File size: 6,785 Bytes
cf7f85d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
---
language: en
license: mit
tags:
- pointer-networks
- efficient-transformers
- long-range-modeling
- linear-complexity
- sequence-modeling
- interpretability
library_name: pytorch
pipeline_tag: text-generation
---
# Pointer: Linear-Complexity Long-Range Modeling without Pre-training
<div align="center">
<img src="paper_figure1_efficiency.png" alt="Efficiency Comparison" width="600"/>
<p><i>Pointer maintains linear scaling while Transformer shows quadratic growth</i></p>
</div>
## Model Description
**Pointer** is a novel neural architecture that achieves **linear O(NK) complexity** for long-range sequence modeling through explicit layer-wise pointer chaining, eliminating the quadratic bottleneck of standard attention mechanisms.
Unlike attention-based approaches that compute O(N²) pairwise interactions, Pointer creates structured long-distance connections via pointer chains where each layer's selection depends on previous layers' pointer positions.
### Key Features
- **Linear Complexity**: O(NK) operations where K ≪ N, providing **2-10× speedup** on sequences of length 2048+ compared to standard transformers
- **No Pre-training Required**: Learns structured patterns from scratch, eliminating reliance on large-scale pre-training
- **Interpretable Architecture**: Pointer heatmaps reveal hierarchical processing strategies with clear layer specialization
- **Exact Computation**: Unlike approximation methods, Pointer computes exact structured connections
## Architecture Innovation
### Layer-wise Pointer Chaining
Each position `i` selects exactly one target position `p_i^(ℓ)` per layer, with subsequent layers building upon these selections to form dependency paths:
```
p_i^(ℓ) = argmax_j Score(h_i^(ℓ), h_j^(ℓ), p_i^(ℓ-1))
```
This creates a dependency chain where each layer's pointer decisions influence subsequent layers, enabling the formation of structured long-range connections.
### Complexity Analysis
- **Computational**: O(NK) vs O(N²d) for standard attention
- **Memory**: O(N) pointer indices vs O(N²) attention weights
- **Scaling**: For N=8192, d=512: ~4M operations vs ~34B for attention (**~10,000× reduction**)
<div align="center">
<img src="paper_figure2_longrange.png" alt="Long-range Performance" width="500"/>
<p><i>Consistent accuracy across increasing distances (512-2048 tokens)</i></p>
</div>
## Performance
### Efficiency Benchmarks
| Sequence Length | 256 | 512 | 1024 | 2048 |
|----------------|-----|-----|------|------|
| **Training Time (s)** |
| Pointer | 0.35 | 0.29 | 0.55 | 1.45 |
| Vanilla Transformer | 0.17 | 0.35 | 1.04 | 3.55 |
| **Speedup** | 0.48× | 0.83× | 1.89× | **2.45×** |
| **Throughput (tokens/s)** |
| Pointer | 14,446 | 34,914 | 37,189 | 28,268 |
| Vanilla Transformer | 30,320 | 29,427 | 19,703 | 11,549 |
### Long-Range Dependency Modeling
Copy task accuracy across variable-length gaps:
| Distance | 512 | 1024 | 1536 | 2048 |
|----------|-----|------|------|------|
| Pointer | 4.38% | 5.50% | 5.38% | 5.25% |
| Vanilla Transformer | 5.38% | 4.25% | 4.88% | 4.75% |
Training loss decreased from 3.13 to 2.99 across distances, demonstrating effective learning.
## Interpretability
<div align="center">
<img src="paper_figure3_interpretability.png" alt="Interpretability Analysis" width="500"/>
<p><i>Pointer patterns reveal hierarchical processing across layers</i></p>
</div>
### Layer Specialization
- **Early layers (0-2)**: Focus on local patterns (average hop distance ~47-58 tokens)
- **Later layers (3-5)**: Establish long-range connections (up to 483 tokens)
- **Emergent hierarchy**: Local → global processing arises through gradient-based learning
<div align="center">
<img src="trained_pointer_heatmap_0.png" alt="Pointer Heatmap" width="400"/>
<p><i>Detailed pointer heatmap showing learned attention patterns</i></p>
</div>
### Structured Patterns
- **Self-loops**: Information retention across layers
- **Local clusters**: Capturing phrasal structure
- **Long jumps**: Bridging distant contexts
## Use Cases
Pointer is particularly effective for:
- **Long-context processing**: Sequences beyond attention's practical limits (4K-8K tokens)
- **Edge deployment**: Reduced memory and compute requirements for on-device inference
- **Low-resource domains**: No pre-training dependency makes it accessible without massive corpora
- **Structured reasoning tasks**: Retrieval, copying, explicit dependency modeling
- **Interpretable AI**: Clear visualization of learned dependency patterns
## Model Configuration
```python
# Example configuration (3.2M parameters)
config = {
"num_layers": 6,
"num_heads": 8,
"hidden_dim": 256,
"vocab_size": 10000,
"max_seq_length": 2048,
"pointer_temperature": 1.0, # Gumbel-Softmax temperature
}
```
## Training
### Differentiable Pointer Selection
During training, Gumbel-Softmax enables differentiable pointer selection:
```python
# Gumbel-Softmax for training
s_tilde = (s + gumbel_noise) / temperature
alpha = softmax(s_tilde)
# Hard selection for inference
p = argmax(s)
```
### Training Tips
- Start with higher temperature (τ=1.0) and anneal during training
- Use teacher forcing for sequence generation tasks
- Monitor pointer hop distances to ensure long-range learning
- Visualize pointer heatmaps to verify structured pattern emergence
## Limitations
- **Task specificity**: Excels on tasks with clear dependency paths; may underperform on dense semantic composition
- **Evaluation scope**: Current results focus on controlled synthetic tasks (copy tasks)
- **Generation quality**: Metrics measure teacher-forcing accuracy rather than autoregressive generation quality
- **Single pointer per position**: Current implementation selects one target; multi-head variants could capture more complex patterns
## Citation
```bibtex
@article{li2025pointer,
title={Pointer: Linear-Complexity Long-Range Modeling without Pre-training},
author={Li, Zixi},
journal={arXiv preprint},
year={2025},
institution={Noesis Lab, Sun Yat-sen University}
}
```
## Related Work
This work is part of broader research on adjacency-structured parallel propagation (ASPP):
- **TreeGPT**: Bidirectional TreeFFN processing for visual reasoning
- **Asterisk Operator**: Formal ASPP framework with universality theorems
- **Pointer**: Dynamic graph construction through learned pointer chains
## License
MIT License
## Contact
- **Author**: Zixi Li
- **Institution**: Noesis Lab (Independent Research Group), Sun Yat-sen University
- **Email**: lizx93@mail2.sysu.edu.cn
---
<div align="center">
<p><b>Note</b>: Model weights are not currently available. This card documents the architecture and experimental results from the research paper.</p>
</div>
|