File size: 8,424 Bytes
0a95383 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import os, random, requests
import numpy as np
import tensorflow as tf
from tensorflow.keras import layers, Model
import sentencepiece as spm
# =========================
# 설정
# =========================
TOKENIZER_PATH = "bpe.model"
DATA_PATH = "shuffled_corpus.txt"
MAX_LEN = 128
EMBED_DIM = 384
LATENT_DIM = 384
BATCH_SIZE = 512
EPOCHS = 1
SHUFFLE_BUFFER = 200000
LEARNING_RATE = 1e-4
TEMPERATURE = 0.05
DROPOUT_AUG = 0.1
EMBED_DROPOUT = 0.1
def download_file(url, save_path):
if os.path.exists(save_path):
print(f"exists: {save_path}")
return
print(f"Downloading {save_path} ...")
r = requests.get(url, stream=True)
r.raise_for_status()
with open(save_path, "wb") as f:
for chunk in r.iter_content(8192*2):
if not chunk:
break
f.write(chunk)
print(f"✅ {save_path} saved")
download_file(
"https://huggingface.co/datasets/OpenLab-NLP/ko-corpus/resolve/main/bpe.model?download=true",
TOKENIZER_PATH
)
download_file(
"https://huggingface.co/datasets/OpenLab-NLP/ko-corpus/resolve/main/shuffled_corpus%20(1).txt?download=true",
DATA_PATH
)
sp = spm.SentencePieceProcessor()
sp.load(TOKENIZER_PATH)
pad_id = sp.piece_to_id("<pad>") if sp.piece_to_id("<pad>") != -1 else 0
vocab_size = sp.get_piece_size()
# Python-side encoder for small utility
def encode_sentence_py(s: str):
ids = sp.encode(s, out_type=int)[:MAX_LEN]
if len(ids) < MAX_LEN:
ids = ids + [pad_id] * (MAX_LEN - len(ids))
else:
ids = ids[:MAX_LEN]
return np.array(ids, dtype=np.int32)
def tf_encode(line):
# line: tf.Tensor (tf.string)
def _encode_py(s_tensor):
# s_tensor는 tf.Tensor -> numpy bytes
s = s_tensor.numpy().decode("utf-8")
return encode_sentence_py(s)
# tf.py_function은 tf.Tensor -> tf.int32
ids = tf.py_function(func=_encode_py, inp=[line], Tout=tf.int32)
ids.set_shape([MAX_LEN])
return ids
def token_dropout(tokens, drop_prob=DROPOUT_AUG):
# tokens: (MAX_LEN,) int32
rnd = tf.random.uniform(tf.shape(tokens), 0, 1)
keep_mask = rnd > drop_prob
return tf.where(keep_mask, tokens, tf.cast(pad_id, tf.int32))
def make_views(tokens):
v1 = token_dropout(tokens)
v2 = token_dropout(tokens)
return v1, v2
ds = tf.data.TextLineDataset(DATA_PATH)
ds = ds.map(lambda x: tf.strings.strip(x), num_parallel_calls=tf.data.AUTOTUNE)
ds = ds.filter(lambda x: tf.not_equal(x, ""))
# encode
ds = ds.map(tf_encode, num_parallel_calls=tf.data.AUTOTUNE)
# shuffle, repeat, create views, batch
ds = ds.shuffle(SHUFFLE_BUFFER)
ds = ds.repeat()
ds = ds.map(lambda t: make_views(t), num_parallel_calls=tf.data.AUTOTUNE)
ds = ds.batch(BATCH_SIZE, drop_remainder=True) # (BATCH, MAX_LEN) for v1 and v2
# model.fit expects (inputs, labels)
ds = ds.map(lambda v1, v2: ((v1, v2), tf.zeros([BATCH_SIZE], dtype=tf.float32)), num_parallel_calls=tf.data.AUTOTUNE)
ds = ds.prefetch(tf.data.AUTOTUNE)
class DynamicConv(layers.Layer):
def __init__(self, k=7):
super().__init__()
assert k % 2 == 1
self.k = k
self.generator = layers.Dense(k)
def call(self, x):
B = tf.shape(x)[0]
L = tf.shape(x)[1]
D = tf.shape(x)[2]
kernels = self.generator(x) # (B,L,k)
kernels = tf.nn.softmax(kernels, axis=-1)
pad = (self.k - 1) // 2
x_pad = tf.pad(x, [[0,0],[pad,pad],[0,0]])
x_pad_4d = tf.expand_dims(x_pad, axis=1)
patches = tf.image.extract_patches(
images=x_pad_4d,
sizes=[1,1,self.k,1],
strides=[1,1,1,1],
rates=[1,1,1,1],
padding='VALID'
) # (B,1,L,k*D)
patches = tf.reshape(patches, [B, L, self.k, D])
kernels_exp = tf.expand_dims(kernels, axis=-1)
out = tf.reduce_sum(patches * kernels_exp, axis=2)
return out
class EncoderBlock(layers.Layer):
def __init__(self, embed_dim=EMBED_DIM, ff_dim=1152, num_conv_layers=2, dropout_rate=EMBED_DROPOUT):
super().__init__()
self.fc1 = layers.Dense(ff_dim)
self.fc2 = layers.Dense(embed_dim)
self.blocks = [DynamicConv(k=7) for _ in range(num_conv_layers)]
self.ln = layers.LayerNormalization(epsilon=1e-5)
self.ln1 = layers.LayerNormalization(epsilon=1e-5)
self.ln2 = layers.LayerNormalization(epsilon=1e-5)
self.dropout = layers.Dropout(dropout_rate)
def call(self, x, training=None):
x_norm = self.ln(x)
out = x_norm
for block in self.blocks:
out = block(out)
out = self.dropout(out, training=training)
x = x_norm + self.ln1(out)
v = out
h = self.fc1(v)
g, v_split = tf.split(h, 2, axis=-1)
h = tf.nn.silu(g) * v_split
h = self.fc2(h)
h = self.dropout(h, training=training)
x = x + self.ln2(h)
return x
class L2NormLayer(layers.Layer):
def __init__(self, axis=1, epsilon=1e-10, **kwargs):
super().__init__(**kwargs)
self.axis = axis
self.epsilon = epsilon
def call(self, inputs):
return tf.math.l2_normalize(inputs, axis=self.axis, epsilon=self.epsilon)
class SentenceEncoder(Model):
def __init__(self, vocab_size, embed_dim=EMBED_DIM, latent_dim=LATENT_DIM, max_len=MAX_LEN, pad_id=pad_id, dropout_rate=EMBED_DROPOUT):
super().__init__()
self.pad_id = pad_id
self.embed = layers.Embedding(vocab_size, embed_dim)
self.pos_embed = layers.Embedding(input_dim=max_len, output_dim=embed_dim)
self.dropout = layers.Dropout(dropout_rate)
self.blocks = [EncoderBlock() for _ in range(2)]
self.attn_pool = layers.Dense(1)
self.ln_f = layers.LayerNormalization(epsilon=1e-5, dtype=tf.float32)
self.latent = layers.Dense(latent_dim, activation=None)
self.l2norm = L2NormLayer(axis=1)
def call(self, x, training=None):
positions = tf.range(tf.shape(x)[1])[tf.newaxis, :]
x_embed = self.embed(x) + self.pos_embed(positions)
x_embed = self.dropout(x_embed, training=training)
mask = tf.cast(tf.not_equal(x, self.pad_id), tf.float32)
h = x_embed
for block in self.blocks:
h = block(h, training=training)
h = self.ln_f(h)
scores = self.attn_pool(h)
scores = tf.where(tf.equal(mask[..., tf.newaxis], 0), -1e9, scores)
scores = tf.nn.softmax(scores, axis=1)
pooled = tf.reduce_sum(h * scores, axis=1)
latent = self.latent(pooled)
return self.l2norm(latent) # (B, D)
encoder = SentenceEncoder(vocab_size=vocab_size)
# =========================
# Wrapper model for model.fit
# takes (v1, v2) and returns concat([z1, z2]) shape (2B, D)
# =========================
input1 = layers.Input(shape=(MAX_LEN,), dtype=tf.int32, name="view1")
input2 = layers.Input(shape=(MAX_LEN,), dtype=tf.int32, name="view2")
z1 = encoder(input1)
z2 = encoder(input2)
out = layers.Concatenate(axis=0)([z1, z2]) # (2B, D)
model = Model(inputs=[input1, input2], outputs=out)
# =========================
# NT-Xent loss as Keras loss (ignores y_true)
# =========================
def nt_xent_loss(y_true, y_pred):
# y_pred: (2N, D) normalized
z = y_pred
z = tf.cast(z, tf.float32)
sim = tf.matmul(z, z, transpose_b=True) # (2N, 2N)
sim = sim / TEMPERATURE
# large negative on diagonal to avoid trivial argmax
diag = tf.eye(tf.shape(sim)[0])
sim = sim - diag * 1e9
N2 = tf.shape(sim)[0]
N = N2 // 2
# positive index for i: if i < N => i+N, else i-N
labels_pos = tf.concat([tf.range(N, N2), tf.range(0, N)], axis=0)
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=labels_pos, logits=sim)
return tf.reduce_mean(loss)
optimizer = tf.keras.optimizers.Adam(learning_rate=LEARNING_RATE)
model.compile(optimizer=optimizer, loss=nt_xent_loss)
model.summary()
steps_per_epoch = 36757266 // 512
#steps_per_epoch = 1000000 // BATCH_SIZE
model.fit(ds, epochs=EPOCHS, steps_per_epoch=steps_per_epoch)
# 저장
encoder.save_weights("encoder_fit.weights.h5")
print("Training finished and weights saved.")
|