"rstrip": false,
|
| 1472 |
+
"single_word": false,
|
| 1473 |
+
"special": true
|
| 1474 |
+
},
|
| 1475 |
+
"128184": {
|
| 1476 |
+
"content": "<|reserved_special_token_176|>",
|
| 1477 |
+
"lstrip": false,
|
| 1478 |
+
"normalized": false,
|
| 1479 |
+
"rstrip": false,
|
| 1480 |
+
"single_word": false,
|
| 1481 |
+
"special": true
|
| 1482 |
+
},
|
| 1483 |
+
"128185": {
|
| 1484 |
+
"content": "<|reserved_special_token_177|>",
|
| 1485 |
+
"lstrip": false,
|
| 1486 |
+
"normalized": false,
|
| 1487 |
+
"rstrip": false,
|
| 1488 |
+
"single_word": false,
|
| 1489 |
+
"special": true
|
| 1490 |
+
},
|
| 1491 |
+
"128186": {
|
| 1492 |
+
"content": "<|reserved_special_token_178|>",
|
| 1493 |
+
"lstrip": false,
|
| 1494 |
+
"normalized": false,
|
| 1495 |
+
"rstrip": false,
|
| 1496 |
+
"single_word": false,
|
| 1497 |
+
"special": true
|
| 1498 |
+
},
|
| 1499 |
+
"128187": {
|
| 1500 |
+
"content": "<|reserved_special_token_179|>",
|
| 1501 |
+
"lstrip": false,
|
| 1502 |
+
"normalized": false,
|
| 1503 |
+
"rstrip": false,
|
| 1504 |
+
"single_word": false,
|
| 1505 |
+
"special": true
|
| 1506 |
+
},
|
| 1507 |
+
"128188": {
|
| 1508 |
+
"content": "<|reserved_special_token_180|>",
|
| 1509 |
+
"lstrip": false,
|
| 1510 |
+
"normalized": false,
|
| 1511 |
+
"rstrip": false,
|
| 1512 |
+
"single_word": false,
|
| 1513 |
+
"special": true
|
| 1514 |
+
},
|
| 1515 |
+
"128189": {
|
| 1516 |
+
"content": "<|reserved_special_token_181|>",
|
| 1517 |
+
"lstrip": false,
|
| 1518 |
+
"normalized": false,
|
| 1519 |
+
"rstrip": false,
|
| 1520 |
+
"single_word": false,
|
| 1521 |
+
"special": true
|
| 1522 |
+
},
|
| 1523 |
+
"128190": {
|
| 1524 |
+
"content": "<|reserved_special_token_182|>",
|
| 1525 |
+
"lstrip": false,
|
| 1526 |
+
"normalized": false,
|
| 1527 |
+
"rstrip": false,
|
| 1528 |
+
"single_word": false,
|
| 1529 |
+
"special": true
|
| 1530 |
+
},
|
| 1531 |
+
"128191": {
|
| 1532 |
+
"content": "<|reserved_special_token_183|>",
|
| 1533 |
+
"lstrip": false,
|
| 1534 |
+
"normalized": false,
|
| 1535 |
+
"rstrip": false,
|
| 1536 |
+
"single_word": false,
|
| 1537 |
+
"special": true
|
| 1538 |
+
},
|
| 1539 |
+
"128192": {
|
| 1540 |
+
"content": "<|reserved_special_token_184|>",
|
| 1541 |
+
"lstrip": false,
|
| 1542 |
+
"normalized": false,
|
| 1543 |
+
"rstrip": false,
|
| 1544 |
+
"single_word": false,
|
| 1545 |
+
"special": true
|
| 1546 |
+
},
|
| 1547 |
+
"128193": {
|
| 1548 |
+
"content": "<|reserved_special_token_185|>",
|
| 1549 |
+
"lstrip": false,
|
| 1550 |
+
"normalized": false,
|
| 1551 |
+
"rstrip": false,
|
| 1552 |
+
"single_word": false,
|
| 1553 |
+
"special": true
|
| 1554 |
+
},
|
| 1555 |
+
"128194": {
|
| 1556 |
+
"content": "<|reserved_special_token_186|>",
|
| 1557 |
+
"lstrip": false,
|
| 1558 |
+
"normalized": false,
|
| 1559 |
+
"rstrip": false,
|
| 1560 |
+
"single_word": false,
|
| 1561 |
+
"special": true
|
| 1562 |
+
},
|
| 1563 |
+
"128195": {
|
| 1564 |
+
"content": "<|reserved_special_token_187|>",
|
| 1565 |
+
"lstrip": false,
|
| 1566 |
+
"normalized": false,
|
| 1567 |
+
"rstrip": false,
|
| 1568 |
+
"single_word": false,
|
| 1569 |
+
"special": true
|
| 1570 |
+
},
|
| 1571 |
+
"128196": {
|
| 1572 |
+
"content": "<|reserved_special_token_188|>",
|
| 1573 |
+
"lstrip": false,
|
| 1574 |
+
"normalized": false,
|
| 1575 |
+
"rstrip": false,
|
| 1576 |
+
"single_word": false,
|
| 1577 |
+
"special": true
|
| 1578 |
+
},
|
| 1579 |
+
"128197": {
|
| 1580 |
+
"content": "<|reserved_special_token_189|>",
|
| 1581 |
+
"lstrip": false,
|
| 1582 |
+
"normalized": false,
|
| 1583 |
+
"rstrip": false,
|
| 1584 |
+
"single_word": false,
|
| 1585 |
+
"special": true
|
| 1586 |
+
},
|
| 1587 |
+
"128198": {
|
| 1588 |
+
"content": "<|reserved_special_token_190|>",
|
| 1589 |
+
"lstrip": false,
|
| 1590 |
+
"normalized": false,
|
| 1591 |
+
"rstrip": false,
|
| 1592 |
+
"single_word": false,
|
| 1593 |
+
"special": true
|
| 1594 |
+
},
|
| 1595 |
+
"128199": {
|
| 1596 |
+
"content": "<|reserved_special_token_191|>",
|
| 1597 |
+
"lstrip": false,
|
| 1598 |
+
"normalized": false,
|
| 1599 |
+
"rstrip": false,
|
| 1600 |
+
"single_word": false,
|
| 1601 |
+
"special": true
|
| 1602 |
+
},
|
| 1603 |
+
"128200": {
|
| 1604 |
+
"content": "<|reserved_special_token_192|>",
|
| 1605 |
+
"lstrip": false,
|
| 1606 |
+
"normalized": false,
|
| 1607 |
+
"rstrip": false,
|
| 1608 |
+
"single_word": false,
|
| 1609 |
+
"special": true
|
| 1610 |
+
},
|
| 1611 |
+
"128201": {
|
| 1612 |
+
"content": "<|reserved_special_token_193|>",
|
| 1613 |
+
"lstrip": false,
|
| 1614 |
+
"normalized": false,
|
| 1615 |
+
"rstrip": false,
|
| 1616 |
+
"single_word": false,
|
| 1617 |
+
"special": true
|
| 1618 |
+
},
|
| 1619 |
+
"128202": {
|
| 1620 |
+
"content": "<|reserved_special_token_194|>",
|
| 1621 |
+
"lstrip": false,
|
| 1622 |
+
"normalized": false,
|
| 1623 |
+
"rstrip": false,
|
| 1624 |
+
"single_word": false,
|
| 1625 |
+
"special": true
|
| 1626 |
+
},
|
| 1627 |
+
"128203": {
|
| 1628 |
+
"content": "<|reserved_special_token_195|>",
|
| 1629 |
+
"lstrip": false,
|
| 1630 |
+
"normalized": false,
|
| 1631 |
+
"rstrip": false,
|
| 1632 |
+
"single_word": false,
|
| 1633 |
+
"special": true
|
| 1634 |
+
},
|
| 1635 |
+
"128204": {
|
| 1636 |
+
"content": "<|reserved_special_token_196|>",
|
| 1637 |
+
"lstrip": false,
|
| 1638 |
+
"normalized": false,
|
| 1639 |
+
"rstrip": false,
|
| 1640 |
+
"single_word": false,
|
| 1641 |
+
"special": true
|
| 1642 |
+
},
|
| 1643 |
+
"128205": {
|
| 1644 |
+
"content": "<|reserved_special_token_197|>",
|
| 1645 |
+
"lstrip": false,
|
| 1646 |
+
"normalized": false,
|
| 1647 |
+
"rstrip": false,
|
| 1648 |
+
"single_word": false,
|
| 1649 |
+
"special": true
|
| 1650 |
+
},
|
| 1651 |
+
"128206": {
|
| 1652 |
+
"content": "<|reserved_special_token_198|>",
|
| 1653 |
+
"lstrip": false,
|
| 1654 |
+
"normalized": false,
|
| 1655 |
+
"rstrip": false,
|
| 1656 |
+
"single_word": false,
|
| 1657 |
+
"special": true
|
| 1658 |
+
},
|
| 1659 |
+
"128207": {
|
| 1660 |
+
"content": "<|reserved_special_token_199|>",
|
| 1661 |
+
"lstrip": false,
|
| 1662 |
+
"normalized": false,
|
| 1663 |
+
"rstrip": false,
|
| 1664 |
+
"single_word": false,
|
| 1665 |
+
"special": true
|
| 1666 |
+
},
|
| 1667 |
+
"128208": {
|
| 1668 |
+
"content": "<|reserved_special_token_200|>",
|
| 1669 |
+
"lstrip": false,
|
| 1670 |
+
"normalized": false,
|
| 1671 |
+
"rstrip": false,
|
| 1672 |
+
"single_word": false,
|
| 1673 |
+
"special": true
|
| 1674 |
+
},
|
| 1675 |
+
"128209": {
|
| 1676 |
+
"content": "<|reserved_special_token_201|>",
|
| 1677 |
+
"lstrip": false,
|
| 1678 |
+
"normalized": false,
|
| 1679 |
+
"rstrip": false,
|
| 1680 |
+
"single_word": false,
|
| 1681 |
+
"special": true
|
| 1682 |
+
},
|
| 1683 |
+
"128210": {
|
| 1684 |
+
"content": "<|reserved_special_token_202|>",
|
| 1685 |
+
"lstrip": false,
|
| 1686 |
+
"normalized": false,
|
| 1687 |
+
"rstrip": false,
|
| 1688 |
+
"single_word": false,
|
| 1689 |
+
"special": true
|
| 1690 |
+
},
|
| 1691 |
+
"128211": {
|
| 1692 |
+
"content": "<|reserved_special_token_203|>",
|
| 1693 |
+
"lstrip": false,
|
| 1694 |
+
"normalized": false,
|
| 1695 |
+
"rstrip": false,
|
| 1696 |
+
"single_word": false,
|
| 1697 |
+
"special": true
|
| 1698 |
+
},
|
| 1699 |
+
"128212": {
|
| 1700 |
+
"content": "<|reserved_special_token_204|>",
|
| 1701 |
+
"lstrip": false,
|
| 1702 |
+
"normalized": false,
|
| 1703 |
+
"rstrip": false,
|
| 1704 |
+
"single_word": false,
|
| 1705 |
+
"special": true
|
| 1706 |
+
},
|
| 1707 |
+
"128213": {
|
| 1708 |
+
"content": "<|reserved_special_token_205|>",
|
| 1709 |
+
"lstrip": false,
|
| 1710 |
+
"normalized": false,
|
| 1711 |
+
"rstrip": false,
|
| 1712 |
+
"single_word": false,
|
| 1713 |
+
"special": true
|
| 1714 |
+
},
|
| 1715 |
+
"128214": {
|
| 1716 |
+
"content": "<|reserved_special_token_206|>",
|
| 1717 |
+
"lstrip": false,
|
| 1718 |
+
"normalized": false,
|
| 1719 |
+
"rstrip": false,
|
| 1720 |
+
"single_word": false,
|
| 1721 |
+
"special": true
|
| 1722 |
+
},
|
| 1723 |
+
"128215": {
|
| 1724 |
+
"content": "<|reserved_special_token_207|>",
|
| 1725 |
+
"lstrip": false,
|
| 1726 |
+
"normalized": false,
|
| 1727 |
+
"rstrip": false,
|
| 1728 |
+
"single_word": false,
|
| 1729 |
+
"special": true
|
| 1730 |
+
},
|
| 1731 |
+
"128216": {
|
| 1732 |
+
"content": "<|reserved_special_token_208|>",
|
| 1733 |
+
"lstrip": false,
|
| 1734 |
+
"normalized": false,
|
| 1735 |
+
"rstrip": false,
|
| 1736 |
+
"single_word": false,
|
| 1737 |
+
"special": true
|
| 1738 |
+
},
|
| 1739 |
+
"128217": {
|
| 1740 |
+
"content": "<|reserved_special_token_209|>",
|
| 1741 |
+
"lstrip": false,
|
| 1742 |
+
"normalized": false,
|
| 1743 |
+
"rstrip": false,
|
| 1744 |
+
"single_word": false,
|
| 1745 |
+
"special": true
|
| 1746 |
+
},
|
| 1747 |
+
"128218": {
|
| 1748 |
+
"content": "<|reserved_special_token_210|>",
|
| 1749 |
+
"lstrip": false,
|
| 1750 |
+
"normalized": false,
|
| 1751 |
+
"rstrip": false,
|
| 1752 |
+
"single_word": false,
|
| 1753 |
+
"special": true
|
| 1754 |
+
},
|
| 1755 |
+
"128219": {
|
| 1756 |
+
"content": "<|reserved_special_token_211|>",
|
| 1757 |
+
"lstrip": false,
|
| 1758 |
+
"normalized": false,
|
| 1759 |
+
"rstrip": false,
|
| 1760 |
+
"single_word": false,
|
| 1761 |
+
"special": true
|
| 1762 |
+
},
|
| 1763 |
+
"128220": {
|
| 1764 |
+
"content": "<|reserved_special_token_212|>",
|
| 1765 |
+
"lstrip": false,
|
| 1766 |
+
"normalized": false,
|
| 1767 |
+
"rstrip": false,
|
| 1768 |
+
"single_word": false,
|
| 1769 |
+
"special": true
|
| 1770 |
+
},
|
| 1771 |
+
"128221": {
|
| 1772 |
+
"content": "<|reserved_special_token_213|>",
|
| 1773 |
+
"lstrip": false,
|
| 1774 |
+
"normalized": false,
|
| 1775 |
+
"rstrip": false,
|
| 1776 |
+
"single_word": false,
|
| 1777 |
+
"special": true
|
| 1778 |
+
},
|
| 1779 |
+
"128222": {
|
| 1780 |
+
"content": "<|reserved_special_token_214|>",
|
| 1781 |
+
"lstrip": false,
|
| 1782 |
+
"normalized": false,
|
| 1783 |
+
"rstrip": false,
|
| 1784 |
+
"single_word": false,
|
| 1785 |
+
"special": true
|
| 1786 |
+
},
|
| 1787 |
+
"128223": {
|
| 1788 |
+
"content": "<|reserved_special_token_215|>",
|
| 1789 |
+
"lstrip": false,
|
| 1790 |
+
"normalized": false,
|
| 1791 |
+
"rstrip": false,
|
| 1792 |
+
"single_word": false,
|
| 1793 |
+
"special": true
|
| 1794 |
+
},
|
| 1795 |
+
"128224": {
|
| 1796 |
+
"content": "<|reserved_special_token_216|>",
|
| 1797 |
+
"lstrip": false,
|
| 1798 |
+
"normalized": false,
|
| 1799 |
+
"rstrip": false,
|
| 1800 |
+
"single_word": false,
|
| 1801 |
+
"special": true
|
| 1802 |
+
},
|
| 1803 |
+
"128225": {
|
| 1804 |
+
"content": "<|reserved_special_token_217|>",
|
| 1805 |
+
"lstrip": false,
|
| 1806 |
+
"normalized": false,
|
| 1807 |
+
"rstrip": false,
|
| 1808 |
+
"single_word": false,
|
| 1809 |
+
"special": true
|
| 1810 |
+
},
|
| 1811 |
+
"128226": {
|
| 1812 |
+
"content": "<|reserved_special_token_218|>",
|
| 1813 |
+
"lstrip": false,
|
| 1814 |
+
"normalized": false,
|
| 1815 |
+
"rstrip": false,
|
| 1816 |
+
"single_word": false,
|
| 1817 |
+
"special": true
|
| 1818 |
+
},
|
| 1819 |
+
"128227": {
|
| 1820 |
+
"content": "<|reserved_special_token_219|>",
|
| 1821 |
+
"lstrip": false,
|
| 1822 |
+
"normalized": false,
|
| 1823 |
+
"rstrip": false,
|
| 1824 |
+
"single_word": false,
|
| 1825 |
+
"special": true
|
| 1826 |
+
},
|
| 1827 |
+
"128228": {
|
| 1828 |
+
"content": "<|reserved_special_token_220|>",
|
| 1829 |
+
"lstrip": false,
|
| 1830 |
+
"normalized": false,
|
| 1831 |
+
"rstrip": false,
|
| 1832 |
+
"single_word": false,
|
| 1833 |
+
"special": true
|
| 1834 |
+
},
|
| 1835 |
+
"128229": {
|
| 1836 |
+
"content": "<|reserved_special_token_221|>",
|
| 1837 |
+
"lstrip": false,
|
| 1838 |
+
"normalized": false,
|
| 1839 |
+
"rstrip": false,
|
| 1840 |
+
"single_word": false,
|
| 1841 |
+
"special": true
|
| 1842 |
+
},
|
| 1843 |
+
"128230": {
|
| 1844 |
+
"content": "<|reserved_special_token_222|>",
|
| 1845 |
+
"lstrip": false,
|
| 1846 |
+
"normalized": false,
|
| 1847 |
+
"rstrip": false,
|
| 1848 |
+
"single_word": false,
|
| 1849 |
+
"special": true
|
| 1850 |
+
},
|
| 1851 |
+
"128231": {
|
| 1852 |
+
"content": "<|reserved_special_token_223|>",
|
| 1853 |
+
"lstrip": false,
|
| 1854 |
+
"normalized": false,
|
| 1855 |
+
"rstrip": false,
|
| 1856 |
+
"single_word": false,
|
| 1857 |
+
"special": true
|
| 1858 |
+
},
|
| 1859 |
+
"128232": {
|
| 1860 |
+
"content": "<|reserved_special_token_224|>",
|
| 1861 |
+
"lstrip": false,
|
| 1862 |
+
"normalized": false,
|
| 1863 |
+
"rstrip": false,
|
| 1864 |
+
"single_word": false,
|
| 1865 |
+
"special": true
|
| 1866 |
+
},
|
| 1867 |
+
"128233": {
|
| 1868 |
+
"content": "<|reserved_special_token_225|>",
|
| 1869 |
+
"lstrip": false,
|
| 1870 |
+
"normalized": false,
|
| 1871 |
+
"rstrip": false,
|
| 1872 |
+
"single_word": false,
|
| 1873 |
+
"special": true
|
| 1874 |
+
},
|
| 1875 |
+
"128234": {
|
| 1876 |
+
"content": "<|reserved_special_token_226|>",
|
| 1877 |
+
"lstrip": false,
|
| 1878 |
+
"normalized": false,
|
| 1879 |
+
"rstrip": false,
|
| 1880 |
+
"single_word": false,
|
| 1881 |
+
"special": true
|
| 1882 |
+
},
|
| 1883 |
+
"128235": {
|
| 1884 |
+
"content": "<|reserved_special_token_227|>",
|
| 1885 |
+
"lstrip": false,
|
| 1886 |
+
"normalized": false,
|
| 1887 |
+
"rstrip": false,
|
| 1888 |
+
"single_word": false,
|
| 1889 |
+
"special": true
|
| 1890 |
+
},
|
| 1891 |
+
"128236": {
|
| 1892 |
+
"content": "<|reserved_special_token_228|>",
|
| 1893 |
+
"lstrip": false,
|
| 1894 |
+
"normalized": false,
|
| 1895 |
+
"rstrip": false,
|
| 1896 |
+
"single_word": false,
|
| 1897 |
+
"special": true
|
| 1898 |
+
},
|
| 1899 |
+
"128237": {
|
| 1900 |
+
"content": "<|reserved_special_token_229|>",
|
| 1901 |
+
"lstrip": false,
|
| 1902 |
+
"normalized": false,
|
| 1903 |
+
"rstrip": false,
|
| 1904 |
+
"single_word": false,
|
| 1905 |
+
"special": true
|
| 1906 |
+
},
|
| 1907 |
+
"128238": {
|
| 1908 |
+
"content": "<|reserved_special_token_230|>",
|
| 1909 |
+
"lstrip": false,
|
| 1910 |
+
"normalized": false,
|
| 1911 |
+
"rstrip": false,
|
| 1912 |
+
"single_word": false,
|
| 1913 |
+
"special": true
|
| 1914 |
+
},
|
| 1915 |
+
"128239": {
|
| 1916 |
+
"content": "<|reserved_special_token_231|>",
|
| 1917 |
+
"lstrip": false,
|
| 1918 |
+
"normalized": false,
|
| 1919 |
+
"rstrip": false,
|
| 1920 |
+
"single_word": false,
|
| 1921 |
+
"special": true
|
| 1922 |
+
},
|
| 1923 |
+
"128240": {
|
| 1924 |
+
"content": "<|reserved_special_token_232|>",
|
| 1925 |
+
"lstrip": false,
|
| 1926 |
+
"normalized": false,
|
| 1927 |
+
"rstrip": false,
|
| 1928 |
+
"single_word": false,
|
| 1929 |
+
"special": true
|
| 1930 |
+
},
|
| 1931 |
+
"128241": {
|
| 1932 |
+
"content": "<|reserved_special_token_233|>",
|
| 1933 |
+
"lstrip": false,
|
| 1934 |
+
"normalized": false,
|
| 1935 |
+
"rstrip": false,
|
| 1936 |
+
"single_word": false,
|
| 1937 |
+
"special": true
|
| 1938 |
+
},
|
| 1939 |
+
"128242": {
|
| 1940 |
+
"content": "<|reserved_special_token_234|>",
|
| 1941 |
+
"lstrip": false,
|
| 1942 |
+
"normalized": false,
|
| 1943 |
+
"rstrip": false,
|
| 1944 |
+
"single_word": false,
|
| 1945 |
+
"special": true
|
| 1946 |
+
},
|
| 1947 |
+
"128243": {
|
| 1948 |
+
"content": "<|reserved_special_token_235|>",
|
| 1949 |
+
"lstrip": false,
|
| 1950 |
+
"normalized": false,
|
| 1951 |
+
"rstrip": false,
|
| 1952 |
+
"single_word": false,
|
| 1953 |
+
"special": true
|
| 1954 |
+
},
|
| 1955 |
+
"128244": {
|
| 1956 |
+
"content": "<|reserved_special_token_236|>",
|
| 1957 |
+
"lstrip": false,
|
| 1958 |
+
"normalized": false,
|
| 1959 |
+
"rstrip": false,
|
| 1960 |
+
"single_word": false,
|
| 1961 |
+
"special": true
|
| 1962 |
+
},
|
| 1963 |
+
"128245": {
|
| 1964 |
+
"content": "<|reserved_special_token_237|>",
|
| 1965 |
+
"lstrip": false,
|
| 1966 |
+
"normalized": false,
|
| 1967 |
+
"rstrip": false,
|
| 1968 |
+
"single_word": false,
|
| 1969 |
+
"special": true
|
| 1970 |
+
},
|
| 1971 |
+
"128246": {
|
| 1972 |
+
"content": "<|reserved_special_token_238|>",
|
| 1973 |
+
"lstrip": false,
|
| 1974 |
+
"normalized": false,
|
| 1975 |
+
"rstrip": false,
|
| 1976 |
+
"single_word": false,
|
| 1977 |
+
"special": true
|
| 1978 |
+
},
|
| 1979 |
+
"128247": {
|
| 1980 |
+
"content": "<|reserved_special_token_239|>",
|
| 1981 |
+
"lstrip": false,
|
| 1982 |
+
"normalized": false,
|
| 1983 |
+
"rstrip": false,
|
| 1984 |
+
"single_word": false,
|
| 1985 |
+
"special": true
|
| 1986 |
+
},
|
| 1987 |
+
"128248": {
|
| 1988 |
+
"content": "<|reserved_special_token_240|>",
|
| 1989 |
+
"lstrip": false,
|
| 1990 |
+
"normalized": false,
|
| 1991 |
+
"rstrip": false,
|
| 1992 |
+
"single_word": false,
|
| 1993 |
+
"special": true
|
| 1994 |
+
},
|
| 1995 |
+
"128249": {
|
| 1996 |
+
"content": "<|reserved_special_token_241|>",
|
| 1997 |
+
"lstrip": false,
|
| 1998 |
+
"normalized": false,
|
| 1999 |
+
"rstrip": false,
|
| 2000 |
+
"single_word": false,
|
| 2001 |
+
"special": true
|
| 2002 |
+
},
|
| 2003 |
+
"128250": {
|
| 2004 |
+
"content": "<|reserved_special_token_242|>",
|
| 2005 |
+
"lstrip": false,
|
| 2006 |
+
"normalized": false,
|
| 2007 |
+
"rstrip": false,
|
| 2008 |
+
"single_word": false,
|
| 2009 |
+
"special": true
|
| 2010 |
+
},
|
| 2011 |
+
"128251": {
|
| 2012 |
+
"content": "<|reserved_special_token_243|>",
|
| 2013 |
+
"lstrip": false,
|
| 2014 |
+
"normalized": false,
|
| 2015 |
+
"rstrip": false,
|
| 2016 |
+
"single_word": false,
|
| 2017 |
+
"special": true
|
| 2018 |
+
},
|
| 2019 |
+
"128252": {
|
| 2020 |
+
"content": "<|reserved_special_token_244|>",
|
| 2021 |
+
"lstrip": false,
|
| 2022 |
+
"normalized": false,
|
| 2023 |
+
"rstrip": false,
|
| 2024 |
+
"single_word": false,
|
| 2025 |
+
"special": true
|
| 2026 |
+
},
|
| 2027 |
+
"128253": {
|
| 2028 |
+
"content": "<|reserved_special_token_245|>",
|
| 2029 |
+
"lstrip": false,
|
| 2030 |
+
"normalized": false,
|
| 2031 |
+
"rstrip": false,
|
| 2032 |
+
"single_word": false,
|
| 2033 |
+
"special": true
|
| 2034 |
+
},
|
| 2035 |
+
"128254": {
|
| 2036 |
+
"content": "<|reserved_special_token_246|>",
|
| 2037 |
+
"lstrip": false,
|
| 2038 |
+
"normalized": false,
|
| 2039 |
+
"rstrip": false,
|
| 2040 |
+
"single_word": false,
|
| 2041 |
+
"special": true
|
| 2042 |
+
},
|
| 2043 |
+
"128255": {
|
| 2044 |
+
"content": "<|reserved_special_token_247|>",
|
| 2045 |
+
"lstrip": false,
|
| 2046 |
+
"normalized": false,
|
| 2047 |
+
"rstrip": false,
|
| 2048 |
+
"single_word": false,
|
| 2049 |
+
"special": true
|
| 2050 |
+
}
|
| 2051 |
+
},
|
| 2052 |
+
"bos_token": "<|begin_of_text|>",
|
| 2053 |
+
"clean_up_tokenization_spaces": true,
|
| 2054 |
+
"eos_token": "<|eot_id|>",
|
| 2055 |
+
"extra_special_tokens": {},
|
| 2056 |
+
"model_input_names": [
|
| 2057 |
+
"input_ids",
|
| 2058 |
+
"attention_mask"
|
| 2059 |
+
],
|
| 2060 |
+
"model_max_length": 131072,
|
| 2061 |
+
"pad_token": "<|eot_id|>",
|
| 2062 |
+
"tokenizer_class": "PreTrainedTokenizerFast"
|
| 2063 |
+
}
|
training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3d44102a13ed5f1f80d7e5eb19eae6eee1c6ca395460da3e29c7c7fe5999a494
|
| 3 |
+
size 6289
|