nielsr HF Staff commited on
Commit
43d1cd7
Β·
verified Β·
1 Parent(s): 1f1c12d

Update model card for Mono-InternVL-2B with Mono-InternVL-1.5 paper and comprehensive details

Browse files

This PR updates the model card for `Mono-InternVL-2B` to reflect information from the more recent paper [Mono-InternVL-1.5: Towards Cheaper and Faster Monolithic Multimodal Large Language Models](https://huggingface.co/papers/2507.12566).

Specifically, it:
- Updates the primary paper link and enriches the introduction with details from the Mono-InternVL-1.5 abstract and the project's introduction.
- Adds visual charts (radar and architecture) from the GitHub repository for better illustration.
- Includes the comprehensive performance benchmark table.
- Expands the inference section to include both `transformers` and `LMDeploy` examples.
- Adds a new section for supervised finetuning, including installation, dataset preparation, and training instructions.
- Updates the citation section to include both Mono-InternVL V1 and V1.5 papers for complete attribution.
- Removes the "File information" section, as it is internal context and not part of the public model card.

Please review and merge this PR.

Files changed (1) hide show
  1. README.md +395 -16
README.md CHANGED
@@ -1,38 +1,417 @@
1
  ---
2
- license: mit
3
- pipeline_tag: image-text-to-text
4
- library_name: transformers
5
  base_model:
6
- - internlm/internlm2-chat-1_8b
7
- base_model_relation: merge
8
  language:
9
- - multilingual
 
 
 
10
  tags:
11
- - internvl
12
- - vision
13
- - ocr
14
- - custom_code
15
- - moe
 
16
  ---
17
 
18
  # Mono-InternVL-2B
19
 
20
  This repository contains the instruction-tuned Mono-InternVL-2B model, which has 1.8B activated parameters (3B in total). It is built upon [internlm2-chat-1_8b](https://huggingface.co/internlm/internlm2-chat-1_8b).
21
 
22
- Please refer to our [**paper**](https://huggingface.co/papers/2410.08202), [**project page**](https://internvl.github.io/blog/2024-10-10-Mono-InternVL/) and [**GitHub repository**](https://github.com/OpenGVLab/mono-internvl) for introduction and usage.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
 
 
 
24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
 
26
  ## Citation
27
 
28
- If you find this project useful in your research, please consider citing:
29
 
30
- ```BibTeX
31
- @article{luo2024mono,
32
  title={Mono-InternVL: Pushing the Boundaries of Monolithic Multimodal Large Language Models with Endogenous Visual Pre-training},
33
  author={Luo, Gen and Yang, Xue and Dou, Wenhan and Wang, Zhaokai and Liu, Jiawen and Dai, Jifeng and Qiao, Yu and Zhu, Xizhou},
34
  journal={arXiv preprint arXiv:2410.08202},
35
  year={2024}
36
  }
37
- ```
38
 
 
 
 
 
 
 
 
 
1
  ---
 
 
 
2
  base_model:
3
+ - internlm/internlm2-chat-1_8b
 
4
  language:
5
+ - multilingual
6
+ library_name: transformers
7
+ license: mit
8
+ pipeline_tag: image-text-to-text
9
  tags:
10
+ - internvl
11
+ - vision
12
+ - ocr
13
+ - custom_code
14
+ - moe
15
+ base_model_relation: merge
16
  ---
17
 
18
  # Mono-InternVL-2B
19
 
20
  This repository contains the instruction-tuned Mono-InternVL-2B model, which has 1.8B activated parameters (3B in total). It is built upon [internlm2-chat-1_8b](https://huggingface.co/internlm/internlm2-chat-1_8b).
21
 
22
+ **Mono-InternVL-2B** is part of the **Mono-InternVL-1.5** family, presented in the paper [Mono-InternVL-1.5: Towards Cheaper and Faster Monolithic Multimodal Large Language Models](https://huggingface.co/papers/2507.12566). Mono-InternVL-1.5 integrates visual encoding and language decoding into a single model, addressing optimization challenges and catastrophic forgetting common in monolithic MLLMs. It does this by embedding a new visual parameter space into a pre-trained LLM, enabling stable learning of visual knowledge from noisy data via delta tuning. This version features improved Endogenous Visual Pre-training (EViP++) with additional visual attention experts and re-organized pre-training for efficiency. During inference, it includes a fused CUDA kernel to speed up MoE operations, significantly reducing training and inference costs while maintaining competitive performance.
23
+
24
+ Please refer to our [**project page**](https://internvl.github.io/blog/2024-10-10-Mono-InternVL/) and [**GitHub repository**](https://github.com/OpenGVLab/mono-internvl) for further introduction and usage.
25
+
26
+ <p align="center">
27
+ <img src="https://github.com/OpenGVLab/mono-internvl/raw/main/images/fig1.jpg" alt="radar chart" style="width: 100%; height: auto;" />
28
+ <br>
29
+ <br>
30
+ <img src="https://github.com/OpenGVLab/mono-internvl/raw/main/images/fig2.jpg" alt="architecture" style="width: 100%; height: auto;" />
31
+ </p>
32
+
33
+ ## Introduction
34
+
35
+ We release Mono-InternVL, a **monolithic** multimodal large language model (MLLM) that integrates visual encoding and textual decoding into a single LLM. In Mono-InternVL, a set of visual experts is embedded into the pre-trained LLM via a **mixture-of-experts (MoE) mechanism**. By freezing the LLM, Mono-InternVL ensures that visual capabilities are optimized without compromising the pre-trained language knowledge. Based on this structure, an innovative **Endogenous Visual Pretraining (EViP)** is introduced to realize coarse-to-fine visual learning.
36
+
37
+ Mono-InternVL achieves superior performance compared to state-of-the-art MLLM Mini-InternVL-2B-1.5 and significantly outperforms other monolithic MLLMs, as shown in the radar chart above. Meanwhile, it achieves better deployment efficiency, with first token latency reduced by up to 67%.
38
+
39
+ ## Performance
40
+
41
+ | Benchmark | Chameleon-7B | EVE-7B (HD) | Emu3 | Mini-InternVL-2B-1-5 | Mono-InternVL-2B |
42
+ | :--------------------------: | :----------: | :---------: | :--------: | :------------------: | :--------------: |
43
+ | Type | Monolithic | Monolithic | Monolithic | Modular | Monolithic |
44
+ | #Activated Params | 7B | 7B | 8B | 2.2B | 1.8B |
45
+ | | | | | | |
46
+ | MMVet | 8.3 | 25.7 | 37.2 | 39.3 | 40.1 |
47
+ | MMMU<sub>val</sub> | 25.4 | 32.6 | 31.6 | 34.6 | 33.7 |
48
+ | MME<sub>sum</sub> | 170 | 1628 | β€” | 1902 | 1875 |
49
+ | MMBench-EN<sub>test</sub> | 31.1 | 52.3 | 58.5 | 70.9 | 65.5 |
50
+ | MathVista<sub>testmini</sub> | 22.3 | 34.2 | β€” | 41.1 | 45.7 |
51
+ | SEED-Image | 30.6 | 64.6 | 68.2 | 69.8 | 67.4 |
52
+ | OCRBench | 7 | 398 | 687 | 654 | 767 |
53
+ | Hallusion-Bench | 17.1 | 26.4 | β€” | 37.5 | 34.8 |
54
+ | CCBench<sub>dev</sub> | 3.5 | 16.3 | β€” | 63.5 | 66.3 |
55
+ | Avg<sub>multimodal</sub> | 16.1 | 38.9 | β€” | 54.4 | 55.2 |
56
+ | | | | | | |
57
+ | TextVQA<sub>val</sub> | 4.8 | 56.8 | 64.7 | 70.5 | 72.6 |
58
+ | SQA-I<sub>test</sub> | 47.2 | 64.9 | 89.2 | 84.9 | 93.6 |
59
+ | GQA<sub>test</sub> | β€” | 62.6 | 60.3 | 61.6 | 59.5 |
60
+ | DocVQA<sub>test</sub> | 1.5 | 53.0 | 76.3 | 85.0 | 80.0 |
61
+ | AI2D<sub>test</sub> | 46.0 | 61.0 | 70.0 | 69.8 | 68.6 |
62
+ | ChartQA<sub>test</sub> | 2.9 | 59.1 | 68.6 | 74.8 | 73.7 |
63
+ | InfoVQA<sub>test</sub> | 5.0 | 25.0 | 43.8 | 55.4 | 43.0 |
64
+ | Avg<sub>VQA</sub> | 17.9 | 54.6 | 67.6 | 71.7 | 70.1 |
65
+
66
+ > * Sources of the results include the original papers, our evaluation with [VLMEvalKit](https://github.com/open-compass/VLMEvalKit), and [OpenCompass](https://rank.opencompass.org.cn/leaderboard-multimodal/?m=REALTIME).
67
+ > * Average scores are computed by normalizing each metric to a range between 0 and 100.
68
+ > * Please note that evaluating the same model using different testing toolkits can result in slight differences, which is normal. Updates to code versions and variations in environment and hardware can also cause minor discrepancies in results.
69
+
70
+ ## Inference
71
+
72
+ We provide an example code to run Mono-InternVL-2B inference using `transformers`.
73
+
74
+ > Please use transformers==4.37.2 to ensure the model works normally.
75
+
76
+ <details>
77
+ <summary>Inference with Transformers (click to expand)</summary>
78
+
79
+ ```python
80
+ import numpy as np
81
+ import torch
82
+ import torchvision.transforms as T
83
+ from decord import VideoReader, cpu
84
+ from PIL import Image
85
+ from torchvision.transforms.functional import InterpolationMode
86
+ from transformers import AutoModel, AutoTokenizer
87
+
88
+ IMAGENET_MEAN = (0.485, 0.456, 0.406)
89
+ IMAGENET_STD = (0.229, 0.224, 0.225)
90
+
91
+ def build_transform(input_size):
92
+ MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
93
+ transform = T.Compose([
94
+ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
95
+ T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
96
+ T.ToTensor(),
97
+ T.Normalize(mean=MEAN, std=STD)
98
+ ])
99
+ return transform
100
+
101
+ def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
102
+ best_ratio_diff = float('inf')
103
+ best_ratio = (1, 1)
104
+ area = width * height
105
+ for ratio in target_ratios:
106
+ target_aspect_ratio = ratio[0] / ratio[1]
107
+ ratio_diff = abs(aspect_ratio - target_aspect_ratio)
108
+ if ratio_diff < best_ratio_diff:
109
+ best_ratio_diff = ratio_diff
110
+ best_ratio = ratio
111
+ elif ratio_diff == best_ratio_diff:
112
+ if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
113
+ best_ratio = ratio
114
+ return best_ratio
115
+
116
+ def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
117
+ orig_width, orig_height = image.size
118
+ aspect_ratio = orig_width / orig_height
119
+
120
+ # calculate the existing image aspect ratio
121
+ target_ratios = set(
122
+ (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
123
+ i * j <= max_num and i * j >= min_num)
124
+ target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
125
+
126
+ # find the closest aspect ratio to the target
127
+ target_aspect_ratio = find_closest_aspect_ratio(
128
+ aspect_ratio, target_ratios, orig_width, orig_height, image_size)
129
+
130
+ # calculate the target width and height
131
+ target_width = image_size * target_aspect_ratio[0]
132
+ target_height = image_size * target_aspect_ratio[1]
133
+ blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
134
+
135
+ # resize the image
136
+ resized_img = image.resize((target_width, target_height))
137
+ processed_images = []
138
+ for i in range(blocks):
139
+ box = (
140
+ (i % (target_width // image_size)) * image_size,
141
+ (i // (target_width // image_size)) * image_size,
142
+ ((i % (target_width // image_size)) + 1) * image_size,
143
+ ((i // (target_width // image_size)) + 1) * image_size
144
+ )
145
+ # split the image
146
+ split_img = resized_img.crop(box)
147
+ processed_images.append(split_img)
148
+ assert len(processed_images) == blocks
149
+ if use_thumbnail and len(processed_images) != 1:
150
+ thumbnail_img = image.resize((image_size, image_size))
151
+ processed_images.append(thumbnail_img)
152
+ return processed_images
153
+
154
+ def load_image(image_file, input_size=448, max_num=12):
155
+ image = Image.open(image_file).convert('RGB')
156
+ transform = build_transform(input_size=input_size)
157
+ images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
158
+ pixel_values = [transform(image) for image in images]
159
+ pixel_values = torch.stack(pixel_values)
160
+ return pixel_values
161
+
162
+
163
+ path = 'OpenGVLab/Mono-InternVL-2B'
164
+ model = AutoModel.from_pretrained(
165
+ path,
166
+ torch_dtype=torch.bfloat16,
167
+ low_cpu_mem_usage=True,
168
+ trust_remote_code=True).eval().cuda()
169
+ tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
170
+
171
+ # set the max number of tiles in `max_num`
172
+ pixel_values = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
173
+ generation_config = dict(max_new_tokens=1024, do_sample=True)
174
+
175
+ # pure-text conversation
176
+ question = 'Hello, who are you?'
177
+ response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
178
+ print(f'User: {question}
179
+ Assistant: {response}')
180
+
181
+ question = 'Can you tell me a story?'
182
+ response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True)
183
+ print(f'User: {question}
184
+ Assistant: {response}')
185
+
186
+ # single-image single-round conversation
187
+ question = '<image>
188
+ Please describe the image shortly.'
189
+ response = model.chat(tokenizer, pixel_values, question, generation_config)
190
+ print(f'User: {question}
191
+ Assistant: {response}')
192
+
193
+ # single-image multi-round conversation
194
+ question = '<image>
195
+ Please describe the image in detail.'
196
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
197
+ print(f'User: {question}
198
+ Assistant: {response}')
199
+
200
+ question = 'Please write a poem according to the image.'
201
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
202
+ print(f'User: {question}
203
+ Assistant: {response}')
204
+ ```
205
+
206
+ </details>
207
+
208
+ <details>
209
+ <summary>Inference with LMDeploy (click to expand)</summary>
210
+
211
+ Please install lmdeploy>=0.6.3 for Mono-InternVL support.
212
+
213
+ ```python
214
+ from lmdeploy import pipeline
215
+ from lmdeploy.vl import load_image
216
+
217
+ image = load_image('./examples/image1.jpg')
218
+ pipe = pipeline('OpenGVLab/Mono-InternVL-2B')
219
+ response = pipe(('Please describe the image shortly.', image))
220
+ print(response.text)
221
+ ```
222
+ </details>
223
+
224
+ ## Supervised Finetuning
225
+
226
+ Currently we provide the supervised finetuning (S2 instruction tuning) code on the LLaVA-v1.5-mix665k dataset. For details on the dataset, please refer to [LLaVA-v1.5](https://github.com/haotian-liu/LLaVA).
227
 
228
+ <details>
229
+ <summary>Installation (click to expand)</summary>
230
 
231
+ - Clone this repository:
232
+
233
+ ```bash
234
+ git clone https://github.com/OpenGVLab/Mono-InternVL.git
235
+ ```
236
+
237
+ - Create a conda virtual environment and activate it:
238
+
239
+ ```bash
240
+ conda create -n monointernvl python=3.9 -y
241
+ conda activate monointernvl
242
+ ```
243
+
244
+ - Install dependencies using `requirements.txt`:
245
+
246
+ ```bash
247
+ pip install -r requirements.txt
248
+ ```
249
+
250
+ - Additional: Install `flash-attn==2.5.6`:
251
+
252
+ ```bash
253
+ pip install flash-attn==2.5.6 --no-build-isolation
254
+ ```
255
+
256
+ Alternatively you can compile from source:
257
+
258
+ ```bash
259
+ git clone https://github.com/Dao-AILab/flash-attention.git
260
+ cd flash-attention
261
+ git checkout v2.5.6
262
+ python setup.py install
263
+ ```
264
+ </details>
265
+
266
+ <details>
267
+ <summary>Dataset Preparation (click to expand)</summary>
268
+
269
+ #### LLaVA-v1.5-mix665k Dataset
270
+
271
+ 1. Download the instruction tuning data:
272
+ ```sh
273
+ mkdir playground
274
+ wget https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/resolve/main/llava_v1_5_mix665k.json -P playground/
275
+ ```
276
+
277
+ 2. Download image datasets:
278
+
279
+ - COCO: [train2017](http://images.cocodataset.org/zips/train2017.zip)
280
+ - GQA: [images](https://downloads.cs.stanford.edu/nlp/data/gqa/images.zip)
281
+ - OCR-VQA: [download script](https://drive.google.com/drive/folders/1_GYPY5UkUy7HIcR0zq3ZCFgeZN7BAfm_?usp=sharing)
282
+ - TextVQA: [train_val_images](https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip)
283
+ - VisualGenome: [part1](https://cs.stanford.edu/people/rak248/VG_100K_2/images.zip), [part2](https://cs.stanford.edu/people/rak248/VG_100K_2/images2.zip)
284
+
285
+ 3. Organize data as follows:
286
+
287
+ ```none
288
+ playground/
289
+ β”œβ”€β”€ data/
290
+ β”‚ β”œβ”€β”€ coco/train2017/
291
+ β”‚ β”œβ”€β”€ gqa/images/
292
+ β”‚ β”œβ”€β”€ ocr_vqa/images/
293
+ β”‚ β”œβ”€β”€ textvqa/train_images/
294
+ β”‚ └── vg/
295
+ β”‚ β”œβ”€β”€ VG_100K/
296
+ β”‚ └── VG_100K_2/
297
+ └── llava_v1_5_mix665k.json
298
+ ```
299
+
300
+ #### Custom Dataset
301
+
302
+ For custom dataset, format your data in to a JSONL file, where each entry is a dictionary organized in the following format (similar to `llava_v1_5_mix665k.json`):
303
+
304
+ ```python
305
+ {
306
+ "id": "000000120375",
307
+ "image": "coco/train2017/000000120375.jpg",
308
+ "conversations": [
309
+ {
310
+ "from": "human",
311
+ "value": "<image>
312
+ What type of vehicle is driving down the street in the image?"
313
+ },
314
+ {
315
+ "from": "gpt",
316
+ "value": "A red sports utility vehicle (SUV) is driving down the street in the image."
317
+ },
318
+ {
319
+ "from": "human",
320
+ "value": "Is the street crowded with people?"
321
+ },
322
+ {
323
+ "from": "gpt",
324
+ "value": "Yes, the street is filled with a considerable number of people, which indicates that the area is busy."
325
+ }
326
+ # (more turns ...)
327
+ ]
328
+ }
329
+ ```
330
+
331
+ Then modify the metadata file `shell/data_llava_finetune.json`:
332
+
333
+ ```python
334
+ {
335
+ "name of your dataset": {
336
+ "root": "playground/data/", # combination of "root" and "image" in the JSONL gives the complete image path
337
+ "annotation": "path to your JSONL",
338
+ "data_augment": false,
339
+ "repeat_time": 1,
340
+ "length": 12345 # change to the actual number of samples in your dataset
341
+ }
342
+ }
343
+ ```
344
+
345
+ </details>
346
+
347
+ <details>
348
+ <summary>Model Preparation (click to expand)</summary>
349
+
350
+ We provide pretrained models of different stages (S1.1 concept learning, S1.2 semantic learning, S1.3 alignment learning).
351
+ Choose from the following models and download the weights to `workdirs/` folder.
352
+
353
+
354
+ | model name | download | size |
355
+ | ----------------------- | ---------------------------------------------------------------------- |:------:|
356
+ | Mono-InternVL-2B-S1-1 | πŸ€— [HF link](https://huggingface.co/OpenGVLab/Mono-InternVL-2B-S1-1) | 6.2 GB |
357
+ | Mono-InternVL-2B-S1-2 | πŸ€— [HF link](https://huggingface.co/OpenGVLab/Mono-InternVL-2B-S1-2) | 6.2 GB |
358
+ | Mono-InternVL-2B-S1-3 | πŸ€— [HF link](https://huggingface.co/OpenGVLab/Mono-InternVL-2B-S1-3) | 6.2 GB |
359
+
360
+
361
+ ```sh
362
+ mkdir workdirs
363
+ cd workdirs/
364
+ # pip install -U huggingface_hub
365
+ huggingface-cli download --resume-download --local-dir-use-symlinks False OpenGVLab/Mono-InternVL-2B-S1-1 --local-dir Mono-InternVL-2B-S1-1
366
+ ```
367
+
368
+ The directory structure is:
369
+
370
+ ```sh
371
+ workdirs/
372
+ β”œβ”€β”€ Mono-InternVL-2B-S1-1/
373
+ β”œβ”€β”€ Mono-InternVL-2B-S1-2/
374
+ └── Mono-InternVL-2B-S1-3/
375
+ ```
376
+ </details>
377
+
378
+ <details>
379
+ <summary>Training (click to expand)</summary>
380
+
381
+ Finetuning takes around 12 hours on 8x A100 (80G) GPUs.
382
+
383
+ #### Single Node Multi-GPU
384
+ ```sh
385
+ MODEL="./workdirs/Mono-InternVL-2B-S1-3" OUTPUT_DIR="./workdirs/mono_internvl_llava_sft" sh shell/mono_internvl_finetune_llava_torchrun.sh
386
+ ```
387
+
388
+ #### Slurm Cluster
389
+ ```sh
390
+ PARTITION="your partition" MODEL="./workdirs/Mono-InternVL-2B-S1-3" OUTPUT_DIR="./workdirs/mono_internvl_llava_sft" sh shell/mono_internvl_finetune_llava_slurm.sh
391
+ ```
392
+
393
+ </details>
394
+
395
+ ## License
396
+
397
+ This project is released under the [MIT License](LICENSE).
398
 
399
  ## Citation
400
 
401
+ If you find this work helpful in your research, please consider giving this repo a star ⭐ and citing our paper:
402
 
403
+ ```bibtex
404
+ @article{mono_internvl_v1,
405
  title={Mono-InternVL: Pushing the Boundaries of Monolithic Multimodal Large Language Models with Endogenous Visual Pre-training},
406
  author={Luo, Gen and Yang, Xue and Dou, Wenhan and Wang, Zhaokai and Liu, Jiawen and Dai, Jifeng and Qiao, Yu and Zhu, Xizhou},
407
  journal={arXiv preprint arXiv:2410.08202},
408
  year={2024}
409
  }
 
410
 
411
+ @article{mono_internvl_v1.5,
412
+ title={Mono-InternVL-1.5: Towards Cheaper and Faster Monolithic Multimodal Large Language Models},
413
+ author={Luo, Gen and Dou, Wenhan and Li, Wenhao and Wang, Zhaokai and Yang, Xue and Tian, Changyao and Li, Hao and Wang, Weiyun and Wang, Wenhai and Zhu, Xizhou and Qiao, Yu and Dai, Jifeng},
414
+ journal={arXiv preprint arXiv:2507.12566},
415
+ year={2025}
416
+ }
417
+ ```