ez2407 nielsr HF Staff commited on
Commit
9cef40e
·
verified ·
1 Parent(s): 2c94aaf

Improve model card: Add library_name, detailed usage, and GitHub link (#1)

Browse files

- Improve model card: Add library_name, detailed usage, and GitHub link (1e36e7e6d4f4ff9cf2accea8f6020dd61691c08b)


Co-authored-by: Niels Rogge <nielsr@users.noreply.huggingface.co>

Files changed (1) hide show
  1. README.md +88 -4
README.md CHANGED
@@ -1,12 +1,96 @@
1
  ---
2
- license: apache-2.0
3
- language:
4
- - en
5
  base_model:
6
  - Qwen/Qwen2.5-VL-7B-Instruct
 
 
 
7
  pipeline_tag: image-text-to-text
 
8
  ---
9
 
 
 
 
 
10
  This work is introduced in the following paper:
11
 
12
- **CauSight: Learning to Supersense for Visual Causal Discovery** [📄 arXiv](https://arxiv.org/abs/2512.01827)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
 
 
 
2
  base_model:
3
  - Qwen/Qwen2.5-VL-7B-Instruct
4
+ language:
5
+ - en
6
+ license: apache-2.0
7
  pipeline_tag: image-text-to-text
8
+ library_name: transformers
9
  ---
10
 
11
+ # CauSight: Learning to Supersense for Visual Causal Discovery
12
+
13
+ This repository contains the **CauSight** model, a novel vision-language model designed to perform visual causal discovery through causally aware reasoning. CauSight enables AI systems to infer cause-and-effect relations among visual entities across diverse scenarios, moving beyond mere perception. It integrates training data curation, Tree-of-Causal-Thought (ToCT) for synthesizing reasoning trajectories, and reinforcement learning with a designed causal reward. Experiments demonstrate that CauSight significantly outperforms models like GPT-4.1 on visual causal discovery.
14
+
15
  This work is introduced in the following paper:
16
 
17
+ **[CauSight: Learning to Supersense for Visual Causal Discovery](https://arxiv.org/abs/2512.01827)** [📄 arXiv]
18
+
19
+ **Project Page and Code:** [https://github.com/OpenCausaLab/CauSight](https://github.com/OpenCausaLab/CauSight)
20
+
21
+ ## 🔧 User Guide
22
+
23
+ ### 1. Clone the Repository
24
+
25
+ ```bash
26
+ git clone https://github.com/OpenCausaLab/CauSight.git
27
+ cd CauSight
28
+ ```
29
+
30
+ ### 2. Set Up the Environment
31
+
32
+ We recommend using **conda**:
33
+
34
+ ```bash
35
+ conda create -n causight python=3.10
36
+ conda activate causight
37
+
38
+ pip install -r requirements.txt
39
+ pip install -e .
40
+ ```
41
+
42
+ ### 3. Download the Dataset (VCG-32K)
43
+
44
+ ```bash
45
+ mkdir -p VCG-32K
46
+ pip install huggingface_hub
47
+
48
+ hf login
49
+ hf download OpenCausaLab/VCG-32K \
50
+ --repo-type dataset \
51
+ --local-dir ./VCG-32K
52
+ ```
53
+
54
+ ```bash
55
+ tar -xzf ./VCG-32K/COCO/images.tar.gz -C ./VCG-32K/COCO
56
+ tar -xzf ./VCG-32K/365/images.tar.gz -C ./VCG-32K/365
57
+ ```
58
+
59
+ ### 4. Download the CauSight Model
60
+
61
+ ```bash
62
+ mkdir -p model
63
+ huggingface-cli download OpenCausaLab/CauSight \
64
+ --repo-type model \
65
+ --local-dir ./model
66
+ ```
67
+
68
+ ### 5. Evaluation
69
+
70
+ Start the model server, then run inference:
71
+
72
+ ```bash
73
+ bash model_server.sh
74
+ python run_inference.py
75
+ ```
76
+
77
+ ### 6. Tree-of-Causal-Thought (If you want to make your own SFT data with ToCT.)
78
+
79
+ ```bash
80
+ bash model_server.sh
81
+ python run.py
82
+ ```
83
+
84
+ ## Citation
85
+
86
+ If you find our work helpful or inspiring, please consider citing it:
87
+
88
+ ```bibtex
89
+ @article{zhang2025causight,
90
+ title={CauSight: Learning to Supersense for Visual Causal Discovery},
91
+ author={Zhang, Yize and Chen, Meiqi and Chen, Sirui and Peng, Bo and Zhang, Yanxi and Li, Tianyu and Lu, Chaochao},
92
+ journal={arXiv preprint arXiv:2512.01827},
93
+ year={2025},
94
+ url={https://arxiv.org/abs/2512.01827}
95
+ }
96
+ ```